Econophysics & Blg Data

broadbrush today....details in http://polymer.bu.edu/~hes/

worxk by (one could wish no finer collaborators):

Gabaix (Fisher-Black Prize!),Salinger, Pammolli,
Riccaboni, Podobnik, Preis, Moat, Vodenska, Buldyrev,
Havlin,Mantegna,Gopikrishnan, Plerou (Young Scientist
Prize), Petersen,Liu, Cizeau,Fu,D.Wang, H.-Wang, ¥.
Wang,Bertella,X.Huang, S.Zhang, G.Li, J.Wu, S. Levy, X.
Feng,Yamasaki, Rosenow, Amaral, Ivanov, Matia,W=-X
Zhou, Z.0.Jiang,Weber,Chessa,Gou,Lee, Meyerx,Y-H Shao,
Carbone, Ben-Jacob, Kenett,Fu, Majdanzic, Schneider,
Curme, Avakian, Su,Lu,S. Shao,Ling, H. Huang,

&YOU [2?

INVITATION: please consider to come to Rm. SCI-204......
i will welcome you at any time! ’
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Can physicists contribute to
economics/finance?

get an economics partner...& respect him/her!
get as much data as exists ("big data”)

ask “What are these data telling us?”

to find out, quantify each finding...

Do not be too timid: e.g., Aggregate, ...

try to relate all findings (ex: price, volume,
intertrade times, volatility,...)

Make “model” relating all facts (“cheating”?)

Dedication: TINBERGEN/EHRENFEST the first econop%ysicists’?
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THE PUZZLE: “SWITCHING WITHOUT SWITCHES”
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“Big switch” : 19 Oct. 1987 (25% worldwide “earthquake/tsunami1”)
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Q: can your eye sce the power law? that 1t 1s inverse cubic?

Returns non-Gaussian (known qualitatively, but under-appreciated!)
Large events cluster (like earthquakes) (also known qualitatively)

tcAftershocks?’ Omori-correlated (Palermo 03; BU 07)

t“Aftershocks of each aftershock” also Omori-correlated: (BU)
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holds over 6 orders of magnitude on y-axis (8 for pdf: inverse quartic)

200,000 data
points per stock
X 1000 stocks =

200,000,000
data points

events & orders of
magnitude
MORE RARE
than everyday
values conform to
the SAME pdf
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Normalized price returns

Note: there is NOT a perfect power law due to
corrections at both ends of a power law
region, just as for power laws in turbulence.
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Aggregating is also “cheating’’??
Find that inverse cubic law holds “microscopically” for each stock
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Time: 30.00 ns
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"How?” "“Models?”: Herd vs. News?

(1) “herd effect” (exchange nt. J).

Each stock 1s a unit, interacting
with other stocks (units) and
bathed 1n a magnetic field H.

J depends on the two stocks, and
H depends on the stock. Both can
change with time.

Possible models:

(a) Units can be 1 Q different
DISCRETE states: “Potts
Model” (Potts 1952).

(b) n-dimensional units. Each can
be in a CONTINUUM of states:
“n-Vector Model” ( HES 1969)

(2) news effect (external field H)

(¢) modified Edwards-Anderson
“spin glass” (w/ t-dep 1nteractions)

{a) Potts Model :

dddo¢
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Q=2(Ising model) Q=3

(b) n-Veector model:
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PUZZLE:
How does a
paramagnet
“know” when to
spontaneously
order itself?

(a) Order 2%

(b) Order v*:

ANSWER:

When the
exponential decay (e
along a 1-d path
balances the
exponential
increase 1n the
number of paths.

) Order v?:

v =J/KT =n.n.
coupling strength
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TEST #1: if interacting system of subunits, should be “universality”

DATA Show: power-law exponents are Universal (indep of time

period, country, volatility (ex 1987.,2008,.. same!). implies what??
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Q: can your eye sce the power law? that 1t 1s inverse cubic?

Returns non-Gaussian (known qualitatively, but under-appreciated!)
Large events cluster (like earthquakes) (also known qualitatively)

tcAftershocks?’ Omori-correlated (Palermo 03; BU 07)

t“Aftershocks of each aftershock” also Omori-correlated: (BU)
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Test 2: Are there time Correlations?

((economists knew these results, qualitatively, as volatility

clustering....so calculate autocorrelation function and get a “law™))
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TEST 3: Crossover in Volatility pdf from (known) log-normal to
(new) power law (Surprise!)
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Can a law describe bubbles and crashes in

. [ 9
financial markets? . every trade---msec level...

Tobias Preis 2 and H. Eugene Stanley

Physics World, May 2011
DETAILS IN:

T. Preis, J. Schneider, HES""Switching Processes in
Financial Markets," PNAS 108, 7674 (2011).

Figure 1 | Scale-free behavior
of financial market fluctua-
tions. Financial market time
series feature identical proper-
ties on very different time
scales. All four curves are sub-
sets of a 14 million transactions
dataset taken from a German
DAX future time series. The
price curves cover time periods
of roughly 1 day (top curve), 1
hour, 10 minutes, and 1 minute
(bottom curve). Local maximum
and minimum values are marked
as blue and red circles.
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ANS: :: Preis/HES/Schneider (2011 PNAS; May 2011 Physics World)

(b ) Determination of local price extrema (At=3 fixed)

| Vethod _JETREPS

At o At

At o At

Price

At

Trend #1

Volume r

_____.l___________

Transaction by transaction >

Friday, January 22, 16




SCALE FREE SPECIFIC HEAT NEAR HELIUM SWITCH

POINT

Note: Same FUNCTION for 3 different scales: 6 orders of
magnitude!!!
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Quantities With Scale-Free Behavior
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Preis/HES/Schneider (2011 PNAS; May 2011 Physics World)
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FROM THE VERY SMALL TO THE VERY LARGE
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100x60x60x24x100 = 1,000,000,000....9 orders of magnituge !
Preis/HES/Schneider (2011 PNAS, May 2011 Physics World)
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Time: 30.00 ns
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water: time dep. for 1 state point near ph. trans. line:
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Did Ehrenfest contribute to
economics?

YES, says Jan Tinbergen!

Between 1921 and 1925, Tinbergen studied mathematics and
physics at the University of Leiden under Paul Ehrenfest. During
those years at Leiden he had numerous discussions with
Ehrenfest, Kamerlingh Onnes, Hendrik Lorentz, Pieter Zeeman,
and Albert Einstein.

In 1929 he defended his PhD thesis titled "Minimumproblemen in
de natuurkunde en de economie"” (Minimisation problems in
Physics and Economics). This topic was suggested by Ehrenfest
and allowed Tinbergen to combine his interests in mathematics,
physics, economics and politics. Diego Garlaschelli bigtssketch
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Critical Breakdown Threshold for 2 Interdependent Networks

Failure in network A
causes failure in network B I Network
causes further failure in network A .....CASCADES

What are the critical breakdown thresholds for such Network B

interdependent networks?
What 1s size of cascade failures?

FURTHER EXAMPLES OF INTERDEPENDENT NETWORKS:

« [Lconomy: Networks of banks, insurance companies, and firms which interact
and depend on each other.

* Physiology: The human body is composed of inter-dependent networks (hip!)

- Biology: A specific cellular function is performed by a network of interacting
proteins, which depend on other networks

Buldyrev, Parshani, Paul, Stanley, Havlin, Nature, 464, 1025 (2010)
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