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» New York Stock Exchange 2001-2003
» Returns of the N = 100 largest capitalized stocks

» 748 trading days, 78 data points per day, 5 min interval
» Total: T = 58344 data points

» Data matrix X with dimension N x T
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Return distribution

» Rescaled data: zero mean, unit variance x;(t) =

Overall normalized return distribution
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Market mode

Covariance & Correlation matrix

1
(X, X) = p(X,X) = 7XXT
with Eigenvalues A\; > X\ > ... and eigenvectors uy, us, ...
Market mode
N
xm(t) =) u1jx(t) =  x(t) = ai +Bixm(t)+ €i(t)
J=1 0

— Market mode removed data Xes with €;(t)
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Partial correlation

Partial Correlation

» Question: What is the correlation between two variables
X1, X> given y, a third one?
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Partial correlation

Partial Correlation

» Question: What is the correlation between two variables
X1, X> given y, a third one?

()
O
(=)

» Answer: Partial correlation p(xi, x2|y)
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Partial correlation

Partial Correlation

Conditional mean

Partial covariance

o(x1, x|y) = Cov (x1 — f1(y), 2 — R(y))
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Partial correlation

Partial Correlation

Conditional mean for X = {x1,x} and Y ={y1,y2,...,¥m}

X(Y)=ZxyZoY

Partial covariance

Y xx|y = Cov (X ~X(Y), X — )%(Y))
— g o)
= Txx — TxyZyyTyx = ( HY 12Y>

021y 022y

Partial correlation
012|Y

VO11]Y022|Y

P12y =
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Synchronous Correlation
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Correlation matrices
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Results - Synchronous correlation

Synchronous Correlation

> Noise limit: pmax ~ v/2In (N2) /T = 0.01777

Correlation coefficient distribution p.
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Results - Time-lagged correlations

Time-lagged correlation

Market mode removed data X,

T
res: T—T ZXres Xres t—i_T)
t=1

Time-lagged partial correlation
High dimensional condition vector, dim: (TN —2) x (T — 1)

Y = {xl(t), e oxic (D), X1 (0), (), s
xi(t+ (T — k), xn(t+ (7 — k), ...,
xi(t+7),...,x—1(t +7), xj41(t +7),... ,XN(t—|—7')}
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Time-lagged Correlation (7 = 1)

'Eli'ime—lagged correlation matrix C*
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Time-lagged Correlation (7 = 1)

1'I;ime—lagged correlation matrix C'}
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Time-lagged Correlation (7 = 1)
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Time-lagged Correlation (7 = 1)

Time-lagged Correlation matrices for lag 1
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Time-lagged Correlation (7 = 3)

Time-lagged Correlation matrices for lag 3
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Time-lagged Correlation (7 = 15)

Time-lagged Correlation matrices for lag 15
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Results - Time-lagged correlations

Autocorrelations - market mode removed

AC forl all stocks
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Results - Time-lagged correlations

Partial autocorrelations

0.05 PAC for all stocks
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Results - Time-lagged correlations

Fit parameter: exponential decay time
» Consider only if fit amplitude A is outside noise region
» AC: decay time ~ 3 — 5min

» PAC: decay time ~ 7 min

,Distribution AC fit decay time (for A>p,,,,)

2Igistribui;ion PAC fit decay time (for A>p, )

Count
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Results - Time-lagged correlations

Strong partial cross-correlations

» Filter threshold for lag 1: 0.05 =~ 3pmax
&PCCS with threshold 0.05 for 7=1
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Results - Time-lagged correlations

Partial cross-correlations

Strong lagged partial cross-correlations (LPCC)

1

0.4} -

Correlation [1]
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Results - Time-lagged correlations

Partial cross-correlations

» Same decay time scale as partial autocorrelations, 7 &~ 7 min

14 Distribution LPCC fit decay time

Count

7[5 min]
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Eigenvalue distribution (7 = 1)
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Eigenvalue distribution (7 = 3)
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Eigenvalue distribution (7 = 14)
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Conclusion

Conclusion

General
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Conclusion

Conclusion

General

» good tool to investigate underlying correlation network of a
system

Sebastian Gemsheim Boston University

Time-lagged partial correlations of financial time series with high dimensional conditions



Conclusion

Conclusion

General

» good tool to investigate underlying correlation network of a
system

» conditions can be extended arbitrarily
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Conclusion

General

» good tool to investigate underlying correlation network of a
system

» conditions can be extended arbitrarily

Stock market - NYSE

Sebastian Gemsheim Boston University

Time-lagged partial correlations of financial time series with high dimensional conditions




Conclusion

Conclusion

General

» good tool to investigate underlying correlation network of a
system

» conditions can be extended arbitrarily

Stock market - NYSE

» typical decay time for correlations: 7 min
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Conclusion

Conclusion

General

» good tool to investigate underlying correlation network of a
system

» conditions can be extended arbitrarily

Stock market - NYSE

» typical decay time for correlations: 7 min

» raw correlation damped by mutual third party correlations

Sebastian Gemsheim Boston University

Time-lagged partial correlations of financial time series with high dimensional conditions



Conclusion

Conclusion

General

» good tool to investigate underlying correlation network of a
system

» conditions can be extended arbitrarily

Stock market - NYSE

» typical decay time for correlations: 7 min
» raw correlation damped by mutual third party correlations

» almost no negative time-lagged cross-correlations
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Conclusion

Outlook

General
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Outlook

General

» Parallel computing could speed up calculations

Sebastian Gemsheim Boston University

Time-lagged partial correlations of financial time series with high dimensional conditions




Conclusion

Outlook

General

» Parallel computing could speed up calculations

Stock market - NYSE

Sebastian Gemsheim Boston University

Time-lagged partial correlations of financial time series with high dimensional conditions



Conclusion

Outlook

General

» Parallel computing could speed up calculations

Stock market - NYSE

» identify sectors and subsectors with synchronous partial
correlations and compare to older results
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Conclusion

Outlook

General

» Parallel computing could speed up calculations

Stock market - NYSE

» identify sectors and subsectors with synchronous partial
correlations and compare to older results

» include time-lagged partial correlations in cluster
identification— new dimension
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Conclusion

Outlook

General

» Parallel computing could speed up calculations

Stock market - NYSE
» identify sectors and subsectors with synchronous partial
correlations and compare to older results

» include time-lagged partial correlations in cluster
identification— new dimension

» Plot correlation network with time dimension

Sebastian Gemsheim Boston University

Time-lagged partial correlations of financial time series with high dimensional conditions



Conclusion

Outlook

General

» Parallel computing could speed up calculations

Stock market - NYSE
» identify sectors and subsectors with synchronous partial
correlations and compare to older results

» include time-lagged partial correlations in cluster
identification— new dimension

» Plot correlation network with time dimension

» Study SVD decompositions
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hank you for your attention!

And thanks to Chester!
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Conclusion

Backup slides

LPCC with threshold 0.03
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Conclusion
Boston University

nsemble: > = 0.0042
0.05

0.00
Real(EV)

0_r(%al asym. gaussian e
9.05

-0.0

n
c
)
=
O
c
[o}
Y]
©
c
.2
4]
c
(]
£
o
=
.0
=
=
X
2
/]
(]
=
(]
(/]
(]
£
=
s
Y]
c
[v]
c
=
Y
(o}
n
c
[}
]
8
(]
-
~
]
Y]
©
e
.
]
o
-
u
b0
)]
0]
i
U
£
=

)
3
=
“n
o
S
~
O
(O
M

Sebastian Gemsheim




