5. Fractals in Theoretical Physics

This final chapter is intended to be read as a ‘dessert’ — a kind of reward for
having worked through the four main pillars of theoretical physics presented thus
far. No background from the previous chapters is assumed, so the reader who
skips the main meal is nonetheless welcome to taste the dessert. We won’t be
like the conscientious wife who denied her dying husband’s last wish — to taste
the freshly baked cakes whose odor drifted from her kitchen to his deathbed —
with the scolding remark “The cakes are for after the funeral!l” .

Plato sought to explain nature with five regular solids; Newton and Kepler
bent Plato’s circle to an ellipse; modern science analyzed Plato’s shapes into par-.
ticles and waves, and generalized the curves of Newton and Kepler to relative
probabilities — still without a single ‘rough edge.” Now, more than two thousand
years after Plato, nearly three hundred years after Newton, and after thirty stren-
uous years of wily insinuation, calculated argument, and stunning demonstration,
Benoit Mandelbrot has established a discovery that ranks with the laws of regu-
lar motion. Bespeaking the knowledge possessed by every child and every great
painter, Mandelbrot has observed, “Clouds are not spheres, mountains are not
cones, coastlines are not circles, bark is not smooth, nor does lightning travel in
a straight line.” 7

What Mandelbrot has named fractal geometry describes not only the zigzag
of Zeus’s thunderbolt, or the branching and the varying densities of Pan’s forests.
It describes as well the Mercurial irregularities of the commodities market, the
heretofore unaccountable fits of Poseidon the earthshaker, and a myriad of phe-
nomena in the realm of lesser deities — snowflakes, shale, lava, gels, the rise and
fall of rivers, fibrillations of the heart, the surging of electronic noise. Fractal ge-
ometry points to a symmetry of pattern within each of the meldings, branchings,
and shatterings of nature.

A book that preceded by more than half a century Mandelbrot’s 1982 classic
The Fractal Geometry of Nature and was known by every scientist at that time
is On Growth & Form by W. D’Arcy Thompson (1917). On Growth & Form
called attention to the fact that a large part of science was based on structures
and processes that on a microscopic level are completely random, despite the fact
that on the macroscopic level we can perceive patterns and structure. This classic
has become popular again, in large part due to the fact that in the past few years
the advent of advanced computing and sophisticated experimental techniques
have led to dramatic progress in our understanding of the connection between
the structure of a variety of random ‘forms’ and the fashion in which these
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forms ‘grow.” Not surprisingly, within the scientific community there has been
a tremendous upsurge of interest in this opportunity to unify a large number of
diverse phenomena, ranging from chemistry and biology to physics and materials
science.

5.1 Non-random Fractals

Fractals fall into two categories, random (Plate 1) and non-random (Plate 2).
Fractals in physics belong to the first category, but it is instructive to discuss
first a much-studied example of a non-random fractal — the Sierpinski gasket.
We simply iterate a growth rule much as a child might assemble a castle from
building blocks. Our basic unit is a triangular-shaped tile shown in Fig.5.1a,
which we take to be of unit ‘mass’ (M = 1) and of unit edge length (L = 1).

The Sierpinski gasket is defined operationally as an ‘aggregation process’
obtained by a simple iterative process. In stage one, we join three tiles together
to create the structure shown in Fig. 5.1b, an object of mass M = 3 and edge
L = 2. The effect of stage one is to produce a unit with a lower density: if we
define the density as

o(L) = M(L)/I?, (5.1)

then the density decreases from unity to 3/4 as a result of stage one.

Now simply iterate — i.e., repeat this growth rule over and over ad infinitum.
Thus in stage two, join together — as in Fig. 5.1c — three of the ¢ = 3 /4 structures
constructed in stage one, thereby building an object with ¢ = (3/4)%. In stage
three, join three objects identical to those constructed in stage two. Continue until
you run out of tiles (if you are a physicist) or until the structure is infinite (if

L= 20 L=2! L= 22
M= 30 M=31 M= 32 coe
2 [ [

Fig. 5.1a—c. First few stages in the aggregation rule which is iterated to form a Sierpinsid gasket
fractal.
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Fig. 5.2. (a) Sierpinski gasket fractal after four stages of
iteration. (b) A log-log plot of g, the fraction of space
covered by black tiles, as a function of L, the linear size
of the object.
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you are a mathematician!). The result after stage four — with 81 black tiles and
175 white tiles (Fig. 5.2a) may be seen to this day in floor mosaics of the church
in Anagni, Italy, which was built in the year 1104 (Plate 2). Thus although the
Sierpinski gasket fractal is named after a 20th century Polish mathematician, it
was known some eight centuries earlier to every churchgoer of this village!

The citizens of Anagni did not have double-logarithmic graph paper in the
12th century. If they had had such a marvelous invention, then they might have
plotted the dependence of g or L. They would find Fig. 5.2b, which displays two
striking features:

— o(L) decreases monotonically with L, without limit, so that by iterating
sufficiently we can achieve an object of as low a density as we wish, and

— o(L) decreases with L in a predictable fashion, namely a simple power law.

Power laws have the generic form y = Az® and, as such, have two param-
eters, the ‘amplitude’ 4 and the exponent «. The amplitnde is not of intrinsic
interest, since it depends on the choice we make for the definitions of M and L.
The exponent, on the other hand, depends on the process itself — i.e., on the ‘rule’
that we follow when we iterate. In short, different rules give different exponents.
In the present example, o(L) = L* so the amplitude is unity. The exponent is
given by the slope of Fig. 5.2b, |

logl —log(3/4) log3.

logl —log2 log2 = -2

a =slope =
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Finally we are ready to define the fractal dimension df, through the equation

ML) = A L*, (5.3)
If we substitute (5.3) into (5.1), we find
K(L)=A L¥2, _ (5.4)

Comparing (5.2) and (5.4), we conclude that the Sierpinski gasket is indeed a
fractal object with fractal dimension '

de=log3/log2=1.58... (5.5) .

Classical (Euclidean) geometry deals with regular forms having a dimension the
same as that of the embedding space. For example, a line has d = 1, and a square
d = 2. We say that the Sierpinski gasket has a dimension interméediate between
that of a line and a square.

We may generalize the Sierpinski gasket from d = 2 to d = 3, taking as
the basic building block a regular tetrahedron of edge L = 1 and mass M = 1.
Combining four such blocks we can build a L = 2 tetrahedron with a hole
in the center — so that M =4 for L = 2, and this construction may be iterated

indefinitely o0 form an object resembling the Great Pyramid afier a termite attack.

We see that dr = 2, so for this example the fractal dimension is an integer! We
offer as an amusing exercise to generalize the Sierpinski gasket structure to an
embedding space of arbitrary dimension d (yes, we can have exercises during
dessert, provided that they are amusing). You should find the result

di = log(d + 1)/ log 2. (5.6)

5.2 Random Fractals: The Unbiased Random Walk

Real systems in nature do not resemble the floor of the Anagni church - in fact,
no non-random fractals are found in Nature. What is found are objects which
themselves are not fractals but which have the remarkable feature that if we form
a statistical average of some property such as the density, we find a quantity
that decreases linearly with length scale when plotted on double logarithmic
paper. Such objects are termed random fractals, to distinguish them from the
non-random geometric fractals discussed in the previous section.

Consider the following prototypical problem in statistical mechanics. At time
¢ =0 an ant! is parachuted to an arbitrary vertex of an infinite one-dimensional

! The use of the term ant to describe a random walker is used almost universally in the theoretical
physics literature — perhaps the earliest reference to this colorful animal is a 1976 paper of de
Gennes that succeeded in formulating several general physics problems in terms of the motion of a
‘drunken’ ant with appropriate rules for motion. Generally speaking, classical mechanics concerns
itself with the prediction of the position of a ‘sober’ ant, given some set of non-random forces
acting on it, while statistical mechanics is concerned with the problem of predicting the position
of a drunken ant.
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lattice with lattice constant unity: we say z.o = 0. The ant carries an unbigsed
two-sided coin, and a metronome of period one. The dynamics of the ant is
governed by the following rule. At each ‘tick’ of the metronome, it tosses the
coin. If the coin is heads, the ant steps to the neighboring vertex on the East
[z+=1 = 1]. If the coin is tails, it steps to the nearest vertex on the West [z, =
-11.

Are there laws of nature that govern the position of this drunken ant? At first
thought, the response is likely to be “NO - How can you predict the position of
something that is random?” However, if you have reached this far in a primer
on theoretical physics, then you can imagine that there may be laws governing
even the motion of random systems.

For the drunken ant described above, the first ‘law’ concemns (z),, the expec-
tation value of the position of the ant after a time ¢. In general, the expectation
value of any quantity A4 is given by

=) AR, (5.7)

where A is the value of the quantity A in configuration ¢, P is the probability
of configuration ¢, and the summation is over all configurations. For the example
at hand, there are 2 configurations at time ¢ = 1 with P, = 1/2, 4 configurations
at time £ =2 with F; = 1/4. In general, there are 2¢ configurations at an arbitrary
time ¢, each with probability P, = (1/2). Thus

(€)= zcP.=0. (5.8)

c

for ¢t = 1. To prove (5.8) in general, proceed by induction: assume (5.8) holds
for time ¢ and show that it holds for time ¢ + 1.

For non-random systems, it is generally sufficient to predict the position
of the system at time £ — the analog of (z),. For random systems, on the other
hand, the information contained in {z); does not describe the system extensively.
For example, we know intuitively that as time progresses, the average of the
square of the displacement of the ant increases monotonically. The explicit form
of this increase is contained in the second ‘law’ concerning the mean square
displacement

{z%)e=t. | (5.9)

Equatlon (3.9) may also be proved by induction, by demonstrating that (5.9)
implies (22)¢1 = ¢+ 1.

Additional information is contamed in the expectation values of higher powers
of z, such as (z°);, {z*);, and so forth. By the same symmetry arguments leading
to (5.8), we can see that (z*), = 0 for all odd integers k. However (z*), is non-
zero for even integers. Consider, e.g., {z*);. We may easily verify that

(@) =3¢ — 2t =3¢ [_1 — 27/3} (5.10)
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5.3 ‘A Single Length’

5.3.1 The Concept of a Characteristic Length

Let us compare (5.9) and (5.10). What is the displacement of the randomly

walking ant? On the one hand, we might con31dcr identifying this displacement
with a length £; defined by

Lo =4/ (2?) =112, | | (5.11)

On the other hand, it is just as reasonable to identify this displacement with the
length £4 defined by

' 1/4
Lo= (a*) =3/ [1 - ?] : (5.12)

The important point is that both lengths display an asymptotic dependence on
the time. We call the leading exponent (i.e. 1/2) the scaling exponent, while the
non-leading exponents are termed corrections-to-scaling. The reader may verify
that the same scaling exponent is found if we consider any length £ (provided
k is even),

['k = k/($k> = Ak tl/2 [1 +Bkt-—-l +th—2 oot O(f—k/2+1)]1/k. (513)

The subscripts on the amplitudes indicate that these depend on k. Equation (5.13)
exemplifies a robust feature of random systems: regardless of the definition of
the characteristic length, the same scaling exponent describes the asymptotic be-
havior. We say that all lengths scale as the square root of the time, meaning that
whatever length £; we choose to examine, £; will double whenever the time
has increased by a factor of four. This scaling property is not affected by the
fact that the amplitude .4; in (5.13) depends on £, since we do not inquire about
the absolute value of the length £; but only cnqulre how L changes when t
changes.

53.2 Higher Dimensions

Next, we shall show that the identical scaling faws hold for dimensions above
one. Suppose we replace our one-dimensional linear chain lattice with a two-
dimensional square lattice. This entails replacing our ant’s coin with a four-sided
bone.? According to the outcome of the ‘bone toss’, the ant will step North, East,
South, or West. The coordinate of the ant is represented by a two-dimensional
vector r{t) with Cartesian components [z(2), y()). '

2 Monroll and Shiesinger have written that ancient cave men (and presumably cave women) were
fascinated by games of chance and would actually roil four-sided bones to randomly cheose one
of four possible cutcomes.
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The analogs of (5.8) and (5.9) are
(r);=0 (5.14)

and
(Ir?)e =t (5.15)

We may formally prove (5.14) and (5.15) by induction. Equation (5.15) may also
be ‘understood’ if we note that, on average, for half the metronome ticks the ant
steps either to the East or to the West, so from (5.9) the z-displacement should
follow the law {z2); = ¢/2. The other half of the time the ant moves North or
South, so {y?); = t/2. Hence {|r|*); = (z?); + (¥?): = t.

For the fourth moment, we find

(Ir[*yy =24 [1 - %] : ~ (5.16)

Thus the length £4 defined in (5.12) scales with the same scaling exponent for
two dimensions as for one dimension; the amplitudes of the leading terms and
the ‘correction-to-scaling’ term are changed, but the asymptotic scaling properties
are not affected in passing from d = 1 to d = 2. A hallmark of modern critical
phenomena is that the exponents are quite robust but amplitudes depend more
sensitively on what particular system is being studied.

5.3.3 Additional Lengths that Scale with /2

Linear polymers are topologically linear chains of monomers held together by
chemical bonds (like a string of beads). Let us make an oversimplified model
of such a linear polymer by assuming that the chain of monomers adopts a
conformation in three-dimensional space that has the same statistics as the srail
of the ant. By the trail we mean the object formed if the ant leaves behind a
litde piece of bread at each site visited. After a time ¢, the ant has left behind ¢
pieces of bread; hence the analog of the time is the number of monomers in the
polymer chain. An unrealistic feature of this simple model arises whenever the
ant re-visits the same site. Then more than one piece of bread occupies the same
site, while two monomers cannot occupy the same point of space. In Sect. 5.8,
we shall see that statistical properties of a random walk provide a useful upper
bound on the properties of real polymers, and that this upper bound becomes the
exact value of dy for space dimensions above a critical dimension d..

We can experimentally measure the radius of gyration R, of this random
walk model of a polymer. Moreover, it is a simple exercise to demonstrate that

1
= — 517
Rg \/EREE, ( )

where Rgg = +/(|r}?) is the Pythagorean distance between the first and last
monomer; Rgg is called the end-to-end distance of the random walk. Thus we
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expect that R, scales as the square root of the number of monomers, just as the
lengths £, and £4 of (5.11) and (5.12) scale as the square root of the time.

Thus we find identical scaling properties no matter what definition we choose
—~ the moment £L; of (5.13), the radius of gyration R, of the trail, or the end-to-
end displacement of the entire walk. In this sense, there is only ‘one characteristic
length’. When such a characteristic length is referred to, generically, it is cus-
tomary to use the symbol £.

5.4 Functional Equations and Scaling: One Variable

We have seen that several different definitions of the characteristic length ¢ all
scale as VE. Equivalently, if #(¢) is the characteristic time for the ant to ‘trace
out” a domain of linear dimension ¢, then

t~ &2, (5.18)

More formally, for all positive values of the parameter A such that the product
A§ 1s large, $(¢) is, asymptotically, a homogeneous function,

A28 = Ate). (5.19)

Equation (5.19) is called a functional equation since it provides a constraint on
the form of the function #(¢). In contrast, algebraic equations provide constraints
on the numerical values of the quantities appearing in them. In fact, (5.18) is the
‘solution’ of the functional equation (5.19) in the sense that any function #(¢)
satisfying (5.19) also satisfies (5.18) — we say that power laws are the solution
to the functional equation (5.19). To see this, we note that if (5.19) holds for all
values of the parameter ), then it holds in particular when A = 1/¢. With this
substitution, (5.19) reduces to (5.18).

It is also straightforward to verify that any function #(£) obeying (5.18) obeys
(5.19). Thus (5.19) implies (5.18) and conversely. This connection between power
law behavior and a symmetry operation, called scaling symmerry, is at the root
of the wide range of applicability of fractal concepts in physics.

5.5 Fractal Dimension of the Unbiased Random Walk

Writing (5.18) in the form
£~ £l (5.20a)

exhibits the feature that the scaling exponent dy explicitly reflects the asymptotic
dependence of a characteristic ‘volume’ (the number of points in the trail of the
ant) on a characteristic ‘length’ (Rg, Rgg, or L£4). Thus for the random walk,
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dr =2, but in general dr is a kind of dimension. We call ds the fractal dimension
of the random walk.
If we write (5.19) in the form

HAE) = Ar(g), (5.20b)

then we see that dr plays the role of a scaling exponent governing the rate at
which we must scale the time if we wish to trace out a walk of greater spatial
extent. For example, if we wish a walk whose trail has twice the size, we must
wait a time 2%. Similarly, if we wish to ‘design’ a polymer with twice the radius
of gyration, we must increase the molecular weight by the factor 2%,

It is significant that the fractal dimension d¢ of a random walk is 2, regardless
of the dimension of space. This means that a time exposure of a ‘drunken firefly’
in three-dimensional space is an object with a well-defined dimension,

de = 2. (5.21)

Similarly, a time exposure in a Euclidean space of any dimension d produces an
object with the identical value of the fractal dimension, df = 2.

5.6 Universality Classes and Active Parameters

5.6.1 Biased Random Walk

Next we generalize to the case in which the motion of the ant is still random,
but displays a bias favoring one direction over the other. We shall see that the
bias has the effect of changing, discontinuously, the exponent characterizing the
dependence on time of the characteristic length.

Let us place our ant again on a one-dimensional lattice, but now imagine that
its coin is biased. The probability to be heads is

1+¢
p= — (5.22)

while the probability to be tails is ¢ = 1 — p= (1 —¢&)/2. From (5.22) we see
that the parameter :

e=2p—1=p—g. | (5.23)

defined in (5.22) is the difference in probabilities of heads and tails; ¢ is called
the bias. We say that such an ant executes a biased random walk .

Although the results of the previous section will be recovered only in the case
¢ = 0, the same general concepts apply. The possible configurations of the biased
walk are the same as for the unbiased random walk — i.e., we say that the phase
space is the same. The values A, associated with each configuration (each point
in phase space) are also the same. However, instead of being identically (1/2)?
for all configurations, the values of P, now depend upon the configuration. If
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events are uncorrelated, then the joint probability is simply the pfoduct of the
separate probabilities. Hence

Py =pte(1 — p)t—he, | (5.24)

where h. is the number of ‘heads’ in configuration c.

5.6.2 Scaling of the Characteristic Length

Now the expectation value (z), is not zero, as it was for the unbiased ant. Rather,
we find that {5.8) is replaced by

(z):=(p — q)t = et. (5.25)

Thus the bias e plays the role of the drift velocity of the center of mass of the

probability cloud of the ant, since the time derivative of {z); is the analog of a

velocity. :
Other expectation values are also affected. For example, (5.9) generalizes to

(2%); = [(p — O] + 4pqt = 2 + (1 — %)t (5.26)

If ¢ = p— ¢ =0, the results (5.25) and (5.26) reduce to (5.8) and (5.9). We thus
recover the unbiased ant, for which the characteristic length ¢ scales as V't. For
any non-zero value of ¢, no matter how small, we see from (5.25) and (5.26)
that asymptotically

Li=3(zh) ~t. (5.27)

for k= 1,2 respectively (the general-k result is a bit of an exercise!). Thus we
conclude that the ¢ scales linearly in time: the fractal dimension of the walk
changes discontinuously with ¢ from dr = 1 for all non-zero e tod; =2 for £ = 0
(Fig. 5.3). '

Systems with the same exponent are said to belong to the same universality
class. We say that the biased walk belongs to the dy = 1 universality class for all
non-zero values of the parameter ¢, and that it belongs to the df = 2 universality
class for ¢ = 0. The term active parameter is used to describe a parameter such
as ¢ which changes the universality class of a system.

Here is a paradox! The dependence of dr on bias ¢ is a discontinuous function
of ¢, yet the actual motion of the ant cannot differ much as ¢ changes infinites-
imally. To resolve this paradox, consider a specific example of a biased walk
with an extremely small value of bias, say e, = 1076, The r.h.s. of (5.26) has
two terms. If only the first term were present, the ant would simply ‘drift’ to the
right with uniform velocity e. If only the second term were present, the motion
of the biased ant would be the same as that of the unbiased ant, except that the
width of the probability distribution would be reduced by a factor (1 — &2). To
see which term dominates, we express the r.h.s. as [¢%t + 1]¢. We can now define
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& df . Fig. 5.3. (a) The discontinuous
; A change in fractal dimension df for

the biased random walk as the active
¢ parameier € = p — g is varied. (b)
The continuous change in (z?) as a
function of time for a small value of
> £ the bias parameter ¢ = p— ¢ = 107>,
Note the crossover between the
(a) apparent fractal dirension d¢ = 2 for
t & ty to the asymptotic fractal
dimension df = 1 for t 33 tyx, where
i tyx =1/ is the crossover time.

» og t

(b)

an important concept, the crossover time t =1/ 2. For t < tx the second term
dominates and the ant has the statistics of an unbiosed random walk; we say
that the trail has an apparent fractal dimension df = 2. For t > 1, the first
term dominates and the ant has the statistics of a biased random walk; the trail
assumes its frue or asymptotic fractal dimension dg = 1 (Fig. 5.3b). Note that the
crossover time i, is quite large if the bias is small. If the bias is, say, 0.001,
then the ant must walk a million steps before its trail becomes distinguishable
from that of an unbiased ant! '

Analogous considerations govern the crossover from one universality class
to another in thermal critical phenomena, of the sort discussed in Chap. 4. Thus,
e.g., if we have a three-dimensional magnet with interactions much weaker in
the z direction, then far from the critical point the system displays apparent two-
dimensional behavior, while close to the critical point it crosses over to its true
asymptotic three-dimensional behavior. Thus we see that the important concepts
of universality classes and the phenomenon of crossover between universality
classes both have a geometric counterpart in the behavior of the biased random
walk in the limit of small bias fields.

5.7 Functional Equations and Scaling: Two Variables

In this section we generalize the concept of a homogeneous function from one
to two independent variables. We say a function f(u,v) is a generalized homo-
geneous function if there exist two numbers a and b (termed scaling powers)
such that for all positive values of the parameter A, f(u,v) obeys the obvious
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generalization of (5.19),
F(Z%u, APv) = Af(u,v). (5.28)

We can see by inspection of (4.46¢c) that the free energy near the critical point
obeys a functional equation of the form of (5.28), so generalized homogeneous
functions must be important! To get a geometric feeling for such functions and
their properties, consider the simple Bernoulli probability IT(z,t) — the condi-
tional probability that an ant is found at position z at time ¢ given that the ant
started at z = 0 at ¢ = 0. In the asymprotic limit of large ¢, IT(x, t) is expressible
in closed form (unlike the free energy near the critical point!). The result is the
familiar Gaussian probability density

22
Ig(z,t) = 5= exp [_ﬂ] , (5.29)
Note that IIg(z,t) clearly satisfies (5.28), with scaling powers ¢ = —1 and
= -2,
I\ "'z, A720) = AMo(z, D). | (5.30)

The predictions of the scaling relations (5.30) are given by the properties
of generalized homogeneous functions. Among the most profound and useful of
these properties is that of data collapsing. If (5.30) holds for all positive )\, then
it must hold for the particular choice A = ¢!/2. With this choice, (5.30) becomes

gz, t)

=y, Iig (t1/2’ ) F(Z), (5.31a)
where we have defined the scaled variable i by

-~ X

I=5 (5.31b)

Equation (5.31a) states that if we ‘scale’ the probability distribution by dividing
it by a power of ¢, then it becomes a function of a single scaled distance variable
obtained by dividing = by a different power of ¢ Instead of data for I7 (z,t)
falling on a family of curves, one for each value of #, data collapse onto a
single curve given by the scaling function F(z) (Fig.5.4). This reduction from

e (X,t)
g {x,1) 1%

13

—N /\
| > X_

> X .
0 {q) 0 t¥2 (b)

Fig. 5.4. Schematic illustration of scaling and data collapse as premc:ed by (5.31) for (=, 1), the
Gaussian probability density.
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a function of 7 variables to a function of n — 1 scaled variables is a hallmark of
fractals and scaling. The ‘surprise’ is that the function F(%) defined in (5.31a)
at first sight would seem to be a function of two variables, but it is in fact a
function of only a single scaled variable .

5.8 Fractals and the Critical Dimension

Thus far we have seen that the study of fractals help us in understanding two
developments of modern theoretical physics:

— The empirical fact that the equation of state simplifies greatly in the vicinity
of a critical point, and

— The empirical fact that diverse systems behave in the identical fashion near
their respective critical points — a fact given the rather pretentious name
universality.

Here we discuss one more simplification that occurs near critical points:
above a certain critical dimension the mean field theory of Sect. 4.3.9 suffices to
determine the critical exponents! This remarkable fact can be understood better
using simple geometric concepts.

Tn Sect. 5.5.3, we introduced a geometric object with the same fractal proper-
ties as the trail of a random walk. This object is called a linear polymer, treated
in the ‘free-flight’ approximation in which we can neglect the intersections of
the chain with itself. Of course, no two objects can really occupy the same point-
in space, a fact known at least since the time of Archimedes’ famous bathtub
experiments. Hence the random walk model of a polymer chain cannot suffice to
describe a real polymer. Instead, real polymers arc modeled by a self-avoiding
walk (SAW) in which a random walker must obey the ‘global’ constraint that he
cannot intersect his own trail (Fig.5.5).

Fig. 5.5a~b. Schematic illustration of (a)
a random walk, and (b) a self-avoiding
walk (SAW). Each has taken 6 steps.
We show just one of the 4% possible 6-
step walks — many of these have zero
¢ M weight for the SAW case. Shown also

l are schematic log-log plots showing how
Hoer @ *— o ﬂ;?’ many steps are needed (the ‘mass’ M of
‘ the trail) for the walk to explore a region

of characteristic size £, where here ¢ is
identified with the mean end-to-end dis-

.“t.

™My



168 5. Fractals in Theoretical Physics

A remarkable fact is that in sufficiently high spatial dimensions the SAW
has the identical fractal dimension as the unbiased random walk, becanse in
sufficiently high dimension the probability of intersection is so low as to be
negligible. To see this, we first note that the co-dimension d — ds of the fractal
trail is an exponent governing how the fraction of space ‘carved out’ by the
(rail decreases with length scale L, since from (5.1) ¢ decreases as o(L) ~
M(L)/L* ~ (1/L)*~%. Now if two fractal sets with dimensions d; and df
intersect in a set of dimension d, then the sum of the co-dimensions of the two
sets is equal to the co-dimension of the intersection set,

d—dn=(d—d)+(d—dy) (5.32)

This general result follows from the fact that a site belongs to the intersection
only if it belongs to both fractals: since statistically independent probabilities
multiply (p. 116), the fraction of space (with exponent d — dn) carved out by
both fractals is the product of the fractions of space (with exponents d— d'f and
d — d; ) carved out by each.

To apply (5.32) to the trail of a random walk, consider the trail as being two
semi-infinite trails — say red and blue — each with random walk statistics. If we
substitute d; = d; =2 in (5.32), we find that for d equal to a critical dimension
d. = 4 the ted and blue chains will intersect in a set of zero dimension. Thus for
d > d., the ‘classical’ random walk suffices to describe the statistical properties
of self-avoiding polymers!

The counterpart of this geometric statement is that the simple ‘classical’
theories presented in Chap.4 give correct exponents for all dimensions above
some critical dimension d.. Indeed, this is one of the key results of recent years
in theoretical physics. In this regard, we now introduce two generalizations of
the simple Ising model which appear to be sufficient for describing almost all the
universality classes necessary for understanding critical phenomena (Fig 3.6).

The first generalization of the Ising model is the Q-state Potts model. Each
spin ¢; localized on site : assumes one of Q discrete orientations (; =1,2,... Q.
If two neighboring spins (; and {; have the same orientation, then they contribute
an amount —J to the energy, while if ¢; and ¢; are in different orientations, they
contribute nothing. Thus the total energy of an entire configuration is

EQ)=-T) 8¢,y | (5.33a)
{if}
where
Cana [1 if ;= ¢;
6(Ci, ) = {0 Omerwi;e . (5.33b)

The angular brackets in (5.33a) indicate that the summation is over all pairs
of nearest-neighbor sites {¢7}. The interaction energy of a pair of neighboring

-parallel spins is —J, so that if J > 0, the system should order ferromagnetically

at T=0.
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Fig. 5.6. Schematic illusiration of a ‘Metro map’ showing how the Ising model has been generalized,
first to form a ‘North-South’ line (allowing the two Ising spin orientations to become € discrete
orientations — the Potts model), and then to form an “East-West’ line (allowing the two spin orien-
tations of the Ising model to be replaced by a continuum of spin oricntations in an n-dimensional
spin space ~ the n-vector model). The n = 0 station on the East-West Metro line corresponds to the
self-avoiding random walk (SAW). Two additional stations on this line have the appealing featare that
they correspond to models that are exactly soluble even for three spatial dimensions (d = 3): n = —2
(random walk model) and n = co (the spherical model). The ¢ = 1 ‘station’ on the North-South
Metro ling corresponds to percolation and the £ = 3 station to a set of adsorption problems such as
krypton on graphite.

The second generalization of the Ising model is the n-vector model. Each
spin variable

S: =(Sa,S2,. .., Sin) | (5.342)

is an n-dimensional unit vector

Y SL=1, | '- (5.34b)

a=1

capable of taking on a continuum of orientations. Spin S; localized on site ¢
interacts isotropically with spin S; localized on site j, so two neighboring spins
contribute an amount —J S; - S; to the energy. Thus the total energy of a spin
configuration is

Em)y=—J Si-S; (5.34c)
(i7)

The key parameter in the Potts model is § (the number of different discrete
orientations of the spin variables), just as the key parameter in the n-vector model
is n (the dimension of the spin S;). Together the Potts and n-vector models are
sufficient to describe the behavior of a wide variety of systems near their critical
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points, and as a result immense atiention has been focussed on understanding
these models.

For dimensions above a critical dimension d, the classical ‘mean field’ theory
of Sect.4.3.9 provides an adequate description of critical-point exponents and
scaling functions, whereas for d < d,, the classical theory breaks down in the
immediate vicinity of the critical point because statistical fluctuations neglected
in the classical theory become important. The case d = d. must be treated with
great care; usually, the classical theory ‘almost’ holds, and the modifications take
the form of weakly singular corrections.

For the n-vector model d, = 4. Different values of d, are usually found for
multicritical points, such as occur when lines of critical points intersect. For
example, d; = 3 for a point where three critical lines intersect, and d. = 8/3 for
a fourth-order critical point. For a uniaxial ferromagnet or ferroelectric formed
of interacting classical dipoles, d. = 3; LiTbF, is one realization. In fact, d, = 2
for certain structural phase transitions, such as that occurring in PrAlO;.

In the models we have been considering, linear polymers can be thought of
as linear clusters on a lattice. Similarly, branched polymers can be thought of as
branched clusters. Such clusters are often called lattice animals, because they rep-
resent all the possible shapes that can be formed out of the constituent elements.
Thus linear lattice animals that do not self-intersect (i.e., are loopless) are just
the SAWs we discussed above. However, in general, lattice animals may branch
and may form loops. Equation (5.32) may also be applied to lattice animals.
The fractal dimension of a random branched object (without any restrictions)
is df = 4. Hence we expect d. = 8 for branched polymers, using an argument
analogous to the argument for linear polymers that leads from (5.32) to the result
d. = 4 (Table 5.1).

TableS.1. Comparison of some of the scaling properties of (a) sclf-avoiding walks (which model
linear polymers), (b) lattice animals (which model branched polymers), and (c) percolation (which
models gelation). The first line gives dc, the critical dimension. The second line gives d, the fractal
dimension, for d > dc. The third line gives d®C, the prediction of renormalization group expansions,
for d < de to first order in the parameter ¢ = dc — d. The fourth and fifth lines give the results for
dimensions three and two respectively.

(a) SAW (b) LATTICE ANIMAL| (c) PERCOLATION
de 4 8 6
dy(d > de) 2 4 4
FO(d < do) 2(1- e) 4(1-§e) 4(1- Fe)
di{d=13) ~1.7 2 (exact) ~25
de(d=2) 4/3 (exact) = 1.6 91/48 (exact)
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A remarkable fact is that certain limiting cases of the Potts and n-vector
models have a direct relation to geometrical objects that are fractal, and so
these limits provide an intriguing connection between ‘Physics & Geometry’.
Percolation, e.g., is a simple geometrical model in which we study clusters
formed when a fraction p of the bonds of a lanice are occupied randomly. As
shown in Fig. 5.7, above a threshold value p. a subset of these bonds form a
macroscopic connected object called the infinite cluster, and the properties of the
percolation model in the vicinity of p. are not unlike the properties of a system
of cross-linking polymers in the vicinity of the gelation transition. The statistical
properties of percolation can be recovered from the @)-state Potts model if we
carefully form the limit @ — 1. In this correspondence, the variable p — p; in
percolation corresponds to the variable 7' — 7. in the magnetic system.
Similarly, if we carefully form the n — 0 limit of the n-vector model, then
we recover the statistical properties of the SAW. In this correspondence, it turns

out that the inverse mass M ~! in the polymer system corresponds to 7 — 7 in
the magnetic system. Thus the limit of large molecular weight corresponds to a

critical point; we say that a growing polymer chain exhibits the phenomenon of
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Fig, §.7a—d. The phenomenon of bond percolation: a finite section of an infinite ‘fence’, in which a
fraction p of the links is conducting while the remaining fraction 1 — p is insulating. Four cheices
of the parameter p are shown, (a), p=0.2; (b), p=0.4; (¢), p=0.6; and (d), » = 0.8.
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self-organized criticality because as it grows it approaches a critical point. As a
result, we expect quantities such as the pelymer diameter to be characterized by
universal behavior. In addition, the existence of a phase transition allows us to
apply to the SAW problem modern techniques as the renormalization group. The
use of fractal geometry (which concerns the limit M — c0) becomes relevant to
studying materials near their critical points (which concern the asymptotic limit
T — T¢).

Theoretical physicists — for all their well-honed mathematical skills — are
totally incapable of solving simply-defined models such as the Ising model or
the SAW problem for the case of a three-dimensional (d = 3) system. However
they can invent bizarre spin dimensionalities which do yield to exact solution in
d =3 and so provide useful ‘anchor points’ with which to compare the results of
various approximation procedures. For example, for n = —2 the n-vector model is
found to provide the same statistical properties as for the simple unbiased random
walk (the limiting case of a non-interacting polymer chain). In the limit n — o0
we tecover a model — termed the spherical model — which has the important
features of being exactly soluble for all spatial dimensions d, as well as being
useful in describing the statistical properties of the Bose-Einstein condensation.

5.9 Fractal Aggregates

We began our dessert by forming a simple non-random fractal aggregate, the
Sierpinski gasket. We shall end the dessert by describing one of the most pop-
ular current models for random fractal aggregates, diffusion limited aggregation
(DLA). '

Like many models in statistical mechanics, the rule defining DLA is simple.
At time 1, we place in the center of a computer screen a white pixel, and release a
random walker from a large circle surrounding the white pixel. The four perimeter

“Fjord”
0.25 0.14 1 0.14
0.25 . 0.25 “Tip~ ——» 0.22 . . 6.22
0.25 0.14 § 0.14
(a) t=1 (b) t=2

Fig. 5.8. (a) Square lattice DLA at time ¢ = 1, showing the four growth sites, each vﬁth growth
probability p; = 1/4. (b) DLA at time { = 2, with 6 growth sites, and their corresponding growth
probabilities p;.

N 1 P
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sites have an equal g priori probability p; to be stepped on by the random walker
(Fig. 5.8a), so we write

pi=t  G=1,..,9. (5.35a)

The rule is that the random walker remains fixed at a perimeter site if and when
it ever lands on the perimeter site — thereby forming a cluster of mass M = 2.
There are N, = 6 possible sites, henceforth called growth sites (Fig.5.8b), but
now the probabilities are not all identical: each of the growth sites of the two
tips has growth probability pmax = 0.22, while each of the four growth sites on
the sides has growth probability pmn = 0.14. Since a site on the tip is 50% more
likely to grow than a site on the sides, the next site is more likely to be added
to the tip — it is like capitalism in that ‘the rich get richer.” One of the main
features of recent approaches to DLA is that instead of focusing on the tips who
are ‘getting richer’, we can focus on the fjords who are ‘getting poorer” — which
is a realization in Nature of the familiar experience that ‘once you get behind
you stay behind!’

Just because the third particle is more likely to stick at the tip does not mean
that the next particle will stick on the tip. Indeed, the most that we can say about
the cluster is to specify the growth site probability distribution — i.c., the set of
numbers,

{pi} i=1,...,N,, (5.35b)

where p; is the probability that perimeter site (“growth site”) ¢ is the next to
grow, and N, is the total number of perimeter sites (IV, = 4,6 for the cases
M =1,2 shown in Figs. 5.52 and 5.5b respectively). The recognition that the set
of {p;} gives us essentially the maximum amount of information we can have
about the system is connected to the fact that tremendous attention has been paid
to these p; — and to the analogs of the p; in various closely-related systems.
I the DLA growth rule is simply iterated, then we obtain a large cluster
characterized by a range of growth probabilities that spans several orders of
magnitude — from the tips to the fjords. The cover shows such a large cluster,
where each pixel is colored according to the time it was added to the aggregate.
From the fact that the ‘last to arrive’ particles (green pixels) are never found to
be adjacent to the ‘first to arrive™ particles (white pixels), we conclude that the
p; for the growth sites on the tips must be vastly larger than the p; for the growth
sites in the fjords. | _

Until relatively recently, most of the theoretical attention paid to DLA has
focussed on its fractal dimension. Although we now have estimates of df that
are accurate to roughly 1%, we lack any way to interpret this estimate. This
is in contrast to both the d = 2 Ising model and d = 2 percolation, where
we can calculate the various exponents and interpret them in terms of ‘scaling
powers.” What we can interpret, however, is the distribution function TXp;) which
describes the histogram of the number of perimeter sites with growth probability
p;. The key idea is to focus on how this distribution function D(p;) changes as
the cluster mass M increases. The reason why this approach is fruitful is that
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the {p;} contain the maximum information we can possibly extract about the
dynamics of the growth of DLA. Indeed, specifying the {p;} is analogous to
specifying the four ‘growth’ probabilities p; = 1/4 [: = 1,---,4] for a random
walker on a square lattice. .

The set of numbers {p; } may be used to construct a histogram D(in p;). This
distribution function can be described by its moments,

Zg= Y Dlnpe 1P, (5.36a)
Inp ‘

which is a more complex way of writing

Zs=) pf. (5.36b)

Tt is also customary to define a dimensionless ‘free energy” F({) by the relation

log Zs

F(3) = — . 5.37
B)= oot (5.372)
which can be written in the suggestive form

Zg= L F®, (5.37b)

The form (5.362) as well as the notation used suggests that we think of § as an
inverse temperature, —Inp/In L as an energy, and Zg as a partition function.
The notation we have used is suggestive of thermodynamics. Indeed, the function
F(B) has many of the properties of a free energy function — for example, it is
a convex function of its argument and can even display a singularity or ‘phase
transition’. However for most critical phenomena problems, exponents describing
moments of distribution functions are linear in their arguments, while for DLA
F(B) is not linear — we call such behavior multifractal. Multifractal behavior is
characteristic of random multiplicative processes, such as arise when we multiply
together a string of random numbers, and can be interpreted as partitioning a DLA
cluster into fractal subsets, each with its own fractal dimension (Plate 1).

Our dessert is now finished, so let us take a little exercise to work off the
calories. Our exercise takes the form of a simple hands-on demonstration that
enables us to actually ‘see with our eyes’ (a) that DLA is a fractal and (b) that
its fractal dimension is approximately 1.7. We begin with a large DLA cluster
(Plate 1), and cut out from three sheets of scrap paper holes of sizes L =1, 10,100
(in units of the pixel size). Now cover the fractal with each sheet of paper,
and estimate the fraction of the box that is occupied by the DLA. This fraction
should scale in the same way as the density o(L) = M(L)/L* which, from
(5.4), decreases with increasing length scale as p(L) = AL% =2, Now (5.4) is
mathematically equivalent to the functional equation

oAL) = Xt~ o(L). : (5.38a)
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For our exercise, A = 10 and we find

1 L=t
oLy~{1/2 L=10 . (5.38b)
1/4 L =100 \

Here the result of (5.38b),

o(10L) = 1 o(L), (5.38¢c)
convinces us that 1042 » 1, leading to d¢ — 2 ~ log;p 1 = —0.301, or

dr ~1.70. | | (5.39a)
Tlﬁs crude estimate agrees with the most accurate calculated value,

dr = 1.715 £ 0.004, _ (5.390b)

based on clusters with 10° particles (P. Meakin, 1990 private communication).

5.10 Fractals in Nature

The reader has savored the meal, indulged himself on the dessert, and is now
entitled to a little fantasy before falling asleep for the night. Accordingly, we
shall describe in this final section some of the situations in Nature where fractal
phenomena arise and wax philosophical about exactly how much theoretical
physics might hope to contribute to our understanding of these phenomena.

Fig. 5.9. Schematic illustrations of scale invariance for a blow-up of the central portion of a photo-
graph from the rear of a train in a flat terrain like Oklahoma.
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Fig. 5.10. Typical retinal neuron and its frac-
tal analysis. The correlation function C(r)
in scales in the same fashion as the density,
given by (5.4). (See F. Caserta, HE, Stan-
ley, W. Eldred, G. Daccord, R. Hausman,
and J. Nittmann, “Physical Mechanisms Un-
derlying Neurite Outgrowth: A Quantitative
Analysis of Neuronal Shape”, Phys. Rev.
Lett. 64, 95 (1990).)

1
Log r

Everyone has seen many fractal objects — probably at an early stage in life.
Pethaps we once photographed scenery from the back of a train and noticed that
the photograph looked the same at all stages of enlargement (Fig. 5.9). Perhaps
we noticed that the Metro of Paris has a fractal structure in the suburbs M.
Benguigui and M. Daoud, 1990 preprint). Perhaps we saw that snow crystals all
have the same pattern, each part of a branch being similar to itself. In fact, to
‘see’ something at all — fractal or non-fractal — requires that the nerve cells in
the eye’s retina must send a signal, and these retinal nerve cells are themselves
fractal objects (Fig. 5.10).

_ There are many caveats that we must pay heed to. To be fractal implies that
a part of the object resembles the whole object, just as the branches of a DLA
look similar to the whole structure and also similar to the sub-branches. The
Sierpinski gasket shows this self-similarity exactly, whereas for DLA and other
random fractals this self-similarity is only statistical. Fractal objects in Nature
are random fractals, so the self-similarity we discover by enlarging the middle
section of Fig.5.9 is replaced by a self-similarity obtained only by averaging
together many realizations of the same object. '

The second cavear is that fractals in Nature are not fractal on all length
scales. There is a range of length scales, followed by an inevitable crossover
to homogeneous behavior. We can indicate this fact using the Sierpinski gasket
model of Sect.5.1 by simply starting, afier n stages, to aggregate exact copies
of the object, so that asymptotically one obtains a homogeneous object made
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Fig. 5.11a,b. A Sierpinski gasket that is self-similar
(fractal) on small length scales, but becomes homo-
geneous (non-fractal) on large length scales.
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log o4
s \\/ipﬁ” d¢-d
3/4+
o/ 16 - o——0——
Cros%over
| | ! | I .
o i 2 l4¥ 8 [<] ~ [Qg L
(b) Setamilur Hoaeneous
(fractal) {non-fractal )

up of units each identical to the n-stage Sierpinski gasket (Fig. 5.11). The result
is a crossover phenomenon. This example is instructive, because the resulting
behavior is analogous to what is usually found in Nature: real objects do not
remain fractal for all scales, but instead are fractal over typically a factor of 10
- or 100 in length scale. The fact that real objects in Nature do not remain fractal
on all length scales does not make them any less interesting — there can even
be useful information in the value of the length scale on which the crossover to
homogeneous behavior occurs. ' o

With these caveats, however, it is a fact that fractals abound in Nature. In
fact, almost any object for which randomness is the basic factor determining
the structure will turn out to be fractal over some range of length scales — for
much the same reason that the simple random walk is fractal: there is nothing
in the microscopic rules that can set a length scale so the resulting macroscopic
form is ‘scale-free’. . .scale-free objects obey power laws and lead to functional
equations of the form of (5.19) and (5.28).

Today, there are roughly of order 10° fractal systems in Nature, though a
decade ago when Mandelbrot’s classic was written, many of these systems were
not known to be fractal. These include examples of relevance to a wide variety
of fields, ranging from geological chemistry (Plate 3) and fracture mechanisins
(Plate 4) on the one hand, to fluid turbulence (Plate 5) and the “molecule of life”
— water (Plate 6) — on the other. DLA alone has about 50 realizations in physical
systems. DLA models aggregation phenomena described by a Laplace equation
(V2II(r,t) = 0) for the probability IT(r, ¢) that a walker is at position r and time
t. More surprising is the fact that DLA describes a vast range of phenomena that
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at first sight seem fo have nothing to do with random walkers. These include
fluid-fluid displacement phenomena (“viscous fingers”), for which the pressure
P at every point satisfies a Laplace equation (Plates 7-10). Similarly, dielectric
breakdown phenomena, chemical dissolution (Plate 11), electrodeposition, and a
host of other phenomena may be members of a suitably-defined DLA universality
class. If anisotropy is added, then DLA describes dendritic crystal growth and
snowflake growth (Fig.5.12). The dynamics of DLA growth can be studied by
the multifractal analysfs discussed above, Of by decomposing a DLA cluster into
active tips connected to the central seed by a “skeleton” from which emanate a
fractal hierarchy of branches whose dynamics resembles 1/f noise (Plate 12).
Recently, several phenomena of biological interest have attracted the atten-
tion of DLA gficionados. These include the growth of bacterial colonies, the
retinal vasculature, and neuronal outgrowth (Fig.5.10). The last example is par-
ticularly intriguing: if evolution indeed chose DLA as the morphology for the
nerve cell, then can we understand ‘why’ this choice was made? What evolution-
ary advantage does a DLA morphology convey? Is it significant that the Paris
Metro evolved with a similar morphology or is this fact just a coincidence? Can

c Fig.5.12. (a) A typical snow crystal. (b) A
DLA simulation. (¢) Comparison between the
20 Snow crystal ___f fractal dimensions of (a) and (b) obtained by
plotting the number of pixels inside an L x L
& box logarithmically against L. The same slope,
il ;g*ﬁy dg = 1.85 £ 0.06, is found for b.Oth. The exper-
G, imental data extend to larger values of L, since
Ve the digitzer used to analyze the experimental
o photograph has 20,000 pixels while the clus-
oy ter has only 4000 sites. (See J. Nittmann and
& H.E. Stanley, “Non-Determinsistic Approach 1o
o Anisotropic Growth Patterns with Continuously
o Tunable Morphology: The Fractal Properties of
Some Real Snowflakes”, J. Phys. A20, 1.1185
(1987))
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we use the answer to these questions to better design the next generation of
computers? These are important issues that we cannot hope to resolve quickly,
but already we appreciate that a fractal object is the most efficient way to obtain
a great deal of intercell ‘connectivity’ with a minimum of ‘cell volume’, so the
key question is ‘which’ fractal did evolution select, and why?

It is awe-inspiring that remarkably complex objects in Nature can be quan-
titatively characterized by a single number, dr. It is equally awe-inspiring that
such complex objects can be described by various models with extremely simple
rules. It is also an intriguing fact that even though no two natural fractal objects
that we are likely to ever see are identical, nonetheless every DLA has a generic
‘form’ that even a child can recognize. The analogous statement holds for many
random structures in Nature. For example no two snowflakes are the same yet
every snowflake has a generic form that a child can recognize

Perhaps most remarkable to a student of theoretical physics is the fact that
simple geometrical models — with no Boltzmann factors — suffice to capture
features of real statistical mechanical systems such as those discussed in Chap. 4.
What does this mean? If we understand the essential physics of an extremely
robust model, such as the Ising model, then we say that we understand the
essential physics of the complex materials that fall into the universality class
. described by the Ising model. In fact, by understanding the pure Ising model, we
can even understand most of the features of variants of the Ising model (such as
the n-vector model) that may be appropriate for describing even more complex
materials. Similarly, we feel that if we can understand DLA, then we are well on
our way to understanding variants of DLA, such as DLA with noise reduction
(Plate 13), the screened growth model (Plate 14), ballistic deposition (Plate 15),
and cluster—cluster aggregation (Plate 16).



