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Random Walks on Complex Networks
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We investigate random walks on complex networks and derive an exact expression for the mean first-
passage time (MFPT) between two nodes. We introduce for each node the random walk centrality C,
which is the ratio between its coordination number and a characteristic relaxation time, and show that it
determines essentially the MFPT. The centrality of a node determines the relative speed by which a
node can receive and spread information over the network in a random process. Numerical simulations
of an ensemble of random walkers moving on paradigmatic network models confirm this analytical
prediction.

DOI: 10.1103/PhysRevLett.92.118701 PACS numbers: 89.75.Hc, 05.40.Fb, 05.60.Cd
between two nodes under considerations. Among all paths
connecting two nodes, the shortest path is given by the

The stochastic process in discrete time that we study is
a random walk on this network described by a master
From biology over computer science to sociology the
world is abundant in networks. Watts and Strogatz [1]
demonstrated that many of these real-world networks
pose characteristic features such as the small world and
clustering property. Since classical network models do
not display these features, new models have been devel-
oped to understand the structure underlying real-world
networks [2,3]. The important finding is that there exists a
scale-free (SF) network characterized by a power-law
degree distribution [4], that is also a characteristic for
the World Wide Web (WWW) [4], and for many other
networks in various disciplines [2].

The SF network has a heterogeneous structure. For
instance, the WWW analyzed in Ref. [4] includes nodes
with degrees ranging from O�1� to O�103�. The hetero-
geneity leads to intriguing properties of SF networks. In
the context of percolation, SF networks are stable against
random removal of nodes while they are fragile under
intentional attacks targeting on nodes with high degree
[5,6]. Statistical mechanical systems on SF networks also
display interesting phase transitions [7–9]. In a transport
process, each node in SF networks does not contribute
equally likely. The importance of each node in such a
process is measured with the betweenness centrality [10],
which has a broad power-law distribution [11].

In this Letter, we study a random walk on general
networks with a particular attention to SF networks.
The random walk is a fundamental dynamic process
[12]. It is theoretically interesting to study how the struc-
tural heterogeneity affects the nature of the diffusive and
relaxation dynamics of the random walk [13]. Those
issues will be studied further elsewhere [14]. The random
walk is also interesting since it could be a mechanism of
transport and search on networks [15–17]. Those pro-
cesses would be optimal if one follows the shortest path
0031-9007=04=92(11)=118701(4)$22.50 
one with the smallest number of links [18]. However the
shortest path can be found only after global connectivity
is known at each node, which is improbable in practice.
The random walk becomes important in the extreme
opposite case where only local connectivity is known at
each node. We also suggest that the random walk is a
useful tool in studying the structure of networks.

In the context of transport and search, the mean first-
passage time (MFPT) is an important characteristic of
the random walk. We will derive an exact formula for the
MFPT of a random walker from one node i to another
node j, which will be denoted by hTiji, in arbitrary net-
works. In the optimal process it is just given by the
number of links in the shortest path between two nodes,
and both motions to one direction and to the other direc-
tion are symmetric. However, a random walk motion
from i to j is not symmetric with the motion in the
opposite direction. The asymmetry is characterized
with the difference in the MFPT’s. It is revealed that
the difference is determined by a potential-like quantity
which will be called the random walk centrality (RWC).
The RWC links the structural heterogeneity to the asym-
metry in dynamics. It also describes centralization of
information wandering over networks.

We consider an arbitrary finite network (or graph)
which consists of nodes i � 1; . . . ; N and links connect-
ing them. We assume that the network is connected [i.e.,
there is a path between each pair of nodes �i; j�], otherwise
we simply consider each component separately. The con-
nectivity is represented by the adjacency matrix A whose
element Aij � 1�0� if there is a link from i to j (we set
Aii � 0 conventionally). In the present Letter, we restrict
ourselves to an undirected network, namely Aij � Aji.
The degree, the number of connected neighbors, of a
node i is denoted by Ki and given by Ki �

P
jAij.
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equation. The transition probabilities are defined by the
following rule: A walker at node i and time t selects one
of its Ki neighbors with equal probability to which it hops
at time t� 1, thus the transition probability from node i
to node j is Aij=Ki [20]. Suppose the walker starts at node
i at time t � 0, then the master equation for the proba-
bility Pij to find the walker at node j at time t is

Pij�t� 1� �
X
k

Akj

Kk
Pik�t�: (1)

The largest eigenvalue of the corresponding time evolu-
tion operator is 1 corresponding to the stationary distri-
bution P1

j � limt!1Pij�t�, i.e., the infinite time limit [21].
An explicit expression for the transition probability Pij�t�
to go from node i to node j in t steps follows by iterating
Eq. (1)

Pij�t� �
X

j1;...;jt	1

Aij1

Ki


Aj1j2

Kj1


 
 

Ajt	1j

Kjt	1

: (2)

Comparing the expressions for Pij and Pji one sees im-
mediately that

KiPij�t� � KjPji�t�: (3)

This is a direct consequence of the undirectedness of the
network. For the stationary solution, Eq. (3) implies that
KiP1

j � KjP1
i , and therefore one obtains

P1
i �

Ki

N
; (4)

with N �
P

iKi. Note that the stationary distribution is,
up to normalization, equal to the degree of the node i—
the more links a node has to other nodes in the network,
the more often it will be visited by a random walker.

How fast is the random walk motion? To answer to this
question, we study the MFPT. The first-passage probabil-
ity Fij�t� from i to j after t steps satisfies the relation

Pij�t� � �t0�ij �
Xt
t0�0

Pjj�t	 t0�Fij�t
0�: (5)

The Kronecker delta symbol insures the initial condition
Pij�0� � �ij [Fij�0� is set to zero]. Introducing the
Laplace transform ~ff�s� �

P
1
t�0 e

	stf�t�, Eq. (5) becomes
~PPij�s� � �ij � ~FFij�s� ~PPjj�s�, and one has

~FF ij�s� � 
 ~PPij�s� 	 �ij�= ~PPjj�s�: (6)

In finite networks the random walk is recurrent [12], so
the MFPT is given by hTiji �

P
1
t�0 tFij�t� � 	 ~FF0

ij�0�.

Since all moments R�n�
ij �

P
1
t�0 t

nfPij�t� 	 P1
j g of the

exponentially decaying relaxation part of Pij�t� are finite,
one can expand ~PPij as a series in s as

~PP ij�s� �
Kj

N �1	 e	s�
�

X1
n�0

�	1�nR�n�
ij

sn

n!
: (7)

Inserting this series into Eq. (6) and expanding it as a
118701-2
power series in s, we obtain that

hTiji �

(N
Kj

; for j � i
N
Kj


R�0�
jj 	 R�0�

ij �; for j � i
: (8)

A similar expression is derived in Ref. [12] for the MFPT
of the random walk in periodic lattices.

It is very interesting to note that the average return
time hTiii does not depend on the details of the global
structure of the network. It is determined only by the total
number of links and the degree of the node. Since it is
inversely proportional to the degree, the heterogeneity in
connectivity is well reflected in this quantity. In a SF
network with degree distribution P�K� � K	�, the MFPT
to the origin To also follows a power-law distribution
P�To� � T	�2	��

o . The MFPT to the origin distributes
uniformly in the special case with � � 2.

Random walk motions between two nodes are asym-
metric. The difference between hTiji and hTjii for i � j
can be written as [using Eq. (8)]

hTiji 	 hTjii � N

�R�0�
jj

Kj
	

R�0�
ii

Ki

�
	N

�R�0�
ij

Kj
	

R�0�
ji

Ki

�
;

where the last term vanishes due to Eq. (3). Therefore we
obtain

hTiji 	 hTjii � C	1
j 	 C	1

i ; (9)

where Ci is defined as

Ci �
P1
i

�i
; (10)

where P1
i � Ki=N and the characteristic relaxation time

�i of the node i is given by

�i � R�0�
ii �

X1
t�0

fPii�t� 	 P1
i g: (11)

We call Ci the random walk centrality since it quantifies
how central a node i is located regarding its potential to
receive information randomly diffusing over the network.
To be more precise: Consider two nodes i and j with Ci >
Cj. Assume that each of them launches a signal simulta-
neously, which is wandering over the network. Based on
Eq. (9), one expects that the node with larger RWC will
receive the signal emitted by its partner earlier. Hence,
the RWC can be regarded as a measure for effectiveness
in communication between nodes. In a homogeneous net-
work with translational symmetry, all nodes have the
same value of the RWC. On the other hand, in a hetero-
geneous network the RWC has a distribution, which leads
to the asymmetry in the random dynamic process.

The RWC is determined by the degree K and �. The
order of magnitude of the characteristic relaxation time �
is related to the second largest eigenvalue (nota bene [21])
of the time evolution operator in (1): Pii�t� � P1

i �PN
��2 a

���
i b���i �t

�, where a��� and b��� are the left and right
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eigenvectors, respectively, of the time evolution operator
belonging to the eigenvalue ��. If we order the eigenval-
ues according to the modulus (j�2j � j�3j � . . . � j�Nj)
the asymptotic behavior is Pii�t� 	 P1

i � a�2�i b�2�i �t
2 and

�i � a�2�i b�2�i =j lnj�2jj. Thus the relaxation time �i has a
node dependence only through the weight factor, which is
presumably weak. On the other hand, the degree depen-
dence is explicit.

We examined the distribution of the RWC in the
Barabási-Albert (BA) network [22]. This is a model for
a growing SF network; at each time step, a new node is
added creating m links with other nodes which are se-
lected with the probability proportional to their degree.
We grew the network, solved the master equation numeri-
cally with the initial condition Pi�t � 0� � �ik, and cal-
culated the relaxation time �k for each k. Figure 1(a)
shows the plot of � vs K in the BA network of N � 104

nodes grown with the parameter m � 2. The degree is
distributed broadly over the range 2 � K & 400. On the
other hand, the relaxation time turns out to be distributed
very narrowly within the range 1 & � & 2. We also
studied BA networks of different sizes, but did not find
any significant broadening of the distribution of �. So the
RWC distribution is mainly determined by the degree
distribution. In Fig. 1(b) we show the plot of C vs K in the
same BA network. It shows that the RWC is roughly
proportional to the degree. Note, however, that the
RWC is not increasing monotonically with the degree
due to the fluctuation of � as seen in Fig. 1(a).

The RWC is useful when one compares the random
walk motions between two nodes, e.g., i and j with Ci >
Cj. On average a random walker starting at j arrives at i
before another walker starting at i arrives at j. Now
consider an intermediate node k, which may be visited
by both random walkers. Since hTiji > hTjii, it is likely
that a random walker starting at node k will arrive at
node i earlier than at node j. Although this argument is
not exact since we neglected the time spent on the journey
to the intermediate node, it indicates that nodes with
FIG. 1. (a) � vs K and (b) C vs K calculated in the Barabási-
Albert network with N � 10 000 and m � 2. The straight line
in (b) has the slope 1.
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larger RWC may be typically visited earlier than nodes
with smaller RWC by the random walker. If we interpret
the random walker as an information messenger, nodes
with larger RWC are more efficient in receiving informa-
tion than nodes with smaller RWC.

We performed numerical simulations to study the rela-
tion between the RWC and this efficiency. To quantify it,
we consider a situation where initially all nodes in a
network are occupied by different random walkers. They
start to move at time t � 0, and we measure ni, the
fraction of walkers which have passed through the node
i, as a function of time t. It is assumed that the walkers do
not interact with each other. They may be regarded as a
messenger delivering information to each node it visits.
Then, with the information distribution uniformly ini-
tially, ni is proportional to the amount of information
acquired by each node. The argument in the previous
paragraph suggests that typically nodes with larger val-
ues of RWC have larger value of ni at any given time.

The BA network [22] and the hierarchical network of
Ravasz and Barabási [23] were considered in the simula-
tions. The hierarchical network is a deterministic network
growing via iteration; at each iteration the network is
multiplied by a factor M. The emergent network is scale
free when M � 3. Since it is a deterministic network,
several structural properties are known exactly [24]. We
measured ni in the BA network with m � 2 and N � 512
nodes and in the hierarchical network with M � 5 and
N � 54 nodes for 0 � t � 2048, which are presented in
the left and the right column of Fig. 2, respectively. The
FIG. 2 (color online). Time evolution of the fraction of
walkers n that pass through a node as a function of (from
top to bottom) the node index i, the node degree K and the
RWC C of the BA network (left column) and the hierarchical
network (right column). The value of n at each time t is
represented in the gray scale/color code depicted at the right
border of each plot.
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value of ni is indicated in gray scale (color code) accord-
ing to the reference shown in Fig. 2.

The time evolution of ni is presented in three different
ways. In the first row, the nodes are arranged in ascending
order of the node index i. In the BA network, the node
index corresponds to the time step at which the node is
added to the network. The indexing scheme for the hier-
archical network is explained in Ref. [24]. In the second
row, the nodes are arranged in descending order of the
degree K and in the third row they are arranged in
descending order of the RWC C. At a given time t, the
plot in the first row shows that n is nonmonotonous and
very irregular as a function of the node index. As a
function of the degree it becomes smooth, but still non-
monotonic tendencies remain. However, as a function of
the RWC, it becomes much smoother and almost monoto-
nous.We calculated for each node i the time �0i at which ni
becomes greater than 1=2. In the BA network, among all
node pairs �i; j� satisfying �0i < �0j, only 3% violate the
relation Ci > Cj, whereas the number of pairs that violate
the relation Ki > Kj is 5 times larger.

In summary, we studied the random walk processes in
complex networks. We derive an exact expression for the
mean first-passage time [see Eq. (8)]. The MFPT’s be-
tween two nodes differ for the two directions in general
heterogeneous networks. We have shown that this differ-
ence is determined by the random walk centrality C
defined in Eq. (10). Among random walk motions be-
tween two nodes, the walk to the node with larger value
of C is faster than the other. Furthermore, it is argued that
in a given time interval nodes with larger values of C are
visited by more random walkers which were distributed
uniformly initially.We confirmed this by numerical simu-
lations on the BA and the hierarchical network. One may
regard the random walkers as informations diffusing
through the network. Our results imply that information
does not distribute uniformly in heterogeneous networks;
the information is centralized to nodes with larger values
of C. The nodes with high values of C have the advantage
of being aware of new information earlier than other
nodes. On the other hand, it also implies that such nodes
are heavily loaded within an information distribution or
transport process. If the network has a finite capacity, the
heavily loaded nodes may cause congestions [17]. There-
fore much care should be taken of the nodes with high C
values in network management. In the current work, we
consider the random walks on undirected networks. The
generalization to directed networks would be interesting.
And in order to study congestion, the random walk mo-
tions with many interacting random walkers would
also be interesting. We leave such generalizations to a
future work.

Acknowledgement: This work was supported by the
Deutsche Forschungsgemeinschaft (DFG) and by the
European Community’s Human Potential Programme
118701-4
under Contract No. HPRN-CT-2002-00307,
DYGLAGEMEM.
[1] D. J. Watts and S. H. Strogatz, Nature (London) 393, 440
(1998).

[2] R. Albert and A.-L. Barabási, Rev. Mod. Phys. 74, 47
(2002).

[3] S. N. Dorogovtsev and J. F. F. Mendes, Adv. Phys. 51,
1079 (2002).

[4] R. Albert, H. Jeong, and A.-L. Barabási, Nature
(London) 401, 130 (1999).

[5] R. Albert, H. Jeong, and A.-L. Barabási, Nature
(London) 406, 378 (2000).

[6] R. Cohen, K. Erez, D. ben-Avraham, and S. Havlin, Phys.
Rev. Lett. 85, 4626 (2000).

[7] R. Pastor-Satorras and A. Vespignani, Phys. Rev. Lett. 86,
3200 (2001).

[8] S. N. Dorogovtsev, A.V. Goltsev, and J. F. F. Mendes,
Phys. Rev. E 66, 016104 (2002).
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62, 4405 (2000); B. Tadić, Eur. Phys. J. B 23, 221 (2001);
H. Zhou, cond-mat/0302030.

[14] J. D. Noh and H. Rieger (unpublished).
[15] L. A. Adamic, R. M. Lukose, A. R. Puniyani, and B. A.

Huberman, Phys. Rev. E 64, 046135 (2001).
[16] R. Guimerá, A. Dı́az-Guilera, F. Vega-Redondo,

A. Cabrales, and A. Arenas, Phys. Rev. Lett. 89,
248701 (2002).

[17] P. Holme, cond-mat/0301013.
[18] In this definition, all links are assumed to be equivalent.

Evolution of the shortest path in weighted networks is
discussed in Ref. [19].

[19] J. D. Noh and H. Rieger, Phys. Rev. E 66, 066127 (2002).
[20] In weighted networks, the hopping probability may be

written as ~AAij= ~KKi, where ~AAij � wijAij and ~KKi �
P

j
~AAij

with a weight wij > 0. All results in this Letter remain
valid as long as the weight is symmetric, i.e., ~AAij � ~AAji.

[21] The limit exists if and only if the network contains an
odd loop. Then all other eigenvalues of the time evolution
operator satisfy j�j< 1, otherwise there exists an eigen-
value � � 	1, for which the infinite time limit does not
exist. In such cases, one may redefine the RW model
setting Aii � 1 to make the limit exist.

[22] A.-L. Barabási and R. Albert, Science 286, 509 (1999).
[23] E. Ravasz, A. L. Somera, D. A. Mongru, Z. N. Oltvai, and

A.-L. Barabási, Science 297, 1551 (2002); E. Ravasz and
A.-L. Barabási, Phys. Rev. E 67, 026112 (2003).

[24] J. D. Noh, Phys. Rev. E 67, 045103(R) (2003).
118701-4


