Methods of Pricing American Options

Arshan Tarapore

Department of Economics, Boston University

Agenda

- Introduction/Recap of Options
- Binomial Options Pricing Model (BOPM) (in-depth)
- Quadratic Approximations
- Longstaff-Schwartz Method
- Future Work/Conclusion

Introduction/Recap of Options

- American v. European
 - Main difference is in the right to exercise
- Call
 - Right but not obligation to buy an asset
- Put
 - Right but not obligation to sell an asset
- Main uses of Options
 - To hedge risk
 - Speculation
- What is Arbitrage, why do we assume it doesn't exist?

- Simple discrete-time model to value options.
- "the value of the call can be interpreted as the expectation of of its discounted future value in a risk-neutral world" (Cox, Ross, Rubinstein 1979)
- *u>r>d*

- We select Δ and B, so:
 - $\Delta uS + rB = Cu$
 - $\Delta dS + rB = Cd$
- Solving the above leads to:
 - $\Delta = C \downarrow u C \downarrow d / (u d) S$
 - $B = uC \downarrow d dC \downarrow u / (u d)r$
- This combination is known as the "hedging portfolio"
 - No riskless arbitrage

 With the assumption of no riskless arbitrage:

$$C = \Delta S + B$$

$$C = C \downarrow u - C \downarrow d / (u - d) + u C \downarrow d - d$$

$$C \downarrow u / (u - d)r$$

$$C = [(r - d/u - d)C \downarrow u + (u - r/u - d)$$

$$C \downarrow d]1/r$$

• To simplify, define:

$$p \equiv (r-d/u-d)$$
$$(1-p) \equiv (u-r/u-d)$$

• Thus:

$$C = [pC \downarrow u + (1-p)C \downarrow d]1/r$$
if $C > (S-K)$
otherwise; $C = S-K$

Call Option:

- The BOPM can be taken further to a more complicated scenario
- In this "2-phase" case: $C \downarrow u = [pC \downarrow uu + (1-p)C \downarrow ud] 1/r \quad C \downarrow d = [pC \downarrow du]$ $+(1-p)C \downarrow dd /1/r$
- Δ ,B chosen; and $C \downarrow du = C \downarrow ud$: $C = [p \uparrow 2 C \downarrow uu + 2p(1-p)C \downarrow ud + (1-p) \uparrow 2 C \downarrow dd]$ r12
- These get very complicated very quickly

Quadratic Approximations

- First attempt to tackle options pricing from a heavily analytical sense
- Attempt to link American
 Options to Black-Scholes-Merton
- Directed economists to simulation methods (Longstaff-Schwartz)

$$\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + rS \frac{\partial V}{\partial S} - rV = 0$$

Longstaff-Schwartz Method

- Use least-squares regression to estimate expected payoff of an option
- Regress discounted future option cash flows on the current price of the underlier associated with <u>in-the-money</u> sample paths
- The Risk-Neutral market model used in the simulation is the Stochastic Differential Equation:

$$dS = rSdt + \sigma SdZ$$

- r is the riskless rate; constant
- σ is the exposure matrix; constant
- Z follows a standard Brownian motion
- Simulation methods like the LSM are accurate, under assumptions known to be wrong (Risk-Neutral)

Future Work/Conclusion

- Multiple-Factor Models/Simulations
- Optimal Exercise
- Behavioral Economics
- Why bother??

References

- Merton, Robert C.. "Theory of Rational Option Pricing". The Bell Journal of Economics and Management Science 4.1 (1973): 141–183.
- Longstaff, Francis A., and Eduardo S. Schwartz. "Valuing American Options by Simulation: A Simple Least-squares Approach". The Review of Financial Studies 14.1 (2001): 113–147.
- J.C. Cox, S.A. Ross, M. Rubinstein. "Option pricing: a simplified approach" J Finance Econ, 7 (3) (1979), pp. 229–263
- Ju, Nengjiu, and Zhong, Ru. "An Approximate formula for pricing American Options". Journal of Derivatives (1999)
- Barone-Adesi, Giovanni, and Robert E. Whaley. "Efficient Analytic Approximation of American Option Values". *The Journal of Finance* 42.2 (1987): 301–320.
- Black, Fischer, and Myron Scholes. "The Pricing of Options and Corporate Liabilities". *Journal of Political Economy* 81.3 (1973): 637–654. Web...