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We study Erdös-Rényi random graphs with random weights associated with each link. We generate a
“supernode network” by merging all nodes connected by links having weights below the percolation threshold
�percolation clusters� into a single node. We show that this network is scale-free, i.e., the degree distribution is
P�k��k−� with �=2.5. Our results imply that the minimum spanning tree in random graphs is composed of
percolation clusters, which are interconnected by a set of links that create a scale-free tree with �=2.5. We
suggest that optimization causes the percolation threshold to emerge spontaneously, thus creating naturally a
scale-free supernode network. We discuss the possibility that this phenomenon is related to the evolution of
several real world scale-free networks.
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Scale-free topology is very common in natural and man-
made networks. Examples vary from social contacts between
humans to technological networks such as the World Wide
Web or the Internet �1–3�. Scale-free �SF� networks are char-
acterized by a power-law distribution of connectivities
P�k��k−�, where k is the degree of a node and the exponent
� controls the broadness of the distribution. Many networks
are observed to have values of � around 2.5. For values of
��3 the second moment of the distribution �k2� diverges,
leading to several anomalous properties �4�.

In many real world networks there is a “cost” or a
“weight” associated with each link, and the larger the weight
on a link, the harder it is to traverse this link. In this case, the
network is called a weighted network �5�. Examples can be
found in communication and computer networks, where the
weights represent the bandwidth or delay time, in protein
networks where the weights can be defined by the strength of
interaction between proteins �6,7� or their structural similar-
ity �8�, and in sociology where the weights can be chosen to
represent the strength of a relationship �9,10�.

In this paper we present a simple process that generates
random scale-free networks with �=2.5 from weighted
Erdös-Rényi graphs �11�. We further show that the minimum
spanning tree �MST� on an Erdös-Rényi graph is related to
this network, and is composed of percolation clusters, which
we regard as “supernodes,” interconnected by a scale-free
tree. We will see that due to optimization, this scale-free tree
is dominated by links having high weights—significantly
higher than the percolation threshold pc. Hence, the MST
naturally distinguishes between links below and above the
percolation threshold, leading to a scale-free “supernode net-
work.” Our results may explain the origin of scale-free de-
gree distribution in some real world networks.

Consider an Erdös-Rényi �ER� graph with N nodes and an
average degree �k�, thus having a total of N�k� /2 links. To
each link we assign a weight chosen randomly and uniformly
from the range �0,1�. We define black links to be those links
with weights below a threshold pc=1/ �k� �11�. Two nodes
belong to the same cluster if they are connected by black
links �Fig. 1�a��. From percolation theory �12� follows that
the number of clusters of s nodes scales as a power law,
ns�s−�, with �=2.5 for ER networks �13�. Next, we merge
all nodes inside each cluster into a single supernode. We
define a new supernode network �Fig. 1�b�� of Nsn supern-
odes �14�. The links between two supernodes �see Figs. 1�a�
and 1�b�� have weights larger than pc.

The degree distribution P�k� of the supernode network
can be obtained as follows. Every node in a supernode has
the same �finite� probability to be connected to a node out-
side the supernode. Thus we assume that the degree k of each
supernode is proportional to the cluster size s, which obeys
ns�s−2.5. Hence P�k��k−�, with �=2.5, as supported by
simulations shown in Fig. 2. Furthermore, we also see that if
the threshold for obtaining the clusters that are merged into
supernodes is changed slightly, the degree distribution still
remains scale-free with �=2.5, but with an exponential cut-
off. This is an indication of the fact that there are still super-
nodes of high degree that are connected to many other
�small� supernodes by links with weights significantly higher
than pc; if this was not the case, a small change in the thresh-
old would cause many clusters to merge and destroy the
power law in the supernode network degree distribution.

We next show that the minimum spanning tree �MST� on
an ER graph is related to the supernode network, and there-
fore also exhibits scale-free properties. The MST on a
weighted graph is a tree that reaches all nodes of the graph
and for which the sum of the weights of all the links �total
weight� is minimal. Also, each path between two sites on the
MST is the optimal path in the “strong disorder” limit*Electronic address: kaliskt@mail.biu.ac.il
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�15,16�, meaning that along this path the maximum barrier
�weight� is the smallest possible �14,16,17�.

Standard algorithms for finding the MST �18� are Prim’s
algorithm, which resembles invasion percolation, and
Kruskal’s algorithm, which resembles percolation. An
equivalent algorithm to find the MST is the bombing optimi-
zation algorithm �16,17�. We start with the full ER network
and remove links in order of descending weights. If the re-
moval of a link disconnects the graph, we restore the link
and mark it gray �19�; otherwise the link �shown dotted in
Fig. 1�a�� is removed. The algorithm ends and a MST is
obtained when no more links can be removed without dis-
connecting the graph.

In the bombing algorithm, only links that close a loop can
be removed. Below criticality loops are negligible for ER

networks �d→ � � �11,12�. Therefore, bombing does not
modify the percolation clusters—where the links have
weights below pc. Thus bombing modifies only links outside
the clusters, so actually it is only the links of the supernode
network that are bombed. Hence the MST resulting from
bombing is composed of percolation clusters connected by
gray links �Fig. 1�c��.

From the MST of Fig. 1�c� we now generate a new tree,
the MST of the supernode network, which we call the “gray
tree,” whose nodes are the supernodes and whose links are
the gray links connecting them �see Fig. 1�d��. Note that
bombing the original ER network to obtain the MST of Fig.
1�c� is equivalent to bombing the supernode network of Fig.
1�b� to obtain the gray tree, because the links inside the
clusters are not bombed. We find �Fig. 3�a�� that the gray tree
has also a scale-free degree distribution P�k�, with
�=2.5—the same as the supernode network �20�. We also
find �Fig. 3�b�� the average path length �gray scales as
�gray� ln Nsn� ln N �14,21�. Note that even though the gray
tree is scale-free, it is not ultrasmall �4�, since the length does
not scale as loglog N.

Next we show that the bombing optimization, which leads
to the MST, yields a significant separation between the
weights of the links inside the supernodes and the links con-
necting the supernodes. As explained above, the MST is op-
timal in two senses: �i� the total weight of all links is mini-
mal and �ii� any path between any two nodes on the MST
will encounter the smallest maximal barrier �weight� be-
tween these nodes. The last property is common to many
physical systems �e.g., the protein folding network �see be-
low��. Accordingly, we study the weights encountered when
traveling along a typical path on the MST.

We consider all pairs of nodes in the original MST of N
nodes �Fig. 1�c�� and calculate the typical path length �typ,

FIG. 1. Sketch of the supernode network. �a� The original ER
network, partitioned into percolation clusters whose sizes s are
power-law distributed, with ns�s−� where �=2.5 for ER graphs.
The black links are the links with weights below pc, the dotted links
are the links that are removed by the bombing algorithm, and the
gray links are the links whose removal will disconnect the network
�and therefore are not removed even though their weight is above
pc�. �b� The supernode network: the nodes are the clusters in the
original network and the links are the links connecting nodes in
different clusters �i.e., dotted and gray links�. The supernode net-
work is scale-free with P�k��k−� and �=2.5. Notice the existence
of self loops and of double connections between the same two
supernodes. �c� The minimum spanning tree �MST�, composed of
black and gray links only. �d� The MST of the supernode network
�gray tree�, which is obtained by bombing the supernode network
�thereby removing the dotted links�, or equivalently, by merging the
clusters in the MST to supernodes. The gray tree is scale-free, with
�=2.5.

FIG. 2. �Color online� The degree distribution of the supernode
network of Fig. 1�b�, where the supernodes are the percolation clus-
ters, and the links are the links with weights larger than pc ���. The
distribution exhibits a scale-free tail with ��2.5. If we choose a
threshold less than pc, we obtain the same power-law degree distri-
bution with an exponential cutoff. The different symbols represent
slightly different threshold values: pc−0.03 ��� and pc−0.05 ���.
The original ER network has N=50 000 and �k�=5. Note that for
k��k� the degree distribution has a maximum.
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which is the most probable path length on the MST. For each
path of length �typ we rank the weights on its links in de-
scending order. For the largest weights �“rank 1 links”�, we
calculate the average weight w̄r=1 over all paths. Similarly,
for the next largest weights �“rank 2 links”� we find the av-
erage w̄r=2 over all paths, and so on up to r=�typ. Figure 4�a�
shows w̄r as a function of rank r for three different network
sizes N=2000, 8000, and 32 000. It can be seen that weights
below pc �black links inside the supernodes� are uniformly
distributed and approach one another as N increases. As op-
posed to this, weights above pc �“gray links”� are not uni-
formly distributed, due to the bombing algorithm, and are
independent of N. Actually, weights above pc encountered
along the optimal path �such as the largest weights w1, w2,
and w3� are significantly higher than those below pc. Figure
4�b� shows that the links with the highest weights on the
MST can be associated with gray links from very small clus-
ters �Figs. 1�a� and 1�c�� �similar results have been obtained
along the optimal path�.

As mentioned earlier, this property is present also in the
original supernode network and hence the change in the
threshold used to obtain the supernodes does not destroy the
power-law degree distribution but only introduces an expo-
nential cutoff. We thereby obtain a scale-free supernode net-
work with �=2.5, which is not very sensitive to the precise
value of the threshold used for defining the supernodes. For
example, the scale-free degree distribution shown in Fig.
3�a� for a threshold of pc+0.01 corresponds to having only
four largest weights on the optimal paths �see Fig. 4�a��.
However, even for pc+0.02 the degree distribution is well
approximated by a scale-free distribution with �=2.5 �see
Fig. 3�a��. This means that mainly very small clusters, con-
nected with high-weight links to large clusters, dominate the
scale-free distribution P�k� of the MST of the supernode net-
work �gray tree�. Hence, the bombing optimization process
on an ER graph causes a significant separation between links
below and above pc to emerge spontaneously in the system,
and by merging nodes connected with links of low weights, a
scale-free network can arise.

The process described above may be related to the evolu-
tion of some real world networks. Consider a homogeneous
network with many components whose average degree �k� is
well defined. Suppose that the links between the components
have different weights, and that some optimization process

FIG. 3. �Color online� �a� The degree distribution of the gray
tree �the MST of the supernode network, shown in Fig. 1�d��, in
which the supernodes are percolation clusters and the links are the
gray links. Different symbols represent different threshold values:
pc ���, pc+0.01 ���, and pc+0.02 ���. The distribution exhibits
a scale-free tail with ��2.5, and is relatively insensitive to
changes in pc. �b� The average path length �gray on a the gray
tree as a function of original network size. It is seen that
�gray� ln Nsn� ln N.

FIG. 4. �Color online� �a� The average weights w̄r along the
optimal path of an ER graph with �k�=5, sorted according to their
rank. Different symbols represent different system sizes: N=2000
���, N=8000 ���, and N=32 000 ���. Below pc=0.2, the weights
are uniformly distributed, while weights above pc are significantly
higher and independent of N. �b� Cluster size vs the minimal gray
link emerging from each cluster, for ER graphs with �k�=5 and
N=10 000. Small clusters are associated with higher weights be-
cause they have a small number of exits and thus cannot be
optimized.
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separates the network into nodes that are well connected �i.e.,
connected by links with low weights� and nodes connected
by links having much higher weights. If the well-connected
components merge into a single node, this results in a new
heterogeneous supernode network with components that vary
in size, and thus in number of outgoing connections.

An example of a real world network whose evolution may
be related to this model is the protein folding network, which
was found to be scale-free with ��2.3 �7�. The nodes are
the possible physical configurations of the system and the
links between them describe the possible transitions between
the different configurations. We assume that this network is
optimal because the system chooses the path with the small-
est energy barrier from all possible trajectories in phase
space. It is possible that the scale-free distribution evolves
through a similar procedure as described above for random
graphs: Adjacent configurations with close energies �nodes in
the same cluster� cannot be distinguished and are regarded as
a single supernode, while configurations �clusters� with high
barriers between them belong to different supernodes.

A second example is computer networks. Strongly inter-
acting computers �such as computers belonging to research-
ers from the same company or research institution� are likely
to converge into a single domain, and thus domains with
various sizes and connectivities are formed. This network

might be also optimal, because packets destined to an exter-
nal domain are presumably routed through the router that has
the best connection to the target domain.

To summarize, we have seen that any weighted random
network hides an inherent scale-free supernode network �22�.
We showed that the minimum spanning tree, generated by
the bombing algorithm, is composed of percolation clusters
connected by a scale-free tree of gray links. Most of the gray
links connect small clusters to large ones, thus having
weights well above the percolation threshold that do not
change with the original size of the network. Thus the opti-
mization in the process of building the MST distinguishes
between links with weights below and above the threshold,
leading to a spontaneous emergence of a scale-free supern-
ode network. We raise the possibility that in some naturally
optimal real-world networks, nodes connected well merge
into one single node, and thus a scale-free network emerges.
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