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Abstract

The scaling properties encompass in a simple analysis many of the volatility characteristics
of financial markets. That is why we use them to probe the different degree of markets devel-
opment. We empirically study the scaling properties of daily Foreign Exchange rates, Stock
Market indices and fixed income instruments by using the generalized Hurst approach. We
show that the scaling exponents are associated with characteristics of the specific markets
and can be used to differentiate markets in their stage of development. The robustness of
the results is tested by both Monte Carlo studies and a computation of the scaling in the fre-
quency domain.
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1. Introduction

In a recent book (Dacorogna et al., 2001a), the hypothesis of heterogeneous mar-
ket agents was developed and backed by empirical evidences. According to this view,
the agents are essentially distinguished by the frequency at which they operate in the
market. The scaling analysis, which looks at the volatility of returns measured at dif-
ferent time intervals, is a parsimonious way of assessing the relative impact of these
heterogeneous agents on price movements. Viewing the market efficiency as the re-
sult of the interaction of these agents (Dacorogna et al., 2001b), brings naturally
to think that it is the presence of many different agents that would characterize a ma-
ture market, while the absence of some type of agents should be a feature of less
developed markets. Such a fact should then reflect in the measured scaling expo-
nents. The study of the scaling behaviors must therefore be an ideal candidate to
characterize markets.

For institutional investors, a correct assessment of markets is very important to
determine the optimal investment strategy. It is common practice to replicate an
index when investing in well developed and liquid markets. Such a strategy mini-
mizes the costs and allow the investor to fully profit from the positive developments
of the economy while controlling the risk through the long experience and the high
liquidity of these markets. When it comes to emerging markets, it is also clear that
the stock indices do not fully represent the underlying economies. Despite its higher
costs, an active management strategy is required to control the risks and fully benefit
from the opportunities offered by these markets. The differentiation between markets
is clear for the extreme cases: New York stock exchange and the Brazilian or Russian
stock exchange. The problem lies for all those in between: Hungary, Mexico, Singa-
pore and others. For those markets a way to clarify the issue will help decide on the
best way to invest assets.

The purpose of this article is to report on the identification of a strong relation
between the scaling exponent and the development stage of the market. This conclu-
sion is backed by a wide and unique empirical analysis of several financial markets
(32 Stock Market indices, 29 Foreign exchange rates and 28 fixed income instru-
ments) at different development stage: mature and liquid markets, emerging and less
liquid markets. Furthermore, the robustness and the reliability of the method is
extensively tested through several numerical tests, Monte Carlo simulations with a
variety of random generators and the comparison with results obtained from a fre-
quency domain computation of related exponents.

The scaling concept has its origin in physics but is increasingly applied outside its
traditional domain (Müller et al., 1990; Dacorogna et al., 2001a). In the recent years,
its application to financial markets, initiated by Mandelbrot in the 1960 (Mandel-
brot, 1963; Mandelbrot, 1997), has largely increased also in consequence of the
abundance of available data (Müller et al., 1990). Two types of scaling behaviors
are studied in the finance literature:
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(1) The behavior of some forms of volatility measure (variance of returns, absolute
value of returns) as a function of the time interval on which the returns are meas-
ured. (This study will lead to the estimation of a scaling exponent related to the
Hurst exponent.)

(2) The behavior of the tails of the distribution of returns as a function of the size of
the movement but keeping the time interval of the returns constant. (This will
lead to the estimation of the tail index of the distribution (Dacorogna et al.,
2001a).)

Although related, these two analysis lead to different quantities and should not be
confused as it is often the case in the literature as can be seen in the papers and de-
bate published in the November 2001 issue of Quantitative Finance (LeBaron, 2001;
Lux, 2001; Mandelbrot, 2001). For more explanations about this and the relation be-
tween the two quantities, the reader is referred to the excellent paper by (Groen-
endijk et al., 1998). In this study, we are interested in the first type of analysis.
Until now, most of the work has concentrated in studies of particular markets: For-
eign Exchange (Müller et al., 1990; Dacorogna et al., 2001a; Corsi et al., 2001), US
Stock Market (Dow Jones) (Mantegna and Stanley, 1995) or Fixed Income (Balloc-
chi et al., 1999). These studies showed that empirical scaling laws hold in all these
markets and for a large range of frequencies: from few minutes to few months.

Recently, a controversy has erupted between LeBaron (2001) on one side and
Mandelbrot (2001) and Stanley and Plerou (2001) on the other side with somewhere
in the middle Lux (2001) to know if the processes that describe financial data are
truly scaling or simply an artifact of the data. Moreover, these papers propose
new scaling models or empirical analysis that better describe empirical evidences
and one could add to these (Bouchaud et al., 2000). It should be however noted that –
as underlined by Stanley et al. (1996) – in statistical physics, when a large number of
microscopic elements interact without characteristic scale, universal macroscopic
scaling laws may be obtained independently of the microscopic details.

Here we address the question of the scaling properties of financial time series from
another angle. We are not interested in fitting a new model but want to gather empir-
ical evidences by analyzing daily data (described in Section 2). With the same meth-
odology, we study very developed as well as emerging markets in order to see if the
scaling properties differ between the two and if they can serve to characterize and
measure the development of the market. Here the scaling law is not used to conclude
anything on the theoretical process but to the contrary we use it as a ‘‘stylized fact’’
that any theoretical model should also reproduce. Our purpose is to show how a rel-
atively simple statistics gives us indications on the market characteristics, very much
along the lines of the review paper by Brock (1999). In Section 3, we recall the the-
oretical framework and in Section 4 we introduce the generalized Hurst exponents
analysis. The methodology is described in Section 5. In Section 6 the generalized
Hurst exponents results and their temporal stability check are presented. In Section 7
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we compute the scaling exponents in the frequency domain and we compare the scal-
ing spectral exponents and the Hurst exponents. In Section 8 a Monte Carlo simu-
lation is presented. Finally some conclusions are given in Section 9.
2. Data description and studied markets

We study several financial markets which are at different development stage: ma-
ture and liquid markets, emerging and less liquid markets. Moreover, we choose
markets that deal with different instruments: equities, foreign exchange rates, fixed
income futures. In particular, the data that we analyze are: 29 Foreign Exchange
rates (FX) (see Table 1), 32 Stock Market indices (SM) (see Table 2), Treasury rates
corresponding to 12 different maturity dates (TR) (see Table 3) and Eurodollar rates
having maturity dates ranging from 3 months to 4 years (ER) (see Table 4). Here-
after we give a brief description of the time-series studied in this paper.
Table 1
Foreign Exchange rates (FX/USD)

Country FX Time period

Hong Kong HKD 1990–2001
Italy ITL 1993–2001
Philippines PHP 1991–2001
Australia AUD 1990–2001
New Zealand NZD 1990–2001
Israel ILS 1990–2001
Canada CAD 1993–2001
Singapore SGD 1990–2001
Netherlands NLG 1993–2001
Japan JPY 1990–2001
Spain ESP 1990–2001
South Korea KRW 1990–2001
Hungary HUF 1993–2001
Germany DEM 1990–2001
Switzerland CHF 1993–2001
United Kingdom GBP 1990–2001
France FRF 1993–2001
Poland PLN 1993–2001
Peru PEN 1993–2001
Turkey TRL 1992–2001
Thailand THB 1990–2001
Mexico PESO 1993–2001
Malaysia MYR 1990–2001
India INR 1990–2001
Indonesia IDR 1991–2001
Taiwan TWD 1990–2001
Russia RUB 1993–2001
Venezuela VEB 1993–2001
Brazil BRA 1993–2001



Table 2
Stock Market indices (SM)

Country SM Time period

United States Nasdaq 100 1990–2001
United States S&P 500 1987–2001
Japan Nikkei 225 1990–2001
United States Dow Jones Industrial Average (DJIA) 1990–2001
France CAC 40 1993–2001
Australia All Ordinaries (AO) 1992–2001
United Kingdom FTSE 100 1990–2001
Netherlands AEX 1993–2001
Germany DAX 1990–2001
Switzerland Swiss Market (SM) 1993–2001
New Zealand Top 30 Capital (T30C) 1992–2001
Israel Telaviv 25 (T25) 1992–2001
South Korea Seoul Composite (SC) 1990–2001
Canada Toronto SE 100 (SE 100) 1993–2001
Italy BCI 30 1993–2001
Spain IBEX 35 1990–2001
Taiwan Taiwan Weighted (TW) 1990–2001
Argentina Merval (ME) 1993–2001
Hong Kong Hang Seng (HS) 1990–2001
India Bombay SE Sensex (BSES) 1990–2001
Brazil Bovespa (BO) 1993–2001
Mexico Mexico SE (MSE) 1993–2001
Singapore All Singapore Shared (ASS) 1990–2001
Hungary Budapest BUX (BUX) 1993–2001
Poland Wig (WIG) 1991–2001
Malaysia KLSE Composite (KLSEC) 1990–2001
Thailand Bangkok SET (BSET) 1990–2001
Philippines Composite (CO) 1990–2001
Venezuela Indice de Cap. Bursatil (ICB) 1993–2001
Peru Lima SE General (LSEG) 1993–2001
Indonesia JSX Composite (JSXC) 1990–2001
Russia AK&M Composite (AK&M) 1993–2001
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FX: The Foreign Exchange rates (Table 1) are 29 daily spot rates of major curren-
cies against the US dollar. The time series that we study go from 1990 to 2001
and 1993 to 2001. These rates have been certified by the Federal Reserve Bank
of New York for customs purposes. The data are noon buying rates in New
York for cable transfers payable in the listed currencies. These rates are also
those required by the Securities and Exchange Commission (SEC) for the inte-
grated disclosure system for foreign private issuers. The information is based
on data collected by the Federal Reserve Bank of New York from a sample
of market participants.

SM: The Stock Market indices (reported in Table 2) are 32 of the major indices of
both very developed markets like the US or European markets and emerging
markets. These daily time series range from 1990 or 1993 to 2001.



Table 4
Eurodollar rates (ERi (h))

i h

1 3 months
2 6 months
3 9 months
4 12 months
5 15 months
6 18 months
7 21 months
8 24 months
9 27 months
10 30 months
11 33 months
12 36 months
13 39 months
14 42 months
15 45 months
16 48 months

Table 3
Treasury rates (TRi(h)).

i h

1 3 months
2 6 months
3 1 year
4 2 years
5 3 years
6 5 years
7 7 years
8 10 years
9 30 years
10 3 months (Bill)
11 6 months (Bill)
12 1 year (Bill)
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TR: The Treasury rates (Table 3) are daily time series going from 1990 to 2001. The
yields on Treasury securities at �constant maturity� are interpolated by the US
Treasury from the daily yield curve. This curve, which relates the yield on a
security to its time to maturity, is based on the closing market bid yields on
actively traded Treasury securities in the over-the-counter market. These mar-
ket yields are calculated from composites of quotations obtained by the FD
Bank of New York. The constant maturity yield values are read from the yield
curve at fixed maturities, currently 3 and 6 months and 1, 2, 3, 5, 7, 10, and 30
years. The Treasury bill rates are based on quotes at the official close of the US
Government securities market for each business day. They have maturities of 3
and 6 months and 1 year.
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ER: The Eurodollar interbank interest rates (Table 4) are bid rates with different
maturity dates and they are daily data in the time period 1990–1996 (Di
Matteo and Aste, 2002).
3. Theoretical framework and background

The scaling properties in time series have been studied in the literature by means
of several techniques. For the interested reader we mention here some of them such
as the seminal work Hurst (1951) on rescaled range statistical analysis R/S with its
complement (Hurst et al., 1965) and the modified R/S analysis of Lo (1991), the mul-
ti-affine analysis (Peng et al., 1994), the detrended fluctuation analysis (DFA) (Aus-
loos, 2000), the periodogram regression (GPH method) (Geweke and Porter-Hudak,
1983), the (m,k)-Zipf method (Zipf, 1949), the moving-average analysis technique
(Ellinger, 1971), the Average Wavelet Coefficient Method in Percival and Walden
(2000) and in Gençay et al. (2001), the ARFIMA estimation by exact maximum like-
lihood (ML) (Sowell, 1992) and connection to multi-fractal/multi-affine analysis (the
q order height–height correlation) have been made in various papers like (Ivanova
and Ausloos, 1999). In the financial and economic literature, many are the proposed
and used estimators for the investigation of the scaling properties. To our knowledge
there does not exist one whose performance has no deficiencies. The use of each of
the above mentioned estimators can be subject to both advantages and disadvan-
tages. For instance, simple traditional estimators can be seriously biased. On the
other hand, asymptotically unbiased estimators derived from Gaussian ML estima-
tion are available, but these are parametric methods which require a parameterized
family of model processes to be chosen a priori, and which cannot be implemented
exactly in practice for large data sets due to high computational complexity and
memory requirements (Phillips, 1999a; Phillips, 1999b; Phillips, 2001). Analytic
approximations have been suggested (Whittle estimator) but in most of the cases
(see Beran, 1994), computational difficulties remain, motivating a further approxi-
mation: the discretization of the frequency-domain integration. Even with all these
approximations the Whittle estimator remains with a significantly high overall com-
putational cost. Problems of convergence to local minima rather than to the absolute
minimum may be also encountered.

The rescaled range statistical analysis (R/S analysis) was first introduced by Hurst
to describe the long-term dependence of water levels in rivers and reservoirs. It pro-
vides a sensitive method for revealing long-run correlations in random processes.
This analysis can distinguish random time series from correlated time series and
gives a measure of a signal ‘‘roughness’’. What mainly makes the Hurst analysis
appealing is that all these information about a complex signal are contained in
one parameter only: the Hurst exponent. However, the original Hurst R/S approach
has problems in the presence of short memory, heteroskedasticity, multiple scale
behaviors. This has been largely discussed in the literature (see for instance Lo,
1991; Teverovsky et al., 1999) and several alternative approaches have been
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proposed. The fact that the range relies on maxima and minima makes also the
method error-prone to any outlier. Lo (1991) suggested a modified version of the
R/S analysis that can detect long-term memory in the presence of short-term depend-
ence (Moody and Wu, 1996). The modified R/S statistic differs from the classical R/S
statistic only in its denominator, adding some weights and co-variance estimators to
the standard deviation suggested by Newey and West (1987), and a truncation lag, q.
In the modified R/S, a problem is choosing the truncation lag q. Andrews (1991)
showed that when q becomes large relative to the sample size N, the finite-sample dis-
tribution of the estimator can be radically different from its asymptotic limit. How-
ever, the value chosen for q must not be too small, since the autocorrelation beyond
lag q may be substantial and should be included in the weighted sum. The truncation
lag thus must be chosen with some consideration of the data at hand.

In this paper we use a different and alternative method: the generalized Hurst
exponent method. We choose this type of analysis precisely because it combines
the sensitivity to any type of dependence in the data to a computationally straight
forward and simple algorithm. The main aim of this paper is to give an estimation
tool from an empirical analysis which provides a natural, unbiased, statistically
and computationally efficient, estimator of the generalized Hurst exponents. This
method, described in the following section, is first of all a tool which studies the
scaling properties of the data directly via the computation of the q-order moments
of the distribution of the increments. The q-order moments are much less sensitive
to the outliers than the maxima/minima and different exponents q are associated
with different characterizations of the multi-scaling complexity of the signal. In
the following we show that this method is robust and it captures very well the scal-
ing features of financial fluctuations. We show that through the use of a relatively
simple statistics we give a wide view of the scaling behavior across different
markets.
4. Generalized Hurst exponent

The Hurst analysis examines if some statistical properties of time series X(t) (with
t = m, 2m, . . . ,km, . . . ,T) scale with the observation period (T) and the time resolution
(m). Such a scaling is characterized by an exponent H which is commonly associated
with the long-term statistical dependence of the signal. A generalization of the ap-
proach proposed by Hurst should therefore be associated with the scaling behavior
of statistically significant variables constructed from the time series. To this purpose
we analyze the q-order moments of the distribution of the increments (Mandelbrot,
1997; Barabasi and Vicsek, 1991) which is a good characterization of the statistical
evolution of a stochastic variable X(t),

KqðsÞ ¼
hj X ðt þ sÞ � X ðtÞjqi

hj X ðtÞjqi ; ð1Þ

where the time-interval s can vary between m and smax. (Note that, for q = 2, the
Kq(s) is proportional to the autocorrelation function: a(s) = hX(t + s)X(t)i.)
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Fig. 1. Kq(s) as a function of s in a log–log scale for the Nikkei 225 time series in the time period from
1990 to 2001 (s varies from 1 day to 19 days.). Each curve corresponds to different fixed values of q ranging
from q = 1 to q = 3. In particular, the curve corresponding to q = 1 (diamond markers), the one to q = 2
(square markers) and the curve to q = 3 (circle markers) are shown.

T. Di Matteo et al / Journal of Banking & Finance 29 (2005) 827–851 835
The generalized Hurst exponent H(q) 1 can be defined from the scaling behavior
of Kq(s) (Barabasi and Vicsek, 1991), which can be assumed to follow the relation

KqðsÞ �
s
m

� �qHðqÞ
: ð2Þ

This assumption flows naturally from the result of Groenendijk et al. (1998) and has
been carefully checked to hold for the financial time series studied in this paper. For
instance, in Fig. 1, the scaling behavior of Kq(s) in agreement with Eq. (2) is shown in
the time period from 1990 to 2001 for Nikkei 225. Each curve corresponds to differ-
ent fixed values of q ranging from q = 1 to q = 3, whereas s varies from 1 day to 19
days.

Within this framework, we can distinguish between two kinds of processes: (i) a
process where H(q) = H, constant independent of q; (ii) a process with H(q) not con-
stant. The first case is characteristic of uni-scaling or uni-fractal processes and its scal-
ing behavior is determined from a unique constant H that coincides with the Hurst
exponent. This is for instance the case for self-affine processes where qH(q) is linear
(H(q) = H) and fully determined by its index H. (Recall that, a transformation is
1 We use H without parenthesis as the original Hurst exponent and H(q) as the generalized Hurst
exponent.
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called affine when it scales time and distance by different factors, while a behavior that
reproduces itself under affine transformation is called self-affine (Mandelbrot, 1997).
A time-dependent self-affine function X(t) has fluctuations on different time scales
that can be rescaled so that the original signal X(t) is statistically equivalent to its re-
scaled version k�HX(kt) for any positive k, i.e. X(t) � k�HX(k t). Brownian motion is
self-affine by nature.) In the second case, whenH(q) depends on q, the process is com-
monly called multi-scaling (or multi-fractal) and different exponents characterize the
scaling of different q-moments of the distribution.

For some values of q, the exponents are associated with special features. For in-
stance, when q = 1, H(1) describes the scaling behavior of the absolute values of the
increments. The value of this exponent is expected to be closely related to the original
Hurst exponent, H, that is indeed associated with the scaling of the absolute spread
in the increments. The exponent at q = 2, is associated with the scaling of the auto-
correlation function and is related to the power spectrum (Flandrin, 1989). A special
case is associated with the value of q = q* at which q*H(q*) = 1. At this value of q,
the moment Kq� ðsÞ scales linearly in s (Mandelbrot, 1997). Since qH(q) is in general a
monotonic growing function of q, we have that all the moments Hq(s) with q < q*
will scale slower than s, whereas all the moments with q > q* will scale faster than
s. The point q* is therefore a threshold value. In this paper we focalize the attention
on the case q = 1 and 2. Clearly in the uni-fractal case H(1) = H(2) = H(q*). Their
values will be equal to 1/2 for the Brownian motion and they would be equal to
H50.5 for the fractional Brownian motion. However, for more complex processes,
Fig. 2. The function qH(q) vs. q in the time period from 1997 to 2001: (a) JAPAN (Nikkei 225); (b)
JAPAN (JPY/USD); (c) Thailand (Bangkok SET); (d) Thailand (THB/USD); (e) Treasury rates having
maturity dates h = 10 years and (f) Eurodollar rates having maturity dates h = 1 year. For (f) the time
period is 1990–1996.
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these coefficients do not in general coincide. We thus see that the non-linearity of the
empirical function qH(q) is a solid argument against Brownian, fractional Brownian,
Lévy, and fractional Lévy models, which are all additive models, therefore giving for
qH(q) straight lines or portions of straight lines. The curves for qH (q) vs. q are re-
ported in Fig. 2 for some of the data. One can observe that, for all these time series,
qH(q) is not linear in q but slightly bending below the linear trend. The same behav-
ior holds for the other data. This is a sign of deviation from Brownian, fractional
Brownian, Lévy, and fractional Lévy models, as already seen in FX rates (Müller
et al., 1990).
5. Methodology and preparation of the data

Let us here recall that the theoretical framework we presented in the previous sec-
tion is based on the assumption that the process has the scaling property described in
Eq. (2). Moreover, we have implicitly assumed that the scaling properties associated
with a given time series stay unchanged across the observation time window T. On
the other hand, it is well known that financial time series show evidences of variation
of their statistical properties with time, and show dependencies on the observation
time window T. The simplest case which shows such a dependence is the presence

of a linear drift (g t) added to a stochastic variable ðX ðtÞ ¼ eX ðtÞ þ gtÞ with eX ðtÞ sat-
isfying Eq. (2) and the above mentioned properties of stability within the time win-
dow. Clearly, the scaling analysis described in the previous section must be applied
to the stochastic component eX ðtÞ of the process. This means that we must subtract
the drift gt from the variable eX ðtÞ. To this end one can evaluate g from the following
relation:

hX ðt þ sÞ � X ðtÞi ¼ gs: ð3Þ
Other more complex deviations from the stationary behavior might be present in the
financial data that we analyze. In this context, the subtraction of the linear drift can
be viewed as a first approximation.

Our empirical analysis is performed on the daily time series TR, ER, FX and SM
(described in Section 2) which span typically over periods between 1000 and 3000
days. In particular, we analyze the time series themselves for the TR and ER,
whereas we compute the returns from the logarithmic price X(t) = ln(P(t)) for FX
and SM. Moreover, all of these variables are �detrended� by eliminating the linear
drift (if there is one) as described in Eq. (3).

We compute the q-order moments Kq(s) (defined in Eq. (1)) of the �detrended� var-
iables and their logarithms with s in the range between m = 1 day and smax days. In
order to test the robustness of our empirical approach, for each series we analyze
the scaling properties varying smax between 5 and 19 days. We compute the 99%
confidence intervals of all the exponents using different smax values

2. The resulting
2 By using a Matlab routine, namely, normfit that computes parameter estimates and confidence
intervals for normal data.
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exponents computed using different smax are stable in their values within a range of
10%. We then verify that the scaling behavior given in Eq. (2) is well followed (see
Fig. 1) and we compute the associated generalized Hurst exponentH(q) whose values
are given in the following section. We also tested the influence of the detrending
(through Eq. (3)) calculating the generalized Hurst exponent both for the detrended
and the non-detrending time series. The results are in all cases comparable within the
standard deviations calculated varying smax.
6. Results

6.1. Computation of the generalized Hurst exponent

In this section we report and discuss the results for the scaling exponentsH(q) com-
puted for q = 1 and q = 2. These exponents H(1) and H(2) for all the assets and dif-
ferent markets (presented in Section 2) are reported in Figs. 3 and 4, respectively.
Fig. 3. (a) The Hurst exponent H(1) for the Treasury and Eurodollar rates time series in the period from
1990 to 1996; (On the x-axis the corresponding maturities dates are reported.) (b) the Hurst exponent H(1)
for the Stock Market indices and Foreign Exchange rates in the time period reported in Tables 1 and 2.
(On the x-axis the corresponding data-sets are reported.)



Fig. 4. (a) The Hurst exponent H(2) for the Treasury and Eurodollar rates time series in the period from
1990 to 1996; (On the x-axis the corresponding maturities dates are reported.) (b) the Hurst exponentH(2)
for the Stock Market indices and Foreign Exchange rates in the time period reported in Tables 1 and 2.
(On the x-axis the corresponding data-sets are reported.)
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Figs. 3(a) and 4(a) refer to the Treasury and Eurodollar rates in the time period from
1990 to 1996. Whereas Figs. 3(b) and 4(b) are relative to the StockMarket indices and
Foreign Exchange rates in the time period reported in Tables 1 and 2. The data points
are the average values ofH(1) andH(2) computed from a set of values corresponding
to different smax (between 5 and 19 days) and the error bars are their standard devi-
ations. The generalized Hurst exponents are computed through a linear least squares
fitting. We have computed the standard deviations for the two linear fit coefficients
and the correlation coefficient. It results that the standard deviations from the linear
fitting are below or equal to the reported standard deviations values computed vary-
ing smax. The correlation coefficient is never lower than 0.99.

Let us first notice that, for fixed income instruments (Figs. 3(a) and 4(a)), H(2) is
close to 0.5 while H(1) is rather systematically above 0.5 (with the 3 months Euro-
dollar rate that shows a more pronounced deviation because it is directly influenced
by the actions of central banks). On the other hand, as far as Stock markets are con-
cerned, we find that the generalized Hurst exponents H(1),H(2) show remarkable
differences between developed and emerging markets. In particular, the values of
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H(1), plotted in Fig. 3(b), present a differentiation across 0.5 with high values ofH(1)
associated with the emerging markets and low values of H(1) associated with devel-
oped ones. In Fig. 3(b) the ordering of the stock markets from left to right is chosen
in ascending order of H(1). One can see that such a ordering corresponds very much
to the order one would intuitively give in terms of maturity of the markets. More-
over, we can see from Fig. 4(b) that the different assets can be classified into three
different categories:

1. First those that have an exponent H(2) > 0.5 which includes all indices of the
emerging markets and the BCI 30 (Italy), IBEX 35 (Spain) and the Hang Seng
(Hong Kong).

2. A second category concerns the data exhibiting H(2) � 0.5 (within the error bars).
This category includes: FTSE 100 (UK), AEX (Netherlands), DAX (Germany),
Swiss Market (Switzerland), Top 30 Capital (New Zealand), Tel Aviv 25 (Israel),
Seoul Composite (South Korea) and Toronto SE 100 (Canada).

3. A third category is associated with H(2) < 0.5 and includes the following data:
Nasdaq 100 (US), S&P 500 (US), Nikkei 225 (Japan), Dow Jones Industrial Aver-
age (US), CAC 40 (France) and All Ordinaries (Australia).

We find therefore that all the emerging markets have H(2) P 0.5 whereas all the
well developed have H(2) 6 0.5. This simple classification is not achieved by other
means. One could, for instance use the Sharpe Ratio (Sharpe, 1994) we have tried
it but it does not achieve such a clear cut categorization. This ratio requires a bench-
mark risk free return that is not always available for emerging markets. We have
tried the classification obtained from a simple ratio of the average returns of their
standard deviations but the ordering is not conclusive.

We find that the Foreign Exchange rates show H(1) > 0.5 quite systematically.
This is consistent with previous results computed with high frequency data (Müller
et al., 1990), although the values here are slightly lower. An exception with pro-
nounced H(1) < 0.5 is the HKD/USD (Hong Kong) (Fig. 3(b)). This FX rate is,
or has been, at one point pegged to the USD, that is why its exponent differs from
the others. Whereas in the class H(1) � 0.5 we have: ITL/USD (Italy), PHP/USD
(Philippines), AUD/USD (Australia), NZD/USD (New Zealand), ILS/USD (Israel),
CAD /USD (Canada), SGD/USD (Singapore), NLG/USD (Netherlands) and JPY/
USD (Japan). On the other hand, the values of H(2) (Fig. 4(b)) show a much larger
tendency to be <0.5 with some stronger deviations such as: HKD/USD (Hong
Kong), PHP/USD (Philippines), KRW/USD (South Korea), PEN/USD (Peru)
and TRL/USD (Turkey). Whereas values of H(2) > 0.5 are found in: GBP/USD
(United Kingdom), PESO/USD (Mexico), INR/USD (India), IDR/USD (Indone-
sia), TWD/USD (Taiwan) and BRA/USD (Brazil).

6.2. Checking the temporal and numerical stability of the results

In order to check the temporal stability of the results, these analysis are per-
formed also over different time periods and the values of the exponents H(1) and



Table 5
Hurst exponents H(1) and H(2) and averaged b values computed for random walks simulated by using
three different random numbers generators: (1) Randn = normally distributed random numbers with mean
0 and variance 1; (2) Rand = uniformly distributed random numbers in the interval (0,1) and (3)
Normrnd = random numbers from the normal distribution with mean 0 and standard deviation 1

N H(1) H(2) b

(1) Randn

991 0.50 ± 0.01 0.50 ± 0.01 1.8 ± 0.1
3118 0.50 ± 0.01 0.50 ± 0.01 1.80 ± 0.03

(2) Rand

991 0.47 ± 0.01 0.49 ± 0.01 1.8 ± 0.1
3118 0.47 ± 0.01 0.50 ± 0.01 1.80 ± 0.03

(3) Normrnd

991 0.49 ± 0.01 0.49 ± 0.01 1.8 ± 0.1
3118 0.50 ± 0.01 0.50 ± 0.01 1.80 ± 0.03

These are average values on 100 simulations of random walks with 991 and 3118 numbers of data
points.
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H(2) are reported in Table 6 for the time period from 1997 to 2001 for Foreign Ex-
change rates, Stock Market indices and Treasury rates. These results should be com-
pared with those obtained on the whole time period (shown in Table 2) and to time
periods of 250 days. Moreover, we tested the numerical robustness of our results by
using the Jackknife method (Kunsch, 1989) which consists of taking out randomly
1/10 of the sample and iterates the procedure 10 times (every time taking out data
which were not taken out in the previous runs). On one hand, we observe (see Fig. 5)
that the generalized Hurst exponents computed on these Jackknife-reduced time ser-
ies are very close to those computed on the entire series with deviations inside the
errors estimated by varying smax (as described in Section 5). This indicates a strong
numerical stability. On the other hand, the analysis on sub-periods of 250 days
shows fluctuations that are larger than the previous estimated errors (and larger
than the variations with the Jackknife method) indicating therefore that there are
significant changes in the market behaviors over different time periods (Fig. 5(a)).
This phenomenon was also detected in (Dacorogna et al., 2001a) when studying ex-
change rates that were part of the European Monetary System. It seems that H(1) is
particularly sensitive to institutional changes in the market. The scaling exponents
cannot be assumed to be constant over time if a market is experiencing major insti-
tutional changes. Nevertheless, well developed markets have values of H(2) that are
on average smaller than the emerging ones and the weakest markets have oscillation
bands that stay above 0.5 whereas the strongest have oscillation bands that contain
0.5.

Numerical stability gives us confidence in our method for determining the expo-
nent and temporal variability is a sign that the exponents are sensitive to institutional
changes in the market reinforcing our idea to use them as indicators of the maturity
of the market.



Table 6
Hurst exponents H(1) and H(2) for Foreign Exchange rates, Stock Market indices and Treasury rates in
the time period from 1997 to 2001.

Data H(1) H(2)

Foreign Exchange rates

HKD 0.41 ± 0.01 0.34 ± 0.01
ITL 0.51 ± 0.01 0.51 ± 0.01
PHP 0.52 ± 0.01 0.43 ± 0.02
AUD 0.52 ± 0.01 0.502 ± 0.002
NZD 0.49 ± 0.01 0.48 ± 0.01
ILS 0.48 ± 0.02 0.47 ± 0.02
CAD 0.51 ± 0.01 0.48 ± 0.01
SGD 0.50 ± 0.01 0.47 ± 0.03
NLG 0.51 ± 0.01 0.51 ± 0.01
JPY 0.50 ± 0.01 0.49 ± 0.01
ESP 0.50 ± 0.01 0.49 ± 0.01
KRW 0.50 ± 0.03 0.39 ± 0.06
HUF 0.52 ± 0.01 0.52 ± 0.01
DEM 0.51 ± 0.01 0.51 ± 0.01
CHF 0.51 ± 0.01 0.50 ± 0.01
GBP 0.50 ± 0.02 0.48 ± 0.02
FRF 0.51 ± 0.01 0.51 ± 0.01
PLN 0.54 ± 0.01 0.50 ± 0.01
PEN 0.52 ± 0.01 0.41 ± 0.03
TRL 0.56 ± 0.01 0.44 ± 0.04
THB 0.53 ± 0.01 0.50 ± 0.02
PESO 0.53 ± 0.01 0.50 ± 0.01
MYR 0.51 ± 0.03 0.45 ± 0.05
INR 0.58 ± 0.02 0.53 ± 0.01
IDR 0.56 ± 0.03 0.53 ± 0.03
TWD 0.58 ± 0.01 0.51 ± 0.01
RUB 0.64 ± 0.02 0.47 ± 0.03
VEB 0.54 ± 0.04 0.49 ± 0.02
BRA 0.59 ± 0.02 0.60 ± 0.01

Stock Market indices

Nasdaq 100 0.47 ± 0.01 0.45 ± 0.01
S&P 500 0.47 ± 0.02 0.44 ± 0.01
Nikkei 225 0.46 ± 0.01 0.43 ± 0.01
DJIA 0.49 ± 0.01 0.464 ± 0.004
CAC40 0.47 ± 0.02 0.46 ± 0.02
AO 0.49 ± 0.02 0.46 ± 0.03
FTSE 100 0.46 ± 0.02 0.44 ± 0.01
AEX 0.49 ± 0.01 0.47 ± 0.02
DAX 0.50 ± 0.01 0.47 ± 0.01
SM 0.50 ± 0.02 0.48 ± 0.02
T30C 0.49 ± 0.01 0.46 ± 0.01
T25 0.53 ± 0.01 0.51 ± 0.01
SC 0.53 ± 0.01 0.51 ± 0.01
SE 100 0.51 ± 0.01 0.48 ± 0.01
BCI 30 0.52 ± 0.01 0.48 ± 0.01
IBEX 35 0.50 ± 0.01 0.48 ± 0.01
TW 0.53 ± 0.01 0.51 ± 0.01
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Table 6 (continued)

Data H(1) H(2)

ME 0.57 ± 0.01 0.53 ± 0.01
HS 0.53 ± 0.01 0.49 ± 0.01
BSES 0.54 ± 0.01 0.52 ± 0.01
BO 0.51 ± 0.01 0.48 ± 0.01
MSB 0.57 ± 0.01 0.52 ± 0.01
ASS 0.57 ± 0.01 0.54 ± 0.02
BUX 0.52 ± 0.01 0.49 ± 0.01
WIG 0.49 ± 0.01 0.44 ± 0.01
KLSEC 0.60 ± 0.01 0.51 ± 0.02
BSET 0.59 ± 0.01 0.55 ± 0.01
CO 0.59 ± 0.01 0.54 ± 0.01
ICB 0.61 ± 0.02 0.55 ± 0.02
LSEG 0.61 ± 0.01 0.58 ± 0.01
JSXC 0.57 ± 0.02 0.53 ± 0.02
AK&M 0.65 ± 0.03 0.51 ± 0.01

Treasury rates

TR1 0.48 ± 0.01 0.44 ± 0.02
TR2 0.55 ± 0.01 0.52 ± 0.02
TR3 0.54 ± 0.01 0.52 ± 0.02
TR4 0.53 ± 0.01 0.52 ± 0.02
TR5 0.52 ± 0.01 0.50 ± 0.01
TR6 0.51 ± 0.02 0.49 ± 0.01
TR7 0.49 ± 0.02 0.48 ± 0.01
TR8 0.52 ± 0.01 0.50 ± 0.02
TR9 0.51 ± 0.01 0.48 ± 0.01
TR10 0.51 ± 0.01 0.48 ± 0.02
TR11 0.56 ± 0.01 0.54 ± 0.02
TR12 0.55 ± 0.01 0.53 ± 0.02
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7. Scaling exponents in the frequency domain

7.1. Spectral analysis

In order to empirically investigate the statistical properties of the time series in the
frequency domain we perform a spectral analysis computing the power spectral den-
sity (PSD) (Kay and Marple, 1981) by using the periodogram approach, that is cur-
rently one of the most popular and computationally efficient PSD estimator. This is a
sensitive way to estimate the limits of the scaling regime of the data increments. The
results for some SM data in the time periods 1997–2001 are shown in Fig. 6. For SM
we compute the power spectra of the logarithm of these time series. As one can see
the power spectra show clear power law behaviors: S(f) � f�b. This behavior holds
for all the other data.

The non-stationary features have been investigated by varying the window-size
on which the spectrum is calculated from 100 days up to the entire size of the time
series. The power spectra coefficients b are calculated through a mean square
regression in log–log scale. The values reported in Fig. 7 are the average of the



Fig. 5. (a) The generalized Hurst exponent H(1) for the Stock Market indices in the whole time period
(see Table 2) with its variation (black lines) obtained by using the Jackknife method and its variation
(dashed lines) when time periods of 250 days are considered; (b) the generalized Hurst exponent H(2)
for the Stock Market indices in the whole time period (see Table 2) with its variation (black lines)
obtained by using the Jackknife method. The square points are the average values of H(1) and H(2)
computed from a set of values corresponding to different smax. The error bars are their standard
deviations.
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evaluated b over different windows and the error bars are their standard deviations.
Fig. 7(a) refers to a time period between 1990 and 1996 whereas the Stock Market
indices and Foreign Exchange rates (Fig. 7(b)) are analyzed over the time periods
reported in Tables 1 and 2. Moreover, the averaged b values in a different time per-
iod, namely from 1997 to 2001 are reported in Table 7 for Foreign Exchange rates,
Stock Market indices and Treasury rates. These values differ from the spectral den-
sity exponent expected for a pure Brownian motion (b = 2). However, we will show
in Section 8 that this method is biased and we indeed found power spectra expo-
nents around 1.8 for random walks using three different random numbers
generators.
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Fig. 6. The power spectra of the Stock Market indices compared with the behavior of f�2H(2)�1 (straight
lines in log-log scale) computed using the Hurst exponents values in the time period 1997–2001: (a)
Thailand (Bangkok SET) and (b) JAPAN (Nikkei 225). The line is the prediction from the generalized
Hurst exponent H(2) (Eq. (4)).
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It must be noted that, the power spectrum is only a second-order statistic and its
slope is not enough to validate a particular scaling model: it gives only partial infor-
mation about the statistics of the process.



Fig. 7. (a) The averaged b values computed from the power spectra (mean square regression) of the
Treasury and Eurodollar rates time series in the period from 1990 to 1996; (On the x-axis the
corresponding maturities dates are reported.) (b) the averaged b values computed from the power spectra
of the Stock Market indices and Foreign Exchange rates in the time period reported in Tables 1 and 2. The
horizontal gray line corresponds to the value of b obtained from the simulated random walks reported in
Table 5. (On the x-axis the corresponding data-sets are reported.)
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7.2. Scaling spectral density and Hurst exponent

For financial time series, as well as for many other stochastic processes, the spec-
tral density S(f ) is empirically found to scale with the frequency f as a power law:
S(f ) / f�b as already stated in the previous section. Here we use a simple argument
to show how this scaling in the frequency domain should be related to the scaling in
the time domain. Indeed, it is known that the spectrum S(f) of the signal X(t) can be
conveniently calculated from the Fourier transform of the autocorrelation function
(Wiener–Khinchin theorem). On the other hand, the autocorrelation function of X(t)
is proportional to the second moment of the distribution of the increments which,
from Eq. (2), is supposed to scale as K2 � s2H(2). But, the components of the Fourier
transform of a function which behaves in the time domain as sa are proportional to
f�a�1 in the frequency domain. Therefore, we have that the power spectrum of a sig-
nal that scales as Eq. (2) must behave as
Sðf Þ / f �2Hð2Þ�1: ð4Þ



Table 7
The averaged b values computed from the power spectra of the Foreign Exchange rates, Stock Market
indices and Treasury rates in the time period from 1997 to 2001

Data Averaged b

Foreign Exchange rates

HKD 1.6 ± 0.2
ITL 1.80 ± 0.03
PHP 1.8 ± 0.1
AUD 1.8 ± 0.1
NZD 1.8 ± 0.1
ILS 1.8 ± 0.1
CAD 1.80 ± 0.03
SGD 1.81 ± 0.02
NLG 1.81 ± 0.04
JPY 1.9 ± 0.1
ESP 1.80 ± 0.04
KRW 1.8 ± 0.1
HUF 1.80 ± 0.03
DEM 1.81 ± 0.03
CHF 1.8 ± 0.1
GBP 1.79 ± 0.03
FRF 1.81 ± 0.04
PLN 1.79 ± 0.04
PEN 1.6 ± 0.2
TRL 1.7 ± 0.1
THB 1.83 ± 0.03
PESO 1.81 ± 0.04
MYR 1.8 ± 0.1
INR 1.8 ± 0.1
IDR 1.83 ± 0.04
TWD 1.8 ± 0.1
RUB 2.1 ± 0.3
VEB 1.8 ± 0.1
BRA 2.0 ± 0.2

Stock Market indices

Nasdaq 100 1.7 ± 0.1
S&P 500 1.8 ± 0.1
Nikkei 225 1.8 ± 0.1
DJIA 1.80 ± 0.03
CAC40 1.8 ± 0.1
AO 1.8 ± 0.1
FTSE 100 1.81 ± 0.03
AEX 1.8 ± 0.1
DAX 1.8 ± 0.1
SM 1.8 ± 0.1
T30C 1.8 ± 0.1
T25 1.9 ± 0.1
SC 1.9 ± 0.1
SE 100 1.9 ± 0.1
BCI 30 1.9 ± 0.1
IBEX 35 1.8 ± 0.1
TW 1.9 ± 0.1

(continued on next page)
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Table 7 (continued)

Data Averaged b

ME 1.8 ± 0.1
HS 1.8 ± 0.1
BSES 1.82 ± 0.03
BO 1.80 ± 0.02
MSB 1.9 ± 0.1
ASS 1.9 ± 0.1
BUX 1.82 ± 0.04
WIG 1.8 ± 0.1
KLSEC 1.8 ± 0.1
BSET 1.9 ± 0.1
CO 2.0 ± 0.2
ICB 2.0 ± 0.2
LSEG 2.0 ± 0.2
JSXC 1.9 ± 0.1
AK&M 1.9 ± 0.2

Treasury rates

TR1 1.8 ± 0.1
TR2 1.83 ± 0.04
TR3 1.86 ± 0.05
TR4 1.88 ± 0.06
TR5 1.9 ± 0.1
TR6 1.9 ± 0.1
TR7 1.9 ± 0.1
TR8 1.9 ± 0.1
TR9 1.8 ± 0.1
TR10 1.82 ± 0.04
TR11 1.85 ± 0.04
TR12 1.9 ± 0.1
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Consequently, the slope b of the power spectrum is related to the generalized Hurst
exponent for q = 2 through: b = 1 + 2H(2). Note that Eq. (4) is obtained only
assuming that the signal X(t) has a scaling behavior in accordance to Eq. (2) without
making any hypothesis on the kind of underlying mechanism that might lead to such
a scaling behavior.

We here compare the behavior of the power spectra S(f) with the function
f�2H(2)�1 which – according to Eq. (4) – is the scaling behavior expected in the fre-
quencies domain for a time series which scales in time with a generalized Hurst expo-
nent H(2). We performed such a comparison for all the financial data and we report
in Fig. 6 those for Stock Market indices for Thailand and Japan (in the time period
1997–2001). As one can see the agreement between the power spectra behavior and
the prediction from the generalized Hurst analysis is very satisfactory. This result
holds also for all the other data. Note that the values of 2H(2) + 1 do not in general
coincide with the values of the power spectral exponents evaluated by means of the
mean square regression. The method through the generalized Hurst exponent ap-
pears to be more powerful in catching the scaling behavior even in the frequency
domain.
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8. Monte Carlo test of the method

In the literature, the scaling analysis has been criticized for being biased. In order
to test that our method is not biased we estimate the generalized Hurst exponents for
simulated random walks. We produce synthetic time series by using three different
random number generators. We perform 100 simulations of random walks with
the same number of data points as in our samples (991 and 3118) and estimate
the generalized Hurst exponents H(1) and H(2) and the power spectra exponents
b. The results are reported in Table 5.

In all the cases, H(1) and H(2) have values of 0.5 within the errors. Only when we
consider uniformly distributed random numbers in the interval (0,1) (Rand which
uses a lagged Fibonacci generator combined with a shift register random integer gen-
erator, based on the work of Marsaglia (Marsaglia and Zaman, 1994).) we obtain for
H(1) of 0.47 ± 0.01, but also in this case H(2) is 0.5 within the errors. On one hand,
this shows that our method is powerful and robust and is not biased as other meth-
ods are. On the other hand, the estimations of b from the power spectrum have val-
ues around 1.8 (instead of 2), showing therefore that this other method is affected by
a certain bias.
9. Conclusion

By applying the same methodology to a wide variety of markets and instruments
(89 in total), this study confirms that empirical scaling behaviors are rather universal
across financial markets. By analyzing the scaling properties of the q-order moments
(Eq. (1)) we show that the generalized Hurst exponent H(q) (Eq. (2)) is a powerful
tool to characterize and differentiate the structure of such scaling properties. Our
study also confirms that qH(q) exhibits a non-linear dependence on q which is a clear
signature of deviations from pure Brownian motion and other additive or uni-scaling
models.

The novelty of this work resides in the empirical analysis across a wide variety of
stock indices that shows the sensitivity of the exponent H(2) to the degree of devel-
opment of the market. At one end of the spectrum, we find: the Nasdaq 100 (US), the
S&P 500 (US), the Nikkei 225 (Japan), the Dow Jones Industrial Average (US), the
CAC 40 (France) and the All Ordinaries index (Australia); all with H(2) < 0.5.
Whereas, at the other end, we find the Russian AK&M, the Indonesian JSXC, the
Peruvian LSEG, etc. (Fig. 4(b)); all with H(2) > 0.5. Moreover, we observe emerging
structures in the scaling behaviors of interest rates and exchange rates that are re-
lated to specific conditions of the markets. For example, a strong deviation of the
scaling exponent for the 3 months maturity, which is strongly influenced by the cen-
tral bank decisions. This sensitivity of the scaling exponents to the market conditions
provides a new and simple way of empirically characterizing the development of
financial markets. Other methods usually used for controlling risk, like standard
deviation or Sharpe Ratio are not able to provide such a good classification. The
robustness of the present empirical approach is tested in several ways: by first
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comparing theoretical exponents with the results of Monte Carlo simulations using
three distinct random generators, second by varying the maximum time-step (smax)
in the analysis, third by applying the Jackknife method to produce several samples,
fourth by varying the time-window sizes to analyze the temporal stability and fifth by
computing results for detrended and non-detrending time series. We verify that the
observed differentiation among different degrees of market development is clearly
emerging well above the numerical fluctuations. Finally, from the comparison be-
tween the empirical power spectra and the prediction from the scaling analysis
(Eq. (4), Fig. 6) we show that the method through the generalized Hurst exponent
describes well the scaling behavior even in the frequency domain.
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