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This article highlights the current misunderstanding between economists and econophysicists by adopting the
financial economists' viewpoint in order to explain why the works developed by econophysicists are not recog-
nized in finance. Because both communities do not share the same scientific culture, and for the other reasons
developed in the article, economists often consider econophysics as a strictly empirical field without theoretical
justification. This paper shows the opposite; it also tries to facilitate the dialogue between econophysicists who
often do not explain in details their theoretical roots andfinancial economistswho are not familiarwith statistical
physics. Beyond this clarification, this paper also identifies what remains to be done for econophysicists to con-
tribute significantly to financial economics: 1) development of a common framework/vocabulary in order to bet-
ter compare and integrate the two approaches; 2) development of generative models explaining the emergence
of power laws; and 3) development of statistical tests for the identification of such statistical regularities.

© 2016 Elsevier Inc. All rights reserved.
Keywords:
Statistical physics applied to finance
Power laws
Interdisciplinarity
Econophysics
Financial economics and econophysics
1. Introduction

Econophysics is a recent field that dates back to the 1990s; it applies
theories/methods developed by physicists and associated with the
physics of complex systems in order to study complex (nonlinear) prob-
lems in economics (Daniel & Sornette, 2010; Jovanovic & Schinckus,
2013; Săvoiu & Andronache, 2013). Because physics is a science dealing
with a great number of natural issues (matter, energy, light, etc.), it po-
tentially offers a wide variety of conceptual tools for studying economic
phenomena. Based on the success of the first works in econophysics
dedicated to the statistical characterization of fat-tails in financial distri-
butions, the existing literature often associates econophysics with sta-
tistical physics applied to finance. Although econophysics cannot
methodologically be reduced to this application,1 this area of knowledge
contributed to the crystallization and to the institutionalisation of
econophysics (Gingras & Schinckus, 2012).

Since the birth of econophysics, a huge literature has been published
and many results have been provided in finance (Bouchaud, Mezard, &
Potters, 2002; Gabaix, 2009; Lux, 2009; McCauley, 2009; McCauley,
Gunaratne, & Bassler, 2007; Potters & Bouchaud, 2003; Sornette,
2014). However, in spite of the numerous publications and of the
econophysicists' conviction about their potential contributions to
finance, this approach seems to have great difficulties for convincing fi-
nancial economists. While numerous explanations have been provided
by econophysicists for explaining the relatively ‘closed’ attitude of
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financial economists (Bouchaud, 2002; Gallegati, Keen, Lux, &
Ormerod, 2006b; McCauley, 2004, 2006; Sornette, 2014), these expla-
nations refer most of the time to disciplinary reactions rather than the-
oretical and methodological investigations for solving the problem.
Actually, these disciplinary differences can be very informative in the
understanding of the situation because part of the gap between the
two disciplines, which underlines many debates that have emerged be-
tween physicists and financial economists (Ball, 2006; Durlauf, 2005;
Gallegati, Keen, Lux, & Ormerod, 2006a; Keen, 2003; LeBaron, 2001;
McCauley, 2006; Stanley & Plerou, 2001). In that perspective, statistical
physics applied to finance is an interesting area of investigation for one
who wants to understand the major differences between these two
communities and to go forward the current limits.

This article aims at analysing the main origins of these difficulties in
order to contribute to the development of theoretical and methodolog-
ical bridges between these two disciplines. In this context, this paper
studies on the one hand, the reasons for why a lot of financial econo-
mists are reluctant to the application of statistical physics to finance,
and on the other hand, the possible paths to pass over this situation.
Roughly speaking, three arguments are usually mentioned by econo-
mists: 1) econophysics would be a data-driven field without theoretical
foundations; 2) this field cannot really contribute to the existing theory
in finance; and 3) the theoretical framework used in financial econom-
ics is not enough considered by econophysicists. This article deals with
these three arguments by refuting the first one and discussing the two
latter.

The following section will illustrate the heart of the problem be-
tween statistical physicists and financial economists by presenting the
role played by power laws in the understanding of financial markets.
This conceptual introduction will lead us to clarify the theoretical
barriers between econophysics and financial economics, International
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2 “One often finds [in the literature from econophysics] a scolding of the carefully main-
tained straw man image of traditional finance. In particular, ignoring decades of work in
dozens of finance journals, it is often claimed that “economists believe that the probability dis-
tribution of stock returns is a Gaussian”, claim that can easily be refuted by a random consul-
tation of any of the learned journals of this field […] some of the early econophysics papers
even gave the impression that what they attempted was a first quantitative analysis of finan-
cial time series ever” (Lux, 2009, p. 230).
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roots of these laws defining the major theoretical foundations of
econophysics. Afterwards we will study the major reasons for why
this theoretical framework is not currently accepted in finance. We
will conclude this paper by discussing what remains to be done for a
future integrated perspective between econophysics and financial
economics.

2. The “dialogue of deaf” between econophysicists and financial
economists

Among the branches of physics that can be used for studying finan-
cial reality, one is called statistical physics. This latter is a sub-field of
physics dealing with statistics and probability theory whose aim is to
characterize the properties of matter in aggregate. Given the statistical
and probabilistic foundations of finance (Davis & Etheridge, 2006;
Jovanovic, 2008) and the increasing number of financial data
(Jovanovic & Schinckus, 2016), statistical physics appears to be an ap-
propriate branch for studying financial markets because this area of
knowledge studies the dynamics of complex systems composed by
high number of micro-components (Rickles, 2008). One important
discovery of statistical physics is that such as systems can have a
macroscopic behaviour with a temporal/spatial scaling-invariance
property in line with what one can observe at the critical point of a
phase transition. As we will explain in details, this observation is called
“the self-organized criticality” and it often statistically describes
through a power law, which is one of the major theoretical concepts
of econophysics.

Although financial economists are familiarwith power laws (Gabaix,
2009; Lux, 2009), these patterns did not arouse enthusiasm in econom-
ics/finance research. Themost obvious reason is that this frameworkhas
statistical properties that are not compatible with traditional statistical
tests (based on the central limit theorem), and with the financial main-
stream founded on a (improved) Gaussian framework. Actually the lat-
ter has a historical importance in finance since it played a crucial role in
the “scientification” of the emergence of finance in the 1960s (Davis &
Etheridge, 2006; Jovanovic, 2008; Jovanovic & Schinckus, 2016). Conse-
quently, in order to stay into the Gaussian borders by integrating ex-
treme variations (which is one major characteristic of power laws)
financial economists have developed alternative approaches: jumppro-
cesses in the 1970s (Cont & Tankov, 2004; Merton, 1976) and ARCH
class of models in the 1980s (Engle, 1982; Francq & Zakoian, 2010;
Pagan, 1996). Beyond these considerations related to the importance
of the Gaussian framework, power laws also have some drawbacks
since their identification and their characterization still generate a lot
of debates among scientists. In 2005, for instance, Michael
Mitzenmacher published a seminal paper underlying the difficulties in
the use of these statistical tools. He explained that empirical results
are only a part of the power laws issue because the real challenge is to
explain the emergence of these macro-regularities. According to him,
generativemodels explaining the emergence of power laws and quanti-
tative tests to identify these laws are a necessary step in their broad use
in science (Mitzenmacher, 2005, p. 526).

The same year, the economist Durlauf (2005) called into question
the strength of the empirical evidence for power laws in economic
data — in the same vein, Newman (2005) showed that this situation is
shared in many other fields. Although Durlauf was one of the defender
of complexity in social sciences (including economics) he criticized
someworks that applied complexity in these scienceswhilst completely
ignoring the economic methodology/theory. His critic, which is shared
by numerous financial economists and economists, was based on the
limits emphasized by Mitzenmacher: the lack of quantitative tests for
identifying power laws and the lack of generative models explaining
their emergence. These two “lacks” have largely contributed to the
maintenance of the Gaussian framework (which has been adapted to
extreme variations) by financial economists. These lacks also have
strongly supported the questionings of financial economists about the
Please cite this article as: Jovanovic, F., & Schinckus, C., Breaking down the
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potential contribution of econophysics to their field. Moreover, these
calls into question have been reinforced by the rhetoric of some
econophysicists who have ignored the economics literature by present-
ing their results as completely news while they were not always (Lux,
2009).2 We will discuss this claim in our last section.

In conclusion, the current situation reflects a “dialogue of deaf” be-
tween econophysicists and financial economists. The following sections
will investigate the reasons of this difficult dialogue between econo-
mists and econophysicists. This investigation will lead us to explain
the theoretical framework implicitly used by econophysicists when
they referred to power laws. This ‘translation’ (for economists) of the
major theoretical framework used in statistical physics is the first con-
tribution of this article because, in their papers, econophysicists usually
do not remind these theoretical points (simply because they are well-
known by all physicists). For their part, economists, who know few
about statistical physics, tend to consider econophysics as a strictly em-
pirical field without any theoretical justification. The next sections will
show the opposite by trying to facilitate the dialogue between the two
communities.

3. Statistical physics goes beyond its borders

For most economists, including financial economists, it is not clear
why econophysicists find so obvious the idea to import models/
methods from statistical physics for studying financial markets (or
other areas of economics). The influence of physics on economics is
nothing new (Ingrao & Giorgio, 1990; Le Gall, 2002; Ménard, 1981,
chap. 14; Mirowski, 1989b; Schabas, 1990) and finance has also been
subject to the influence of physics (Jovanovic, 2006a, 2006b; Jovanovic
& Schinckus, 2013, 2016; Sornette, 2014). However, despite these
links and the variety of physical tools for studying economic/financial
phenomena, econophysics is fundamentally a new approach, very dif-
ferent from the previous experiences. Indeed, its practitioners are not
economists taking their inspiration from the works in physics to devel-
op their discipline as it was the case in the history of economics. This
time, it is physicists that are going beyond the boundaries of their disci-
pline by using their methods and models to investigate various prob-
lems usually studied by social sciences — from this perspective
econophysics is really new. This movement outside physics is rooted
in changes that occurred in this discipline during the 1970s.

3.1. Statistical physics' golden age

A turning point in the recent history of physics that took place in the
1970s was the realization that a connection can be made between the
theories of statistical physics and particle physics. Statistical physics'
main purpose is to explain the macroscopic behaviour of a system and
its evolution, in terms of physical laws governing the motion of the mi-
croscopic constituents (atoms, electrons, ions, etc.) that make it up. Sta-
tistical physics distinguishes itself from other fields of physics by its
methodology based on statistics, a consequence of the enormous num-
ber of variables on which statistical physicists have to work. As
Fitzpatrick (2012) explains, in areas of physics other than thermody-
namics, physicists are able to formulate some exact, or nearly exact,
set of equations – resulting from physical laws and theories – which
govern the system under investigation. Therefore, they are able to
analyse the system by solving these equations, either exactly or approx-
imately. In thermodynamics, physicists have no problem in formulating
the governing equations and writing down the exact laws of motion,
barriers between econophysics and financial economics, International
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including all the inter-atomic forces. Their problem is the gigantic num-
ber of variables – as many as Avogadro's number, 6 × 1023 – and there-
fore the gigantic number of equations of motion that have to be
resolved. This number makes study of the system unworkable, even
for a computer. The subject is so difficult that physicists “are forced to
adopt a radically different approach to that employed in other areas of
physics” (Fitzpatrick, 2012, p. 4).

Fortunately, they are not interested in knowing the position and ve-
locity of each individual particle in the system at any time. Instead, they
want to know the properties of the system (volume, temperature, etc.)
at a givenmoment. Therefore, the number of pieces of information they
require is minuscule in comparison with the number of pieces of infor-
mation thatwould be needed to completely specify the internal motion.
Moreover, the quantities, which physicists are interested in, do not de-
pend on the motions of individual particles, but rather on the average
motions of all the particles in the system. In other words, these quanti-
ties depend on the statistical properties of particle motion. Moreover,
the gigantic quantity of data makes possible to use most statistical
laws or theorems, which are generally based on asymptotic calculus.
The method used in statistical physics is thus essentially dictated by
the complexity of the systems due to the enormous numbers of constit-
uents. It leads statistical physicists to start with statistical information
about the motions of the constituents, and then to deduce some other
properties of the system from a statistical treatment of the governing
equations. The turning point that occurred in the 1970s is a direct result
of this problematic of extremely voluminous data.

Statistical physicists work on the bridge between microscopic level
composed by a high number of components and the phenomenological
(macro) level of physical systems. In 1982, the physicist Kenneth
Wilson received the Nobel Prize for his contribution to such connection.
In a sense, his work represents a new approach to critical phenomena
that emerged in the 1960s, linking these phenomena with scaling
laws (Hughes, 1999, p. 111). Specifically, Wilson was awarded the
prize for having developed the renormalization group theory for critical
phenomena in connectionwith phase transitions. A phase transition is a
transformation of a state of a system to another state due to the gradual
change of an external variable. This transformation can be likened to the
passage from one equilibrium to another.When this passage occurs in a
continuousway, it passes through a critical point atwhich neither of the
two states is realised. This is a kind of non-state with no real difference
between the two states of the phenomenon and for which the system
appears the same at all scales. This property is called “scale invariance”
meaning that no matter how closely you look, you see the same thing.
´

´´ ´´

´´´

´ ´ ´

Fig. 1. Renormalisation group method applied to a stochastic process (Sornette, 2006,
p. 53).
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Since the 1970s, critical phenomena, which are one of the toughest
problems in physics, have captured the attention of physicists due to
several important conceptual advances in scaling, universality, and
renormalization on the one hand, and to the very interesting properties
that define them on the other hand. Among these properties, the fact
that the occurrence of their critical points can be characterized by a
power law deserved special attention, because this law is a key element
in econophysics' literature. During the years 1975–80 statistical physics
was blossoming with the exact solving of the enigma of critical phe-
nomena, and several hundred young physicists were entering the field
with a great deal of excitement (Galam, 2004). The so-called modern
theory of phase transitions along with renormalisation group tech-
niques brought condensed matter physics into its golden age.

It is in this movement that Wilson developed his method of
renormalisation, which provides insights into the field of critical phe-
nomena and phase transitions and which enables exact resolutions.
“The development of [the renormalisation group] technique undoubt-
edly represents the singlemost significant advance in the theory of crit-
ical phenomena and one of the most significant in theoretical physics
generally” since the 1970s (Alastair & Wallace, 1989, p. 237). We will
briefly describe this method here in order to understand some of the
connections econophysicists make with finance. Wilson's method con-
siders each scale separately and then connects contiguous ones to one
another. This makes it possible to establish a connection between the
microscopic and the macroscopic levels by decreasing the number of
interacting parts at the microscopic level until one obtains the macro-
scopic level (ideally a system with one part only). In this perspective,
a complex system can be divided into n levels in which the higher
level is n. Based on the statistical perspectives according to which the
sum of the stable Levy distribution is still a stable Levy distribution,
the renormalisation group method consists in using a scaling transfor-
mation to group the kn random variables into n blocks of k random var-
iables. The transformation Sn takes the sequence X into a new sequence
of randomvariables,which is still independent and identically distribut-
ed. The transformation is called renormalisation group transformation
with the critical exponent αwhile jth is the level of analysis. This trans-
formation becomes truly fruitful when it is iterated, when each
renormalisation leads to a reduction in the number of variables to give
a system that contains fewer variables while keeping the characteristics
of the original system—here the fact that the system stays independent,
identically distributed and stable.3

Let us take an example of a system composed by 8 elements whose
behaviour can be associated with variables (X1, …, X8). In this context,
we have a sequence X with kn = 8, n = 4 and k = 2 which could be
renormalized the sequence 3 times in order to obtain a single random
variable that characterizes the initial sequence(See Fig. 1.).

Considering the renormalisation group method, the system at one
scale consists of self-similar copies of itself when viewed at a smaller
scale, with different parameters describing the components of the sys-
tem. All scales are coupled to each other to generate the macro-level.
In this context, physicists use a decoupling method taking the form of
a scale invariance in order to study complex macro-phenomena (Cao
& Schweber, 1993). At the end of the 1970s statistical physics had
established precise calculation methods for analysing phenomena
characterised by scale invariance. Although the scale invariance as-
sumption was not new in physics,4 the properties allowing the mathe-
matical demonstration of invariance were only established at this
time. This demonstration makes it possible to study mathematically
macroscopic regularities that occur and that are directly observable as
a result of microscopic random interactions without to having study
these microscopic interactions that are not directly observable. The
focus is therefore on the direct phenomenological observation. In this
3 For more details, see Samorodnitsky and Taqqu (1994), Lesne (1998) or Sornette
(2006).

4 For instance, it exists in the work of Euclid and Galileo.

barriers between econophysics and financial economics, International
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the ‘representative agent’ in Economics” (Chakrabortia, Muni Tokea, Patriarcabc, &
Abergela, 2011, p. 1020).
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perspective, scale invariance contributed to a better understanding of
complex physical systems: physicists can calculate from knowledge of
the microscopic constituents the parameters of generic models that
allow the dynamic of macroscopic behaviours and then their evolution
to be described without studying what happens at the microscopic
level. For this reason, scale invariance is the contemporary foundation
of any modern approach of statistical physics aimed at understanding
the collective behaviour of systems with a large number of variables
that interact with each other.

Research into critical phenomena and scale invariance have benefit-
ed from another very fruitful connection: the advent of the Isingmodel.
The two-dimensional Isingmodel is amathematicalmodel of ferromag-
netism used to study phase transition and critical points. This model is
the simplest description of a dual system with a critical point. It played
a central role in the development of research into critical phenomena
and it occupies a place of importance in the mind of econophysicists.
Precisely, at the critical point, the correlation length (i.e. the distance
over which the direction of one spin affects the direction of its neigh-
bour spins) is so important (and considered as infinite) that each spin
is influenced by all neighbour spins. Due to the infinite correlation
length, the spin system becomes scale invariant implying that the spin
system has the same physical properties whatever the scale of the anal-
ysis. The renormalisation group method can then be applied, and by
performing successive transformations of scales on the original system
one can characterize the behaviour of the macro-system.

The Ising model has another very important feature: because of its
very simple structure, it is not confined to the study of ferromagnetism.
In fact, “[p]roposed as amodel of ferromagnetism, it ‘possesses no ferro-
magnetic properties’” (Hughes, 1999, p. 104)! Its abstract and general
structure have enabled its use to be extended to the study many other
problems or phenomena. For these reasons, statistical physicists consid-
er the Ising model as the perfect illustration of a simple unifying math-
ematical model. Their looking for suchmodels is rooted in the scientific
view of physicists for whom “the assault on a problem of interest tradi-
tionally begins (and sometimes ends) with an attempt to identify and
understand the simplest model exhibiting the same essential features
as the physical problem in question” (Alastair & Wallace, 1989,
p. 237). The Ising model perfectly meets this requirement. Its use is
not restricted to statistical physics because “the specification of the
model has no specific physical content” (Hughes, 1999, p. 99) — this
model is above all a mathematical structure independent of the under-
lying phenomenon studied meaning it can be used to analyse any em-
pirical data that share the same characteristics.

With these new theoretical developments (renormalization group
theory and Isingmodel), statistical physicists have powerfulmathemat-
ical models and methods for solving crucial problems in physics. Al-
though the idea of establishing the behaviour of systems at their
macroscopic level without analysing this microscopic level in details is
not new in physics, physicists developed more and more specific tools
improving this modelling of the macroscopic level. Moreover, the Ising
model quickly appeared for physicists as a simple unifying mathemati-
calmodel that can be used for the analysis of a large variety of problems.
This progressive decontextualization of theoretical tools used in statisti-
cal physics contributed to their application outside of physics, aswewill
precise in the next section.

3.2. The temptation to apply the methods of statistical physics outside
physics

Encouraged by the results obtained in the 1970s, certain physicists
began investigating correspondences with collective behaviours of any
kind of phenomena that appear critical, including social phenomena.
For statistical physicists, as we will see now, this temptation to extend
their models and methods outside physics seemed relevant because
themethodological characteristic of the Isingmodel allow them to iden-
tify a universality class of problems. The first step was to identify a
Please cite this article as: Jovanovic, F., & Schinckus, C., Breaking down the
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category of problems likely to be described through the same theoreti-
cal framework. Critical phenomena are a telling example of such catego-
ry because they share the same behaviour at their critical points
implying they can be grouped into the same universality class although
they refer to very different realities— although these systems aremicro-
scopically different, they have identical macroscopic behaviour which is
usually associatedwith the emergence of a statistical pattern.More spe-
cifically, the occurrence of critical phenomena is often statistically char-
acterized through a power law in physics (Bak, 1994). In this
perspective, the application of power laws for describing extreme phe-
nomena in social sciences and finance makes sense for physicists since
they have theoretical tools to deal with these phenomena.

This import of the renormalization group theory and the Isingmodel
into social sciences is indicative of changes in the scientificmethodology
that occurred in the 20th century. Israel (1996) identifies a major
change in theway of doing science throughwhat he calls “mathematical
analogies”. These are based on the existence of unifying mathematical
simple models that are not dedicated to the phenomena studied. Math-
ematical modelling is therefore used as mathematical analogies by
means of which the same mathematical formalism is able to account
for heterogeneous phenomena. The latter are “only interconnected by
an analogy that is expressed in the form of a commonmathematical de-
scription” (Israel, 1996, p. 41). In this perspective, themodel is an effec-
tive reproduction of reality without ontology, one that may provide an
explanation of phenomena. The Ising model is a perfect illustration of
these simple unifying mathematical models. Israel (1996) stressed
that such mathematical analogies strongly contribute to the increasing
mathematisation of reality.

Mathematical analogies support the temptations for statistical phys-
icists to extend their models for analysing critical phenomena beyond
physics. First, they looked for phenomena with large numbers of
interacting units whosemicroscopic behaviours would not be observed
directly but whose macroscopic results would be observed — results
that are consistent with the microscopic motions defined by a set of
mathematical assumptions (which characterize random motion).
Therefore, they looked for statistical regularities in order to identify scal-
ing behaviours reflected by power laws and hence by a unifying math-
ematical model (Stanley & Plerou, 2001, p. 563).

This approach led some statistical physicists to create new fields
that were called “sociophysics” or “econophysics” depending the
topics to which their methods and models were applied. A first move-
ment, sociophysics, emerged in the 1980s (Galam, 2004; Săvoiu &
Iorga-Simăn, 2013). Then in the 1990s statistical physicists turned
their attention to economic phenomena, and particularly finance, giving
rise to econophysics. Finance looked like the perfect candidate due to
the theoretical hypotheses of the financial economics mainstream. In-
deed, the cornerstone of financial economics, the efficient market theo-
ry, supposes that the financial markets components behave randomly
and, according to Fama's reformulation in 1970, that investors can be
represented by a representative agent. These two hypotheses are per-
fectly compatible with the statistical physics' approach that makes no
hypothesis about specific behaviours ofmicroscopic components except
their random character.5 Moreover, the renormalisation group method
seems to be an appropriate answer tofinance, because it provides a con-
ceptual framework for understanding the macro-level of the systems
(i.e. financial prices observed empirically) with minimal information
from the micro-level (agents' behaviour). Thus, by analogy, statistical
physicists view financial markets as complex systems, and prices
as the statistical macro-result of a very large number of interactions
at a theoretically defined microscopic level. This analogy has been
barriers between econophysics and financial economics, International
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6 We can mentionModEco (http://modeco-software.webs.com/econophysics.htm) de-
veloped by a retired academic physicist or Rmetrics (https://www.rmetrics.org/) devel-
oped by Econophysics Group from the University of Zurich — EHT Zurich. It is worth
mentioning that the latter software is directly used in university modules developed by
this group (https://www.rmetrics.org/sites/default/files/2013-VorlesungSyllabus.pdf).
More famous statistical and mathematical software gradually integrate key econophysics
concepts. The well-knownMathematica, for example, has proposed a “stable distributions
package” for 2005 (Rimmer & Nolan, 2005). Aoyama, Fujiwara, Ikeda, Iyetomi, and Souma
(2011) showed that the statistical software Stata and SAS can also be used for an
econophysical analysis of economic data.We can alsomentionAlstott, Bullmore, andPlenz
(2014), or the script provided by Aaron Clauset in his web page, http://tuvalu.santafe.edu/
~aaronc/powerlaws/, to be used with Matlab.

7 There are some exceptions, particularly in the most recent works (Nakao, 2000).

5F. Jovanovic, C. Schinckus / International Review of Financial Analysis xxx (2016) xxx–xxx
supported by an important contextual element: the increasing use of
computers in science and the computerisation of social reality that
favoured the development of statistical physics outside of its original
borders.

3.3. The key role of computers

Although independent of the theoretical developments that oc-
curred in statistical physics, the computerization of social reality played
a key role in the extension of statistical physics to social sciences for two
reasons: 1) this computerization contributed to a better collection and
exploitation of very large databases; 2) the main statistical tool
(power laws) used by econophysicists require an enormous quantity
of data to be identified due to their asymptotic properties.

Computerisation has been implemented in a great number of fields
dealingwith social phenomena. Financialmarkets occupy a very specific
place in this movement, because the financial databases are probably
the largest sources of data for social phenomena. Indeed, since the end
of the 1970s, all themajor financialmarkets have beenprogressively au-
tomated thanks to computers. Automation has allowed all transactions
and all prices quoted to be recorded. Then, since the 1990s, the evolu-
tion of technology paved the way to the development of high-
frequency transactions, and therefore the creation of high-frequency
data (also called “intraday” data). Previously, statistical data on financial
markets were generally made up of a single value per day (the average
price or the last quotation of the day). Nowadays, by recording “intraday
data”, computers keep in memory all prices quoted and tens of thou-
sands of transactions traded every single day (Engle & Russell, 2004).

The increasing quantities of data and the computerisation of finan-
cial markets led to notable changes. Intraday data brought to light
new phenomena that could not be detected or did not exist with
monthly or daily data. The most important for our subject is that these
new intraday data have exhibited more extreme values than one
could be detected before. Indeed, before the computerisation, prices re-
corded were estimated through a simple mean of prices used for trans-
actions during the day. In this context, extreme values were smaller and
less frequent than in intraday data. Consequently, intraday data have
generated three major changes: 1) they have increased the interest for
research on extreme values; 2) they have brought new challenges in
the analysis of stock price variations that have required the creation of
new statistical tools to characterise them; 3) they favour the growing
interest for extending the methods and models of statistical physics,
which are based onhuge amounts of data, intofinance. The advent of in-
traday data has made it possible to build samples that are sufficiently
large to provide empirical evidence for supporting the application
of power-law distribution analysis to the evolution of prices/
returns. According to some authors (Gallegati et al., 2006b, p. 1) this
expansion of financial data –which has no equivalent in other social sci-
ences fields – makes financial markets “a natural area for physicists”.

Computers have also transformed scientific research on distribu-
tions of stock-market variations in a very fruitful way for power-laws.
Their ability to perform calculations more rapidly than human beings
opened the door for analysis of new phenomena and this situation
also allows old phenomena to be studied in a newways. This is particu-
larly true for stable Levy processes. In general, there are no closed-form
formulas for stable Levy distributions – except in their Gaussian, Pareto
and Cauchy forms –whichmakes them difficult to work with. Working
with such distributions implies a specific parameterization requiring
complex calculations with numerous data. Computer simulations have
changed the situation because they allow researchwhen no analytic so-
lution exists bymaking possible to chart step-by-step the evolution of a
system whose dynamics are governed by non-integrable differential
equations (i.e. which no analytic solution). Computerisation has also
provided a more precise visual analysis of empirical data: indeed, by
allowing simulations for different parameters of the stable Levy distri-
butions, computers have paved the way to a visual research that could
Please cite this article as: Jovanovic, F., & Schinckus, C., Breaking down the
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have appeared vague before (Mardia & Jupp, 2000). It isworthmention-
ing that computers have also facilitated work with stable Levy distribu-
tion since several statistical and mathematical programs have been
developed to compute stable densities, cumulative distribution func-
tions and quantiles, resolvingmost of computational difficulties usually
associated with stable Levy distributions.6

4. A new tool for analysing extreme values: power-law distributions

After having clarified the elements that contributed to the extension
of physics outside of its borders, we will present in this section the con-
ceptual framework used by econophysics, and more specifically, the
theoretical foundations of power laws in statistical physics. Afterwards,
wewill discuss their extension in finance. Themajority of works related
to econophysics claim that the financial markets (or economic systems)
can be considered as complex system whose evolution of the macro-
behaviour follows a power-law distribution (also often referred to as
heavy-tail distributions, Pareto distributions, Zipf distributions, etc.).7

A finite sequence y = (y1, y2, …, yn) of real numbers, assumed without
loss of generality always to be ordered such that y1 ≥ y2 ≥… ≥ yn, is said
to follow a power law if

k ¼ c yk
−α ; ð1Þ

where k is (by definition) the rank of yk, c is a fixed constant, and α
is called the critical exponent or the scaling parameter. In case of
a power-law distribution, the tails decay asymptotically according to
α — the smaller the value of α, the slower the decay and the heavier
the tails. A more common use of power laws occurs in the context of
random variables and their distributions. That is, assuming an underly-
ing probability model P for a nonnegative random variable X, let F(x) =
P[X ≤ x] for x ≥ 0 denote the (cumulative) distribution function of X, and
let FðxÞ ¼ 1−FðxÞ denote the complementary cumulative distribution
function. In this stochastic context, a random variable X or its corre-
sponding distribution function F is said to follow a power law or is scal-
ing with index α N 0 if, as x → ∞,

P XNx½ � ¼ 1−F xð Þ≈c x−α ; ð2Þ

for some constant 0 b c b ∞ and a tail index α N 0. For 1 b α b 2, F has in-
finite variance but finite mean, and for 0 b α ≤ 1, F has infinite variance
and infinitemean. In general, all moments of F of order β ≥α are infinite.

The importance of power laws in statistical physics did not pop up
from nowhere. The previous section explained their links with critical
phenomena, which have largely monopolized the interest of physicists
in the last decades. This interest has created a kind of fascination of
power laws for econophysicists:

“Why do physicists care about power laws somuch? […] The reason
[…] is that we're conditioned to think they're a sign of something in-
teresting and complicated happening. The first step is to convince
ourselves that in boring situations, we don't see power laws”
(Shalizi's notebook http://bactra.org/notebooks/power-laws.html).
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Bouchaud (2001, p. 105) expresses a similar idea:

“Physicists are often fascinated by power laws. The reason for this is
that complex, collective phenomena give rise to power laws which
are universal, that is, to a large degree independent of the micro-
scopic details of the phenomenon. These power laws emerge from
collective action and transcend individual specificities. As such, they
are unforgeable signatures of a collective mechanism”.

Such fascination has strongly contributed to the increasing number
of empirical studies on power laws.
9 The basic idea of self-organized criticality is that certain phenomena maintain them-
selves near a critical state. A telling example of that situation is a quiet sand pile in which
the addition of one grain generates mini-avalanches. At some point, these mini-cascades
stop meaning that the sand pile has integrated the effect of this additional grain. The sand
pile is said to reach its self-organized critical state (because the addition of a new sand
grain would generate the same process). Physicists talk about “critical state” because the
4.1. Power-law distributions seen as a phenomenological law

First at all, we must mention that empirical investigations into phe-
nomena distributed according to power laws are nothing new in eco-
nomics. They date back to Pareto (1897) and, since then, they have
been regularly observed and studied for numerous phenomena
(Mitzenmacher, 2004; Simkin & Roychowdhury, 2011). Statistical phys-
icists thus joined a larger movement, reinforcing the idea that power
laws and critical phenomena constitute important tools for analysing
empirical phenomena.

The common way to probe for power-law behaviour has consisted
in checking visually on a simple histogram that the frequency distribu-
tion of the quantity of x appears as a straight line when plotted on
double logarithmic axes. Indeed, taking the logarithm of both
sides of the Eq. (1), we see that the power-law distribution obeys
ln P[r N x] = −α ln x + c. Thus, a distribution that approximately falls
on a straight line provides an indication that the distribution may fol-
lows a power law, with a scaling parameter α given by the absolute
slope of the straight line. This type of visual investigation has guided
econophysicists' empirical research. This linearity has been observed
in a wide variety of phenomena, suggesting that power law distribution
could fit with a great number of observations. Moreover, the number of
observations has considerably increased with the spread of computer-
ized databases (Dubkov, Spagnolo, & Uchaikin, 2008). Thus, “[i]n the
mid-1990s, when large data sets on social, biological and technological
systems were first being put together and analyzed, power-law distri-
butions seemed to be everywhere […]. There were dozens, possibly
hundreds of quantities, that all seemed to follow the same pattern: a
power-law distribution” (http://tuvalu.santafe.edu/~aaronc/courses/
7000/csci7000-001_2011_L3.pdf). The result was that some “scientists
are calling them more normal than normal [law] [; and therefore] the
presence of power-law distributions in data […] should be considered
as the norm rather than the exception” (Willinger cited in Mitchell,
2009, p. 269). This linear relationship was also observed in financial
and economic phenomena in addition to Pareto's observations on in-
come distribution (Axtell, 2001; Cordoba, 2008; Eeckhout, 2004;
Gabaix, 2009; Gabaix, Gopikrishnan, Plerou, & Stanley, 2007; Gabaix &
Landier, 2008; Klass, Biham, Levy, Malcai, & Solomon, 2006; Krugman,
1996; Levy, 2003; Lux, 1996). Mandelbrot was the first to identify it in
stock-price variations, and he applied the stable Levy process to stock-
price movements in the early 1960s. Although financial economists
did not follow Mandelbrot's research (after some failed attempts in
the 1960s and the 1970s due to mathematical difficulties8), economists
have always used power laws as a descriptive framework to character-
ise some economic phenomena— such as the relationship between the
size of firms, cities or organizations with one of their characteristics
(Jovanovic & Schinckus, 2016). Recently, Gabaix (2009) showed that
the returns of the largest companies on the New York Stock Exchange
exhibit the same visual linearity.

The high number of empirical data suggests a kind of the phenome-
nological universality for power law. In addition, these observations
have supported the idea that methods and models coming from
8 See Jovanovic and Schinckus (2013) for further details on the topic.
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statistical physics could be applied outside physics. However, it is
worth mentioning that the association of these empirical regularities
with a power law is not free of theoretical presuppositions that are di-
rectly inherited from physics as explained hereafter.
4.2. The theoretical foundations of power laws in statistical physics

Themajor theoretical foundation given to the observations of power
refers to the self-criticality theory introduced, in physics, by Bak et al.
(1987) and Bak, Tang, and Wiesenfeld (1988). Although this theory
has originally been developed to describe the emergence of power
laws characterizing the evolution of physical systems, it is often used
by econophysicists to defend the existence of suchmacro-laws in the fi-
nance area. According to Bak, the linearity visually identified in the his-
togramplotted on a log–log axes, can be interpreted as the expression of
the complexity of a phenomenon (Bak, 1994, p. 478). The basic idea of
self-organized criticality is that certain phenomena maintain them-
selves near a critical state. Physicists talk about “critical state” because
the system organizes itself into a fragile configuration based on a
knife-edge.9 Although their instability, some complex systems look to
be ruled by a single macroscopic power-law describing the frequency
at which phase transitions occur (Newman, 2005). This theory of self-
organized criticality progressively became a theoretical reference for
physicists for who power laws are synonymous with complex systems.
The importance of power laws in the analysis of complex systems can be
understood at three levels: 1) the distribution describing the occurrence
of critical states and correlation lengths; 2) these laws have scaling
properties and; 3) these laws refers to a large variety of phenomena in-
variance (universality classes).

First level, the correlation lengths: for critical phenomena, the large
correlation lengths that exist in the system at the critical point are dis-
tributed like a power law. Traditionally, physicists characterised the
correlations between the constituents of the system with an exponen-

tial law e
�r
ξðTÞ (i.e. the correlation function), where r is the distance be-

tween two points and ξ(T) is the correlation length — precisely,
ξ(T)∝ |T-Tc|-υ. Then, following the observations of critical phenomena,
in order to characterise the divergence observed at the critical point,

they added to the exponential law a power law: r�∝e
�r
ξðTÞ . Therefore, at

the critical point, due to the divergence, the exponential, e
�r
ξðTÞ , goes to

zero and the correlation function is distributed according to a power
law alone, r-∝. In other words, away from the critical point the correla-
tion length between two constituents, x and y, decays exponentially,

e
�jx�yj
ξðTÞ . Butwhenwe approach the critical point, the correlation length in-

creases, and right at the critical point, the correlation length goes to in-
finity and decays in accordance with the power of the distance,
|x−y |−α. Intuitively, far from the critical point, the microscopic ele-
ments dynamics approximately follow a Gaussian distribution but,
whenwe approach the critical point, this microscopic dynamics can de-
liver a non-Gaussian stationary distribution.

Second level, the scaling properties: at their critical point, the phe-
nomena become independent of the scale used; showing therefore a
scaling invariance. The lack of a characteristic scale implies that the mi-
croscopic details do not have to be considered in the analysis. Scaling in-
variance is the footprint of critical points – and of critical phenomena
too – and power-law distribution is the sole distribution that has a
scale invariance property. In other words, at the critical point, “the
system organizes itself into a fragile configuration based on a knife-edge (the addition of
only one sand grain would be enough to modify the sand pile).
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observable quantities in the system should adopt a power-law distribu-
tion” (Newman, 2005). This means that the shape of the phenomenon's
size distribution curve does not depend on the scale on which we mea-
sure the size of the phenomenon (the results are exactly the same for
“small” scale as for “large” scale). For this reason, power laws are called
scaling laws.

Third level, the universality classes. This connection comes from the
critical exponent that characterises power laws. Determining the critical
exponent of a phenomenon allows this phenomenon to be associated
with a specific universality class. This association serves to identify
some characteristics of the system used to model the phenomenon
and to deduce their behaviour at their critical point. Moreover, the clas-
sification of critical phenomena into universality classes is crucial in fi-
nance, because stability is only guaranteed when we work within a
single universality class (adding two stable random variables with dif-
ferent critical exponents does not give a stable distribution).

These three elements have provided theoretical foundations for the
use of power laws outside of physics. When physicists observe a power
law characterizing the dynamics of no-physical systems, they implicitly
import the theoretical tools they usually associatedwith these statistical
regularities. So doing, physicists propose a metaphorical analogy in line
with what we explained in the Section 3.2.

4.3. Power laws and the framework of financial economics

Power laws have at least three crucial connections with the theoret-
ical framework of financial economics.

First connection, power laws are easily deduced from the financial
definition of returns. Considering the price of a given stock, pt, the
stock return rt is the change of the logarithm of the stock price in a
given time interval Δt,

rt ¼ ln pt− ln pt−Δt : ð3Þ

Therefore, the probability of having a return r higher than the return
x, P[r N x], can be written as ln P[r N x] =−α ln x+ c, which can be re-
written as a power law expression by using the exponential of both
sides of the equation, P[r N x] = c x−α.

Second connection, power laws are easily linked with the stochastic
processes used in financial economics, which describe the evolution of a
variable X (price, return, volume, etc.) over time (t). Knowing that a
power law is a specific relationship between two variables that requires
no particular statistical assumptions about these two variables, the evo-
lution between the variables X and t may be associated with a power
law. In this case, this evolution is a stable Levy process such as

P xð Þ∼ C

Xj j1þμ for X→ � ∞ð Þ: ð4Þ

where C is a positive constant called the tail or scale parameter and the
exponent μ is between 0 and 2 (0 b μ ≤ 2). It is worth mentioning that
among Levy processes, only stable Levy processes can be associated
with power laws because the stability property is a statistical interpre-
tation of the scaling property. While stochastic processes used in finan-
cial economics are mainly based on the Gaussian framework, taking a
Gaussian process as a starting point, a no-normal diffusion law can be
obtained by keeping the independence and the stationarity of incre-
ments but by characterising their distribution through a large law (i.e.
exhibiting fat tails).

Third and last connection, the interest of econophysics for finance is
related to thework of Mandelbrot. This author attempted to extend sta-
tistical physics to other fields, including social sciences since the 1960s
(Mandelbrot, 1957, p. 4). He provided crucial results for financial eco-
nomics, particularly by suggesting, with Samuelson (1965), to replace
the random-walk model with the martingale model (Mandelbrot,
1966a). Martingale model is a cornerstone for the work of Harrison
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and Kreps (1979), Kreps (1981) and Harrison and Pliska (1981)
that gives a mathematical definition of the theory of informational effi-
ciency. Thus, in a sense, econophysicists, who refer systematically to
Mandelbrot's work, seem to have concretized his project—we will dis-
cuss this link in the next section.

5. Breaking down the disciplinary barrier between econophysics and
financial economics

The previous sections have explained the relevance of power laws in
finance; they also showed that some conceptual and historical links
between econophysics and financial economics exist. In this context,
the question is: why these two fields do not propose a more integrative
collaboration. Why are econophysics works mainly published in
physics? We can identify four barriers explaining the difficulty for
econophysicists to be published infinancial journals: 1) thedifferent ex-
pectations in the publishing process between econophysicists and fi-
nancial economists; 2) the confusion due to the use of concepts and
vocabulary in differentways; 3) the lack of generativemodels (financial
meaning) explaining the emergence of power laws; and 4) the lack of
quantitative tests for identifying power laws.

5.1. Different scientific cultures

The first reason of this no-collaboration is simply related to the dif-
ferent scientific culture between the two communities (Jovanovic &
Schinckus, 2016, p. chap. 4; McGoun, 2003, p. 432). Papers dedicated
to econophysics are mainly published in physics journals implying
that their vocabulary, method, and models are those used in physics
(Gingras & Schinckus, 2012). Although scientific papers appear context-
less, they are social constructions referring to a disciplinary culture
based on an implicit knowledge shared by scientists involved in
that discipline. In their scientific structure, articles published in a specif-
ic field share a highly stylised and a formal system of presentation
that aim to convince readers who expect to find this specific
system (Bazerman, 1988; Gilbert & Mulkay, 1984; Knorr-Cetina, 1981,
p. chap. 5). For instance, financial economists and physicists tend to
present their scientific writings differently. A common practice in finan-
cial economics is towrite a substantial literature review “demonstrating
the incrementalism of this literature” (Bazerman, 1988, p. 274) in order
to emphasise the accumulation of knowledge and the ability of authors
to contribute to a pre-existing codified knowledge. In contrast, physi-
cists mainly focus on the practical implications of their articles,
mentioning only references that deal with potential applications
(Jovanovic & Schinckus, 2016). Consequently, due to these differences,
it is more difficult for econophysicists to get past the gatekeepers of fi-
nancial economics journals. However, beyond this observation, we
must stress that in recent years more and more joint publications
(such as this special issue, for example) and research have been devel-
oped, taking part in bridging the gap between these two scientific cul-
tures (Ausloos, 2001; Bouchaud, 2002; Carbone, Kaniadakis, &
Scarfone, 2007; Chakrabarti & Chakraborti, 2010; Chen & Li, 2012;
Durlauf, 2005; Farmer & Lux, 2008; Gabaix, 2009; Keen, 2003; Lux,
2009; McCauley, 2006; Stanley & Plerou, 2001).

5.2. The lack of common referent

As Jovanovic and Schinckus (2016) explain, econophysics and finan-
cial economics use similar concepts but in different ways, creating con-
fusions and misunderstandings. We can illustrate that point with the
connexion between Mandelbrot and econophysicists mentioned in the
previous section. While both arrive at the same result — modelling
stock-price variations using stable Levy processes, they do not take the
same path to get there. Mandelbrot starts his analysis from a purely
mathematical property: the stability of stochastic process, which is, ac-
cording to this author, the most important hypothesis for a process in
barriers between econophysics and financial economics, International
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order to produce new interesting results in finance (Mandelbrot,
1966b). In this context, his suggestion was to generalise Gaussian pro-
cesses by using stable Levy distributions and the generalised central-
limit theorem, which is compatible with stable Levy distribution.

The origin of power law used by econophysicists is quite different
since their interest in this statistical framework rather results from the
characterization of critical phenomena through the renormalisation
group method (Lesne & Laguës, 2012, p. 63). Renormalisation method
allows the demonstration of the stability for non-Gaussian stable pro-
cesses. More precisely, the renormalisation method is based on the
property of being distributed according to a power law is conserved
under addition,multiplication, and polynomial transformation.10More-
over, the renormalisation group methods focus on the scaling property
of the process, which a characteristic of critical phenomena.

This conceptual difference between Mandelbrot's works and con-
temporary studies in econophysics explains why authors involved in
the latter work with power law distributionswhile Mandelbrot only fo-
cused on stable Levy distributions. Actually, the latter is a specific case of
the first since stable Levy distribution is associated with a power law
whose increments are independent. In other words, econophysicists
and Mandelbrot use the same statistical tools but not for the same
theoretical reasons. Furthermore, this observation reminds that
econophysics is an original research and contradicts the argument of
the no-originality of econophysics usually claimed by economists who
presented this field as a simple extension of Mandelbrot's works.

5.3. The lack of quantitative tests

The third important barrier refers to the absence of real statistical
tests for the identification of power laws. The vast majority of existing
statistical tools have been developed in a Gaussian framework making
them inappropriate to test power laws. Scientists know that this prob-
lematic issue makes difficult the empirical use of power laws
(Mitzenmacher, 2005; Newman, 2005). To date, and as we explained
before, econophysicists based their empirical results on a visual tech-
nique for identifying that a phenomenon fits with a power law. This vi-
sual approach is extremely problematic for financial economists for two
major reasons. Firstly, this method generates significant systematic er-
rors (Clauset, Shalizi, & Newman, 2009; Gillespie, 2014; Stumpf &
Porter, 2012), particularly because power laws can visually be close to
so-called exponential laws. Only a large volume of data makes it possi-
ble to distinguish between the two types of law (Mitzenmacher, 2004).
Moreover, the visual approach has no objective criterion for determin-
ing what a “good fitting” is. For instance, LeBaron (2001) also showed
that simple stochastic volatility models can produce similar behaviours
to those obtained by econophysicists with power laws. Stanley and
Plerou (2001) replied to LeBaron's critique, but, although their reply
provided an interesting technical reply, it also showed themethodolog-
ical difficulties between the two approach. Secondly, financial econo-
mists, who are defenders of quantitative tests, created their own
discipline by rejecting strongly the visual approach used for predicting
stock price variations (Jovanovic, 2008). They promoted the use of
quantitative tests as scientific condition for their emerging discipline.
Considering this historical/methodological position, visual tests used
by econophysicists are considered by financial economists as having
no credibility, and even no scientific foundations.

The lack of quantitative tests makes econophysics literature hardly
acceptable to financial economists (Durlauf, 2005, p. F234). Moreover,
the problems created by the visual approach are also well known by
other scientific communities (Mitzenmacher, 2004) but also by some
econophysicists (Clauset et al., 2009, p. 691), who pointed out that “bet-
ter and more careful testing is needed, and that too much of data
10 When we combine two power-law variables, the one with the fatter-tailed distribu-
tion (that is, the one with the smaller exponent) dominates. The new distribution is the
minimum of the tail exponents of the two distributions combined.
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analysis in this area relies on visual inspection alone” (Farmer &
Geanakoplos, 2008, p. 24).

Providing a quantitative method for testing power law is a big chal-
lenge from a mathematical and statistical viewpoint, and very few au-
thors have been working on. Moreover, from a financial economics'
viewpoint, several problems exist in order to develop statistical tests
dedicated to power laws (Broda, Haas, Krause, Paolella, & Steude,
2013, p. 293). Despite these difficulties, in the recent years, significant
results have emerged. The literature has taken two different approaches
to test power laws: on the one hand, some authors have used a rank-
size rule (Gabaix & Ibragimov, 2011); and, on the other hand, some au-
thors have worked on the size-frequency relation (Clauset et al., 2009).
However, to date these tests are not applied to financial time series.
Nevertheless, due to the rapid expansion of statistical studies on this
topic, we could expect the development of a new research in the close
future.11
5.4. Two ways of defining the explanation

Although econophysicists have obtained numerous empirical obser-
vations during several decades, there are no generative models
explaining the emergence of power laws in economic terms. From the
statistical physics' viewpoint, we could consider that seeing phenome-
non studied as a critical phenomenon is a theoretical justification for
the use of models coming from statistical physics. However, leaving
this theoretical argument aside, econophysicists have produced no gen-
erative models to explain why power laws govern the economic phe-
nomena studied. This situation also existed in the other fields in
which statistical physicists have extended their models and methods
(Mitzenmacher, 2005). The observation of a statistical law per se does
not give a meaning to the observed data and although econophysicists
refers to what makes sense for them, they do not provide an “under-
standable meaning” which could make sense for an economists
as Durlauf (2005, p. F235) pointed this out. Consequently, “The
econophysics approach to economic theory has generally failed to pro-
duce models that are economically insightful” (Durlauf, 2005, p.
F236). This problem is reinforced by the fact that econophysicists and
economists have a different meaning for what is an acceptable
explanation12: the first use the renormalization group theory and scal-
ing invariance as theoretical foundations for their macro-explanation
of financial markets while economists rather explain these markets
through a microscopic incentives-based approach.13 Econophysicists
propose a statistical explanation (based on a decoupling scalesmethod)
while financial economists use a behaviourist explanation founded on
an assumption of agents' perfect rationality. In other terms, the two
communities are working in two very different conceptual worlds.
This situation helps to explain the reason for why financial economists
perceive as “insightful” the works developed by econophysics consider-
ing that these works do not have a theoretical framework behind their
statistical sophistication. However, the previous sections of this article
showed that the problem is not the lack of theoretical explanations
but rather the misunderstood between the theoretical world within
econophysicists and financial economists work.

Actually, the lack of generative models constitutes a serious barrier
between the two fields because the financial economists largely – we
could even say almost exclusively – base their works on models with
13 The microscopic (individual) perspective is very important in economics and finance
even for all issues related to macroeconomics. It is worth reminding that since Lucas'
(1976) critique, it has been widespread accepted that macroeconomics must be based
on microeconomic principles.
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theoretical explanation. Simulations of real phenomena without theory
are considered as very weak results for economists who already had
methodological debates about the irrelevance of a strictly data-driven
approach in their field— one canmention the Koopmans–Vining debate
at the end the 1940s (Mirowski, 1989a), ormore recently, the Real Busi-
ness Cycle (RBC) models approach (Eichenbaum, 1996; Hansen &
Heckman, 1996; Hoover, 1995; Quah, 1995; Sims, 1996). The necessity
for a theoretical explanation could lead to paradoxical situations: on one
hand, it contributes to keep the efficient market theory despite its weak
connection with the random character of stock price variations
(Jovanovic, 2010); on the other hand, it contributes to justify the
ARCH class ofmodels despite it is a purely statistical approach providing
no explanation of the empirical regularities (Lux, 2006). In this context,
ARCH models appear to be very similar to the way of modeling in
econophysics implying that the reject of econophysics' works is not
plenty comprehensible from the econophysicists' viewpoint. However,
from a financial economics viewpoint two nuances exist – although
these nuances could seem very tenuous – firstly, ARCH class of models
uses statistical tests. Secondly, these models were used in finance in
the perspective to test the efficient market theory while this theory is
hardly testable (Jovanovic, 2010). Therefore, most of financial econo-
mists usingARCH class ofmodels consider theirmodels have theoretical
foundations from a financial (and not from statistical only) point of
view.

In this perspective, a generative model shedding the light on the po-
tential reasons forwhypower laws emerge infinancewould represent a
major step in the perspective of an integrated approach between finan-
cial economics and econophysics. Although models explaining the
emerge of power laws in finance are not numerous (the vast majority
of empirical works show the existence of a power law without
explaining its origin), one can mention the works of Gabaix,
Gopikrishnan, Plerou, and Stanley (2006) and Gabaix, Gopikrisnan,
Plerou, and Stanley (2003) showing how institutional investor's trades
have an impact on the evolution of financial prices and volatility and
generate a fat-tailed distribution of volumes and returns. The starting
point of their model is the observation of the distribution related to
the investors' size, which would takes the form of a power law.14 That
fat-tailed distribution means that we can observe a big difference be-
tween large and small trading institutions implying an important het-
erogeneity of actors (in terms of size). From this diversity, it results a
dispersal of the trading power in which only bigger institutions will
have a real impact on the market. They demonstrated how an optimal
trading behavior of large institutions (considering that these latter are
the only ones that have an impact on the market prices) can generate
a power law in the distribution of trading volume and financial returns.
Gabaix et al. (2003, 2006)model constitutes a crucial step in very recent
contributions concerning generative models in order to explain the
power law behaviors in financial data. We can also mention some
works developed in the literature dealing with agent-based modelling
which tried to identify an origin to the power-laws in finance: Lux and
Marchesi (2000), Alfarano, Lux, and Wagner (2008) or Feng, Li,
Podobnik, Preis, and Stanley (2012) proposed a specific calibration of
micro-interactions for models whose iterations can reproduce the ob-
served power laws.We canwish this work paved theway for the devel-
opment of potential explanative models for the emergence of power
laws in financial data.

6. Conclusion: what remains to be done …

This article has studied the main reasons for why economists have
difficulties to recognize the works developed by econophysicists.
14 We can notice that in contrast Farmer, Gillemot, Lillo, Mike, and Sen (2004) have
shown that large price changes in response to large orders are very rare. See also Chiarella,
Iori, and Perello (2009) for amore recentmodel showing that large price changes are like-
ly to be generated by the presence of large gaps in the book of orders.
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Beyond the clarification of the current situation between these two
communities, this paper also pointed out many crucial progresses that
took place in the recent years. Moreover, it leads to identify what re-
mains to be done (from an economist point of view) for econophysicists
to contribute significantly to financial economics and for a future collab-
oration between econophysics and financial economics. As we saw,
three paths have still waiting to be investigated.

A proposed agenda would be to develop 1) a common framework/
vocabulary in order to better compare and integrate the two ap-
proaches; 2) statistical tests in order to identify and to test the power
laws or, at least, to provide statistical tests to compare results from
econophysics' models with those given by financial models; 3) genera-
tivemodels in order to give a theoretical explanation for the emergence
of power laws.

The major objective of this paper was to clarify the reasons of the
current dialogue of deaf between economists and econophysicists.
This study led us to present the contextual elements, which contributed
to the extension of physics outside of its borders. Afterwards, we pre-
sented the theoretical foundations supporting this extension in eco-
nomics. This clarification allowed us to suggest a research agenda for a
future fruitful collaboration between econophysicists and financial
economists. Of course, this suggested agenda will certainly raise a num-
ber of questions/challenges but it creates many research opportunities
by improving collaborations between financial economists and
econophysicists.
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