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Preface

In 1991, I finished writing a book entitled, Chaos and Order in the Capital
Markets. It was published in the Fall of that year (Peters, 199 Ia). My goal was
to write a conceptual introduction, for the investment community, to chaos the-
ory and fractal statistics. I also wanted to present some preliminary evidence
that, contrary to accepted theory, markets are not well-described by the ran-
dom walk model, and the widely taught Efficient Market HypOthesis (EMH) is
not well-supported by empirical evidence.

I have received, in general, a very positive response to that book. Many
readers have communicated their approval—and some, their disapproval—and
have asked detailed questions. The questions fell into two categories: (I) tech-
nical, and (2) conceptual. In the technical category were the requests for more
detail about the analysis. My book had not been intended to be a textbook, and
I had glossed over many technical details involved in the analysis. This ap-
proach improved the readability of the book, but it left many readers wonder-
ing how to proceed.

In the second category were questions concerned with conceptual issues. If
the EMH is flawed, how can we fix it? Or better still, what is a viable replace-
ment? How do chaos theory and fractals fit in with trading strategies and with
the dichotomy between technical and fundamental analysis? Can these seem-
ingly disparate theories be united? Can traditional theory become nonlinear?

In this book, Lam addressing both categories of questions. This book is differ-
ent from the previous one, but it reflects many similar features. Fractal Market
Analysis is an attempt to generalize Capital Market Theory (CMT) and to ac-
count for the diversity of the investment community. One of the failings of tradi-
tional theory is its attempt to simplify "the market" into an average prototypical

VI'
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viii Preface Preface —
ix

rational investor. The reasons for setting out on this route were noble. In the tradi-
tion of Western science, the founding fathers of CMT attempted to learn some-
thing about the whole by breaking down the problem into its basic components.
That attempt was successful. Because of the farsighted work of Markowitz,
Sharpe, Fama, and others, we have made enormous progress over the past 40 years.

However, the reductionist approach has its limits, and we have reached them.
It is time to take a more holistic view of how markets operate. In particular, it is
time to recognize the great diversity that underlies markets. All investors do not
participate for the same reason, nor do they work their strategies over the same
investment horizons. The stability of markets is inevitably tied to the diversity
of the investors. A mature" market is diverse as well as old. If all the partici-
pants had the same investment horizon, reacted equally to the same information,
and invested for the same purpose, instability would reign. Instead, over the long
term, mature markeis have remarkable stability. A day trader can trade anony-
mously with a pension fund: the former trades frequently for short-term gains;
the latter trades infrequently for long-term financial security. The day trader re-
acts to technical trends; the pension fund invests based on long-term economic
growth potential. Yet, each participates simultaneously and each diversifies the
other. The reductionist approach, with its rational investor, cannot handle this
diversity without complicated multipart models that resemble a Rube Goldberg
contraption. These models, with their multiple limiting assumptions and restric-
tive requirements, inevitably fail. They are so complex that they lack flexibility,
and flexibility is crucial to any dynamic system.

The first purpose of this book is to introduce the Fractal Market Hypothesis—
a basic reformulation of how, and why, markets function. The second purpose of
the book is to present tools for analyzing markets within the fractal framework.
Many existing tools can be used for this purpose. I will present new tools to add to
the analyst's toolbox, and will review existing ones.

This book is not a narrative, although its primary emphasis is still concep-
tual. Within the conceptual framework, there is a rigorous coverage of analyti-
cal techniques. As in my previous book, I believe that anyone with a firm
grounding in business statistics will find much that is useful here. The primary
emphasis is not on dynamics, but on empirical statistics, that is, on analyzing
time series to identify what we are dealing with.

THE STRUCTURE OF THE BOOK

The book is divided into five parts, plus appendices. The final appendix con-
tains fractal distribution tables. Other relevant tables, and figures coordinated

to the discussion, are interspersed in the text. Each part builds on the previous
parts, but the book can be read nonsequentially by those familiar with the con-
cepts of the first book.

Part One: Fractal Time Series

Chapter 1 introduces fractal time series and defines both spatial and temporal
fractals. There is a particular emphasis on what fractals are, conceptually and
physically. Why do they seem counterintuitive, even though fractal geometry is
much closer to the real world than the Euclidean geometry we all learned in
high school? Chapter 2 is a brief review of Capital Market Theory (CMT) and
of the evidence of problems with the theory. Chapter 3 is, in many ways, the
heart of the book: I detail the Fractal Market Hypothesis as an alternative to
the traditional theory discussed in Chapter 2. As a Fractal Market Hypothesis,
it combines elements of fractals from Chapter 1 with parts of traditional CMT
in Chapter 2. The Fractal Market Hypothesis sets the conceptual framework
for fractal market analysis.

Part Two: Fractal (R/S) Analysis

Having defined the problem in Part One, I offer tools for analysis in Part
Two—in particular, rescaled range (RIS) analysis. Many of the technical
questions I received about the first book dealt with R/S analysis and re-
quested details about calculations and significance tests. Parts Two and
Three address those issues. R/S analysis is a robust analysis technique for un-
covering long memory effects, fractal statistical structure, and the presence
of cycles. Chapter 4 surveys the conceptual background of R/S analysis and
details how to apply it. Chapter 5 gives both statistical tests for judging the
significance of the results and examples of how R/S analysis reacts to known
stochastic models. Chapter 6 shows how R/S analysis can be used to uncover
both periodic and nonperiodic cycles.

Part Three: Applying Fractal Analysis

Through a number of case studies, Part Three details how R/S analysis tech-
niques can be used. The studies, interesting in their own right, have been se-
lected to illustrate the advantages and disadvantages of using RIS analysis on
different types of time series and different markets. Along the way, interesting
things will be revealed about tick data, market volatility, and how currencies are
different from other markets.
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Preface Preface

Part Four: Fractal Noise

Having used R/S analysis to find evidence to support the Fractal Market Hy-
pothesis, 1 supply models to explain those findings. Part Four approaches market
activity from the viewpoint of stochastic processes; as such, it concentrates on
fractal noise. In Chapter 13, using R/S analysis, different "colored" noises are
analyzed and compared to the market analysis. The findings are remarkably
similar. In addition, the behavior of volatility is given a significant explanation.
Chapter 14 discusses the statistics of fractal noise processes, and offers them as
an alternative to the traditional Gaussian normal distribution. The impact of
fractal distributions on market models is discussed. Chapter 15 shows the im-
pact of fractal statistics on the portfolio selection problem and option pricing.
Methods for adapting those models for fractal distributions are reviewed.

Part Four is a very detailed section and will not be appropriate for all readers.
However, because the application of traditional CMT has become ingrained into
most of the investment community, I believe that most readers should read the
summary sections of each chapter, if nothing else, in Part Four. Chapter 13, with
its study of the nature of volatility, should be of particular interest.

While reading the book, many of you will wonder, where is this leading?
Will this help me make money? This book does not offer new trading tech-
niques or find pockets of inefficiency that the savvy investor can profit from.
It is not a book of strategy for making better predictions. Instead, it offers a
new view of how markets work and how to test time series for predictability.
More importantly, it gives additional information about the risks investors
take, and how those risks change over time. If knowledge is power, as the old
cliché goes, then the information here should be conducive, if not to power, at
least to better profits.

Concord, Massachusetts

EDGAR E. PETERS

Part Five: Noisy Chaos

Part Five offers a dynamical systems alternative to the stochastic processes of
Part Four. In particular, it offers noisy chaos as a possible explanation of the frac-
tal structure of markets. Chapter 16, which gives R/S analysis of chaotic sys-
tems, reveals remarkable similarities with market and other time series. A
particular emphasis is placed on distinguishing between fractal noise and noisy
chaos. A review is given of the BDS (Brock—Dechert—Scheinkman) test, which,
when used in conjunction with R/S analysis, can give conclusive evidence
way or the other. Chapter 17 applies fractal statistics to noisy chaos, reconciling
the two approaches. An explanation is offered for why evidence of both fractal
noise and noisy chaos can appear simultaneously. The result is closely tied to the
Fractal Market Hypothesis and the theory of multiple investment horizons.

Chapter 18 is a review of the findings on a conceptual level. This final
chapter unites the Fractal Market Hypothesis with the empirical work and
theoretical models presented throughout the book. For readers who under-
stand a problem better when they know the solution, it may be appropriate to
read Chapter 18 first.

The appendices offer software that can be used for analysis and reproduce
tables of the fractal distributions.
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1

Introduction to Fractal
Time Series

Western culture has long been obsessed by the smooth and symmetric. Not all
cultures are similarly obsessed, but the West (meaning European derived) has
long regarded perfect forms as symmetric, smooth, and whole. We look for
patterns and symmetry everywhere. Often, we impose patterns where none ex-
ists, and we deny patterns that do not conform to our overall conceptual frame-
work. That is, when patterns are not symmetrical and smooth, we classify
them as illusions.

This conflict can be traced back to the ancient Greeks. To describe our
physical world, they created a geometry based on pure, symmetric, and smooth
forms. Plato said that the "real" world consisted of these shapes. These forms
were created by a force, or entity, called the "Good." The world of the Good
could be glimpsed only occasionally, through the mind. The world we inhabit
is an imperfect copy of the real world, and was created by a different entity,
called the "Demiurge." The Demiurge, a lesser being than the Good, was
doomed to create inferior copies of the real world. These copies were rough,
asymmetric, and subject to decay. In this way, Plato reconciled the inability of
the Greek geometry, later formalized by Euclid, to describe our world. The
problem was not with the geometry, but with our world itself.

3
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FRACTAL SPACE

Fractal geometry is the geometry of the Demiurge. Unlike Euclidean geome-

try, it thrives on roughness and asymmetry. Objects are not variations on a few

perfect and symmetrical forms, but are infinitely complex. The more closely

they are examined, the more detail is revealed. For example, a tree is a fractal
form. Imagine a pine tree like the Douglas fir, commonly used for Christmas

trees. Children often draw Douglas firs as triangles (the branches) with

rectangular bases (the tree trunks), giving the trees as much symmetry as pos-
sible. Logos of Christmas trees have the same appearance or may substitute

cones for the triangles. Yet, Douglas firs are not triangles or cones. They are a

network of branches qualitatively similar to the shape of the overall tree, but

each individual branch is different. The branches on branches (successive gen-
erations of branches) become progressively smaller. Yet, within each genera-
tion there is actually a range of sizes. And, each tree is different.

Euclidean geometry cannot replicate a tree. Using Euclidean geometry, we

can create an approximation of a tree, but it always looks artificial, like a
child's drawing or a logo. Euclidean geometry recreates the perceived symme-

try of the tree, but not the variety that actually builds its structure. Underlying

this perceived symmetry is a controlled randomness, and increasing complex-

ity at finer levels of resolution. This "self-similar" quality is the defining char-
acteristic of fractals. Most natural structures, particularly living things, have

this characteristic.
A second problem, when we apply Euclidean geometry to our world, is one

of dimensionality. We live in a three-dimensional space, but only solid forms

are truly three-dimensional, according to the definitions that are the basis of

Euclidean geometry. In mathematical terms, an object must be differentiable

across its entire surface. A wiffle ball, for instance, is not a three-dimensitmal
object, although it resides in a three-dimensional space.

In addition, our perception of dimension can change, depending on our dis-

tance from an object. From a distance, a Douglas fir looks like a two-dimensional
triangle. As we come closer, it appears as a three-dimensional cone. Closer still,

we can see its branches, and it looks like a network of one-dimensional lines.
Closer examination reveals the branches as three-dimensional tubes. Euclidean

geometry also has difficulty with the dimensionality of creations of the
Demiurge and with increasing complexity. By contrast, Euclidean structures be-

come simpler at smaller and smaller scales. The three-dimensional solid re-

duces to a two-dimensional plane. The two-dimensional plane is made up of one-

dimensional lines and, finally, nondimensional points. Our perception of the
tree, on the other hand, went from two-dimensional to three-dimensional to

one-dimensional, and back to three-dimensional. This is different from the
Euclidean perception.

Euclidean geometry is only useful as a gross simplification of the world of
the Demiurge. Fractal geometry, by contrast, is characterized by self-similarity
and increased complexity under magnification. Its major application as a geome-
try of space has been in generating realistic looking landscapes via computers.

The Derniurge created not only fractal space but fractal time as well. Al-
though our primary focus will be on fractal time series, fractal space will help

us understand fractal time. We will see the difference between the smoothness
of the Euclidean world and the roughness of our world, which limits the useful-
ness of Euclid's geometry as a method of description.

FRACTAL TIME

This conflict between the symmetry of Euclidean geometry and the asymme-
try of the real world can be further extended to our concept of time. Tradition-
ally, events are viewed as either random or deterministic. In the deterministic
view, all events through time have been fixed from the moment of creation.
This view has been given a theological basis by denominations such as the
Calvinists, and scientific endorsement by certain "big bang" theorists. In con-
trast, nihilist groups consider all events to be random, deriving from no struc-
ture or order through time.

In fractal time, randomness and determinism, chaos and order coexist. In
fractal shapes, we see a physical representation of how these opposites work
together. The pine tree has global structure and local randomness. In general,
we know what a pine tree looks like, and we can predict the general or global

shape of any pine tree with a high degree of accuracy. However, at the individ-
ual branch level, each branch is different. We do not know how long it is, or its

diameter. Each tree is different, but shares certain global properties. Each has
local randomness and global determinism. In this section, we will examine
how the concept of fractal time evolved, and what it means.

Most cultures favor the deterministic view of time. We like to think that
we have a place in the universe, that we have a destiny. Yet, we see random,
catastrophic events thatcan thwart us from fulfilling our purpose. Natural dis-
asters can destroy our environment. Economic disasters can take what we own.
Individuals we do not know can rob us of our lives, by accident or with malice.
Conversely, good fortune can arrive by being at the right place at the right
time. A chance meeting can open new doors. Picking the right lottery numbers
can bring us a fortune.
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Great events also seem to rest on chance. Newton saw an object falling (leg-
end says it was an apple) and formulated the calculus and the laws of gravity.
Fleming left a petri dish exposed and discovered penicillin. Darwin decided to
go on a voyage and formulated a theory of evolution because of his experiences
on the journey.

These and similar events seemed to happen by chance, and they changed his-
tory. Yet, the calculus independently of Newton, at almost the
same time—in fact, we use Liebnez's notation. Wallace developed the theory of
natural selection independently of Darwin, though later. Because of a paper by
Wallace, Darwin found the energy to write Origin of Species so he would receive
credit as the theory's original developer. In our own field of financial economics,
what is known as the Capital Asset Pricing Model (CAPM) was developed inde-
pendently by no fewer than three people—Sharpe (1964), Lintner (1965), and
Mossin (1966)—at almost the same time. This would imply that these discoveries
were meant to happen. History demanded it. It was their destiny.

It has been difficult to reconcile randomness and order, chance and neces-
sity, or free will and determinism. Is this dichotomy once again the Demiurge
imperfectly copying the Good?

Events are perceived as either random, and therefore unpredictable, or de-
terministic, and perfectly predictable. Until the beginning of this century, it
was generally accepted that the universe ran like a clock. Eventually, scientists
were to discover the equations underlying the universe, and become able to pre-
dict its eventual course. Time was of no consequence in Newtonian mechanics;
theoretically, time could be reversed, because Newton's equations worked fine
whether time ran forward or backward. Irreversible time, the first blow to this
deterministic view, came in the mid-I9th century from the emerging field of
thermodynamics.

Thermodynamics began as the study of heat waste produced by machines. It
was some time before thermodynamics, an applied science, was taken seriously
by scientists. The initial study focused on how energy is converted into useful
work. In a system such as the steam engine, steam turns wheels and performs
a function such as powering a boat's paddle wheel. Not all the energy produced
is converted into work. Some is lost or is dissipated as friction. The study of
these "dissipative systems" eventually grew to include fluid dynamics. Fluid
dynamics, which investigated the heating and mixing of fluids, gave us time-
irreversible systems.

Suppose two liters of fluid are separated by a waterproof, removable parti-
tion. On one side is a liter of red fluid; on the other, a liter of blue. We decide
to use the term entropy as the measure of the degree of mixing of the red and

blue fluids. As long as the partition is in place, we have low entropy. If we lift

the partition, the red and blue fluids will flow into one another, and the level of

entropy will rise as the fluids become more mixed. Eventually, when the red

and blue become thoroughly mixed, all of the fluid will become purple.

When fully mixed, the fluid has reached a state of equilibrium. It cannot

become "more mixed." It has reached a level of maximum entropy. However,

we cannot "unmix" the fluid. Despite the fact that the mixing of the fluids is

underslandable in dynamical terms, it is time-dependent and irreversible. The

fluid's state of high entropy, or uncertainty, which comes from the maximum

mixing of two states (in this case, the states are labeled "red" and "blue"),

cannot be described by time-reversible, Newtonian equations. The fluid will

never become unmixed; its entropy will never decline, even if we wait for eter-

nity. In thermodynamics, time has an arrow that points only toward the future.

The first blow had been struck against the clockwork view of the universe.

The second blow came with the emergence of quantum mechanics. The re-

alization that the molecular structure of the universe can be described only by

states of probability further undermined the deterministic view. But confusion

remained. Was the universe deterministic or random?
Slowly, it has become apparent that most natural systems are characterized by

local randomness and global determinism. These contrary states must coexist.

Determinism gives us natural law. Randomness induces innovation and variety.

A healthy, evolving system is one that not only can survive random shocks, but

also can absorb those shocks to improve the overall system, when appropriate..

For instance, it has been postulated by West and Goldberger (1987) that phys-

ical fractal structures are generated by nature because they are more error-

tolerant than symmetrical structures in their creation. Take the mammalian

lung. Its main branch, the trachea, divides into two subbranches. These two

halves continue branching. At each branching generation, the average diameter

decreases according to a power law. Thus, the diameter of each generation is de-

pendent on the diameters of the previous generation. In addition, each branch

generation actually has a range of diameters within it. The average diameter of

each generation scales down according to a power law, but any individual branch

can be described only probabilistically. We have global determinism (the aver-

age branch size) and local randomness (the diameter of individual branches).

Why does nature favor this structure, which appears in all mammalian lungs?

West and Goldberger have shown that this fractal structure is more stable and

error-tolerant than other structures. Remember that each branch generation is

dependent on the generations before it. If diameters scaled exponentially, not

only would an error in the formation of one generation affect the next branching

Introduction to Fractal Time Series Fractal Time
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8 Introduction to Fractal Time Series fractal Mathematics -

generation, but the error would grow with each successive generation. A small
error might cause the lung to become malformed and nonfunctional. However,
by fractal scaling, the error has less impact because of the power law, as well as
the local probabilistic structure. Because each generation has a range of diame-
ters, one malformed branch has less impact on the formation of the others.
Thus, the fractal structure (global determinism, local randomness) is more
error-tolerant during formation than other structures.

To look ahead, if we change this concept from a static structure (the lung) to
a dynamic structure like the stock market, we can make some interesting con-
jectures. Change branch generation to "investment horizon." The stock market
is made up of investors, from tick traders to long-term investors. Each has a
different investment horizon that can be ordered in time. A stable market is
one in which all the participants can trade with one another, each facing a risk
level like the others', adjusted for their time scale or investment horizon. We
will see in Chapter 2 that the frequency distribution of returns is the same for
day traders as it is for one-week or even 90-day returns, once an adjustment is
made for scale. That is, five-minute traders face the same risk of a large event
as does a weekly trader. If day traders have a crash at their time scale, like a
four-sigma event, the market remains stable if the other traders, who have dif-
ferent trading horizons, see that crash as a buying opportunity, and step in and
buy. Thus, the market remains stable because it has no characteristic time
scale, just as the lung had no characteristic diameter scale. When the market's
entire investment horizon shortens, and everyone becomes a one-minute trader
(investors have lost their faith in long-term information), the market becomes
erratic and unstable. Therefore, the market can absorb shocks as long as it re-
tains its fractal structure. When it loses that structure, instability sets in. We
will discuss this concept more fully in Chapter 3.

A different time-dependent example is found in the formation of living
tures such as mammals and reptiles. Once again, we see local randomness and
global determinism. When a fetus is formed, an initial cell subdivides a num-
ber of times. At some point (exactly why is not known), some cells form the
heart, some the lungs, and so on. These cells migrate to their proper positions;
a deterministic process of some kind causes this specialization. As the cells
travel, most reach the appointed position, but some die. Thus, at the local cell
level, whether an individual cell lives or dies is completely probabilistic, while
globally, a deterministic process causes the migration of cells necessary to or-
ganize life.

Another example is a fluid heated from below. At low levels, the fluid be-
comes heated by convection, eventually reaching an equilibrium level of maxi-
mum entropy. All of the water molecules move independently. There is both

global and local randomness. However, once the heat passes a critical level, the

independent molecules behave coherently, as convection rolls set in. The fluid

heated from below rises to the upper levels, cools, and falls again in a circular

manner. The individual molecules begin behaving coherently, as a group. Sci-

entists know precisely when these convection rolls (called Raleigh—Bayard

convections) will begin. What is unknown is the direction of the rolls. Some

move right, some move left. There is no way to predict which direction the roll

will travel. Once again, we have global determinism (the temperature convec-

tion rolls begin) and local randomness (the direction of a particular roll).

Finally, we have the development of society and ideas. Innovations, such as the

development of CAPM, often arise spontaneously and independently. The proba-

bility that any individual will create such an innovation is random, no matterhow

promising the person's abilities. Yet, for any system to evolve and develop, such

innovations must be expected to occur on a global basis—whether in science,

government, the arts, or economics—if the system is expected to survive.

In the world of the Derniurge, randomness equates with innovation, and de-

terminism explains how the system explciits the innovation. In markets, innova-

tion is information, and determinism is how the markets value that information.

Now we have the third blow to Newtonian determinism: the science of chaos

and fractals, where chance and necessity coexist. In these entropy is

high but never reaches its maximum disorderly state because of global determin-

ism, as in the Raleigh—Bayard convection cells. Chaotic systems export their en-

tropy, or "dissipate" it, in much the way that mechanical devices dissipate some

of their energy as friction. Thus, chaotic systems are also dissipative and have

many characteristics in common with thermodynamics—especially the arrow

of time.

FRACTAL MATHEMATICS

All this conceptual distinction between the world of the Demiurge and the

Euclidean geometry of the Good is interesting, but can it be made practical?

After all, the main advantage of Euclidean geometry is its elegant simplicity.

Problems can be approximated using Euclidean geometry, and solved for opti-

mal answers. Models can be easily generated, even if they are gross simplifica-

tions. Can these ever increasingly complex forms that we have called fractals

also be modeled?
The answer is Yes. Strangely, they can be modeled in a fairly simple man-

ner. However, fractal math often seems counterintuitive as well as imprecise. It

seems counterintuitive because all of us, even nonmathematicians, have been
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10 Introduction to Fractal Time Series The Chaos Game
11

trained to think in a Euclidean fashion. That is, we approximate natural objects
with simple forms, like children's drawings of pine trees. Details are added
later, independent of the main figure. Fractal math seems imprecise because
traditional mathematical proofs are hard to come by and develop: our concept
of a "proof" is descended, again, from ancient Greek geometry. Euclid devel-
oped the system of axioms, theorems, and proof for his geometry. We have
since extended these concepts to all other branches of mathematics. Fractal
geometry has its share of proofs, but our primary method for exploring fractals
is through numerical experiments. Using a computer, we can generate solu-
tions and explore the implications of our fractal formulas. This "experimental"
form of exploring mathematics is new and not yet respectable among most pure
mathematicians.

THE CHAOS GAME

The following example of a mathematical experiment was used in my earlier
book, Chaos and Order in the Capital Markets (1991a), as well as in other
texts. It was originally devised by Barnesley (1988), who informally calls it the
Chaos Game.

To play the game, we start with three points that outline a triangle. We label
the three points (1,2), (3,4), and (5,6). This is the playing board for the game,
and is shown in Figure 1.1(a). Now pick a point at random. This point can be
within the triangle outline, or outside of it. Label the point P. Roll a fair die.
Proceed halfway from point P to the point (or angle) labeled with the rolled
number, and plot a new point. If you roll a 6, move halfway from point P to the
angle labeled C(5,6) and plot a new point (Figure 1.1(b)). Using a computer,
repeat these steps 10,000 times. If you throw out the first 50 points as
sients, you end up with the picture in Figure 1.1(c). Called the Sierpinski trian-
gle, it is an infinite number of triangles contained within the larger triangle. If
you increase the resolution, you will see even more small triangles. This self-
similarity is an important (though not exclusive) characteristic of fractals.

Interestingly, the shape is not dependent on the initial point. No matter where
you start, you always end up with the Sierpinski triangle, despite the fact that
two "random" events are needed to play the game: (1) the selection of the initial
point, and (2) the roll of the die. Thus, at a local level, the points are always plot-
ted in a random order. Even though the points are plotted in a different order
each time we play the game, the Sierpinski triangle always emerges because the
system reacts to the random events in a deterministic manner. Local randomness

FIGURE 1.1 The Chaos Game. (a) Start with three points, an equal distance apart,
and randomly draw a point within the boundaries defined by the points. (b) Assum-
ing you roll a fair die that comes up number 6, you go halfway to the point marlced

C(5,6). (c) Repeat step (b) 10,000 times and you have the Sierpinski triangle.

and global determinism create a stable structure. Appendix I includes a BASIC

program shell for creating the Sierpinski triangle. You are encouraged to try this

yourself.
The Chaos Game shows us that local randomness and global determinism can

coexist to create a stable, self-similar structure, which we have called a fractal.

Prediction of the actual sequence of points is impossible. Yet, the odds of plot-

ting each point are not equal. The empty spaces within each triangle have a zero

percent probability of being plotted. The edges outlining each triangle have a

higher probability of occurring. Thus, local randomness does not equate with

equal probability of all possible solutions. It also does not equate with indepen-

dence. The position of the next point is entirely dependent on the current point,

A(1,2) A(1,2)

B (3,4)
(a) (b)

B(3,4) C

(c)
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12

which is itself dependent on the previous points. From this, we can see that
"fractal statistics" will be different from its Gaussian counterpart.

At this point, a relationship to markets can be intuitively made. Markets may
be locally random, but they have a global statistical structure that is nonrandom.
In this way, traditional quantitative theory would tend to support local random-
ness. Tests on "market efficiency" have long focused on whether short-term
predictions can be made with enough accuracy to profit. Typically, quantitative
studies have shown that it is difficult to profit from short-term (weekly or less)
market moves. Yet, lengthening our time horizon seems to improve our predic-
tive ability.

WHAT IS A FRACTAL?

We have not yet defined the term fractal. No precise definition actually exists.
Even mathematics, the most concise of all languages, has trouble describing a
fractal. It is similar to the question posed by Deep Thought in The Hitchhiker's
Guide to the Galaxy by Douglas Adams. Deep Thought is a supercomputer cre-
ated by a superrace to answer "The Ultimate Question of Life, the Universe,
and Everything." Deep Thought gives an answer (the answer is "42"), but no
one knows how to pose the question so that the answer can be understood.

Fractals are like that. We know them when we see them, but we have a hard
time describing them with enough precision to understand fully what they are.
Benoit Mandelbrot, the father of fractal geometry, has not developed a precise
definition either.

Fractals do have certain characteristics that are measurable, and properties
that are desirable for modeling purposes.

The first property, self-similarity, has already been described at some length.
It means that the parts are in some way related to the whole. This similarity can
be "precise," as in the Sierpinski triangle, where each small triangle is geomet-
rically identical with the larger triangle. This precise form of self-similarity ex-
ists only mathematically.

In real life, the self-similarity is "qualitative"; that is, the object or process
is similar at different scales, spatial or temporal, statistically. Each scale re-
sembles the other scales, but is not identical. Individual branches of a tree are
qualitatively self-similar to the other branches, but each branch is also unique.
This self-similar property makes the fractal scale-invariant: it lacks a charac-
teristic scale from which the others derive.

The logarithmic spiral, which plays a prominent role in Elliott Wave theory, is
one example of a characteristic scaling function. A nautilus shell is a logarithmic

spiral because the spiral retains its original proportions as the size increases.
Therefore, the nautilus grows, but does not change its shape, because it grows ac-
cording to a characteristic proportion—it has a characteristic scaling feature.
The logarithmic spiral is not fractal. Neither is Elliot Wave theory.

Likewise, early models to explain the construction of the mammalian lung
were based on an exponential scaling mechanism. In particular, the diameter

of each branching generation should decrease by about the same ratio from one
generation to the next. If z represents the generation number, and is the aver-

age diameter of branch generation z, then:

(1.1)

Weibel and Gomez (1962) estimated q = so equation (1.1) can be
rewritten as:

where d0 = diameter of the trachea (the main branch of the lung)

(1.2)

Thus, this model has a characteristic scaling parameter, q = 2-1/3. Each

branching generation scales down, according to an exact ratio, to the way the
previous generation scaled down. This is a characteristic scale.

Equation (1.1) can be rewritten in a more general form:

dz,a = (1.3)

where a = —ln(q) >0

As West, Valmik, and Goldberger (1986) state: "Thus, if a single parameter
a characterized this process, then d(z,a) is interpreted as the average diameter

in the zth generation for the scaling parameter a." Note the exponential form
of equation (1.3) using a characteristic scale.

However, modeling the lung based on a characteristic scale ignores other
properties. Within each generation, the actual diameters have a range: some
are larger and some are smaller than the average. In addition, the exponential

scaling law fits only the first ten branching generations. After that, there is a
systematic deviation from the characteristic scaling function.

Figure 1.2 is taken from West and Goldberger (1987). If equation (1.3)
holds, then a plot of the log of the diameter against the generation number
should result in a straight line. The slope of this semi-log plot should be the

Introduction to Fractal Time Series What Is a Fractal?
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14 Introduction to Fractal Time Series The Fractal Dimension —
15

B

FIGURE 1.3 Log/Log plot.

FIGURE 1.2 The lung with exponential scaling. (From West and Goldberger
(1987); reproduced with permission from American Scientist.)

scaling factor. We can see that the exponential scaling feature does not capture
the full shape of the lung. However, a log/log plot (Figure 1.3), using the log of
the generation number, does yield a wavy line that trends in the right direction.
But what does the log/log plot mean?

The failure of the semi-log plot to capture the data means that the exponential
scaling model is inappropriate for this system. The model should use a power law
(a real number raised to a power) rather than an exponential (e raised to a
power). This power law scaling feature, which does explain the scaling structure
of the lung, turns out to be the second characteristic of fractals, the fractal di-
mension, which can describe either a physical structure like the lung or a time
series.

I \
J) Cl

-

THE FRACTAL DIMENSION

To discuss the fractal dimension, we must return to the conflict between the
Good and the Demiurge. A primary characteristic of Euclidean geometry is that
dimensions are integers. Lines are one-dimensional. Planes are two-dimensional.
Solids are three-dimensional. Even the hyperdimensions developed in later eras
are integer-dimensional. For instance, the space/time continuum of Einstein is
four-dimensional, with time as the fourth dimension. Euclidean shapes are
"perfect," as can be expected from the Good. They are smooth, continuous, ho-
mogeneous, and symmetrical. They are also inadequate to describe the world of
the Demiurge, except as gross simplifications.

Consider a simple object—a wiffle ball. It is not three-dimensional because
it has holes. It is not two-dimensional either, because it has depth. Despite the
fact that it resides in a three-dimensional space, it is less than a solid, but more

0
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16 Introduction to Fractal Time Series

than a plane. Its dimension is somewhere between two and three. It is a nonin-
teger, a fractional dimension.

Now consider a mathematical construct like the Sierpinski triangle, which is
clearly more than a line but less than a plane. There are, within it, holes and gaps
shaped like triangles. These discontinuities classify the Sierpinski triangle as a
child of the Demiurge, and, like the wiffle ball, its dimension is a fraction.

The fractal dimension characterizes how the object fills its space. In addition,
it describes the structure of the object as the magnification factor is changed, or,
again, how the object scales. For physical (or geometric) fractals, this scaling law
takes place in space. A fractal time series scales statistically, in time.

The fractal dimension of a time series measures how jagged the time series is.
As would be expected, a straight line has a fractal dimension of 1, the same as its
Euclidean dimension. A random time series has a fractal dimension of 1.50. One
early method for calculating the fractal dimension involves covering the curve
with circles of a radius, r. We would count the number of circles needed to cover
the curve, and then increase the radius. When we do so, we find that the number
of circles scales as follows:

N = the number of circles
r = radius
d = the fractal dimension

(1.4)

Because a line would scale according to a straight linear scale, its fractal
dimension would be equal to 1. However, a random walk has a 50—50 chance of
rising or falling; hence, its fractal dimension is 1.50. However, if the fractal
dimension is between I and 1.50, the time series is more than a line and lbss
than a random walk. It is smoother than a random walk but more jagged than a
line. Using logarithms, equation (1.4) can be transformed into:

d = (1.5)

Once again, the fractal dimension can be solved as the slope of a log/log
plot. For a time series, we would increase the radius as an increment of time,
and count the number of circles needed to cover the entire time series as a
function of the time increment. Thus, the fractal dimension of a time series is
a function of scaling in time.

Fractal Market Analysis
17

The circle counting method is quite tedious and imprecise for a long time

series, even when done by computers. In Part Two, we will study a more pre-
cise method called rescaled range analysis (R/S).

The fractal dimension of a time series is important because it recognizes
that a process can be somewhere between deterministic (a line with fractal di-

mension of 1) and random (a fractal dimension of 1.50). In fact, the fractal
dimension of a line can range from 1 to 2. At values 1.50 < d < 2, a time series

is more jagged than a random series, or has more reversals. Needless to say, the

statistics of time series with fractal dimensions different from 1.50 would be

quite different from Gaussian statistics, and would not necessarily be con-
tained within the normal distribution.

FRACTAL MARKET ANALYSIS

This book deals with this issue, which can be summarized as the conflict be-
tween randomness and determinism. Onthe one hand, there are market ana-

lysts who feel that the market is perfectly deterministic; on the other, there is

a group who feel that the market is completely random. We will see that there

is a possibility that both are right to a limited extent. But what comes out of

these partial truths is quite different from the outcome either group expects.
We will use a number of different analyses, but the primary focus of this book

is R/S, or resealed range analysis. R/S analysis can distinguish fractal from other

types of time series, revealing the self-similar statistical structure. This structure
fits a theory of market structure called the Fractal Market Hypothesis, which

will be stated fully in Chapter 3. Alternative explanations of the fractal structure

are also examined, including the possible combining of the well-known ARCH

(autoregressive conditional heteroskedastic) family of processes, with fractal
distributions. This reconciliation ties directly into the concept of local random-

ness and global determinism.
First, we must reexamine, for purposes of contrast, existing Capital Market

Theory (CMT).
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Capital Market Theory 19

2
Failure of the Gaussian
Hypothesis

When faced with a multidimensional process of unknown origin, scientists
often select an independent process such as brownian motion as a working
hypothesis. If analysis shows that prediction is difficult, the hypothesis is ac-
cepted as truth. Fluid turbulence was modeled in this manner for decades. In
general, markets continue to be modeled in this fashion.

Brownian motion has desirable characteristics to a mathematician. Statis-
tics can be estimated with great precision, and probabilities can be calculated.
However, using traditional statistics to model the markets assumes that they
are games of chance. Each outcome is independent of previous outcomes. In-
vestment in securities is equated with gambling.

In most games of chance, many degrees of freedom are employed to make
the outcome random. In roulette, the spin of the wheel in one direction and the
release of the ball in the opposite direction bring into play a number of nonre-
peatable elements: the speed of the wheel when the ball is released, the initial
velocity of the ball, the point of release on the wheel, and, finally, the angle of
the ball's release. If you think that it would be possible to duplicate the condi-
tions of a particular play, you would be wrong. The nonlinearity of the ball's
spiral descent would amplify in a short time to a completely different landing
number. The result is a system with a limited number of degrees of freedom,
but with inherent unpredictability. Each outcome, however, is independent of
the previous one.

18

L

A shuffled deck of cards is often used as an exemplary random system.
Most card games require skill in decision making, but each hand dealt is inde-
pendent of the previous one. A "lucky run" is merely an illusion, or an attempt
by a player to impose order on a random process.

An exception is the game of blackjack, or "21." Related examples include
baccarat and chemin de fer, games beloved of European casinos and James
Bond enthusiasts. In blackjack, two cards are dealt to each player. The objec-
tive is to achieve a total value of 21 or lower (picture cards count as ten).
A player can ask for additional cards. In its original form, a single deck
was played until the cards were exhausted, at which point the deck was
reshuff led.

Edward Thorpe, a mathematician, realized that a card deck used in this
manner had a "memory"; that is, the outcome of a current hand depended on
previous hands because those cards had left the system. By keeping track of the
cards used, he could assess the shifting probabilities as play progressed, and
bet on the most favorable hands. Upon discovering this "statistical memory,"
casinos responded by using multiple decks, as baccarat and chemin de fer are
played, thus eliminating the memory.

These two examples of "games of chance" show that not all gambling is nec-
essarily governed by Gaussian statistics. There are unpredictable systems with
a limited number of degrees of freedom. In addition, there can be processes
that have a long memory, even they are probabilistic in the short term.

Despite these exceptions, common practice is to state all probabilities in
Gaussian terms. Plato said that our world was not the real world because it did
not conform to Euclid's geometry. We say that all unpredictable systems must
be Gaussian, or independent processes. The passage of almost 2,500 years
since Plato has not diminished our ability to delude ourselves.

CAPITAL MARKET THEORY

Traditional Capital Market Theory (CMT) has been largely based on fair games
of chance, or "martingales." The insight that speculation can be modeled by
probabilities extends back to Bachelier (1900) and continues to this day. My ear-
lier book (Peters, 1991a) elaborated on the development of CMT and its contin-
uing dependence on statistical measures like standard deviation as proxies for
risk. This section will not unduly repeat those arguments, but will instead dis-
cuss some of the underlying rationale in continuing to use Gaussian statistics to
model asset prices.

PD
F com

pression, O
C

R
, w

eb-optim
ization w

ith C
VISIO

N
's PdfC

om
pressor

http://www.cvisiontech.com/pdf_compressor_31.html


20 Failure of the Gaussian Hypothesis

It has long been conventional to view security prices and their associated
returns from the perspective of the speculator—the ability of an individual to
profit on a security by anticipating its future value before other speculators
do. Thus, a speculator bets that the current price of a security is above/below
its future value and sells/buys it accordingly at the current price. Speculation
involves betting, which makes investing a form of gambling. (Indeed, probabil-
ity was developed as a direct result of the development of gambling using
"bones," an early form of dice.) Bachelier's "Theory of Speculation" (1900)
does just that. Lord Keynes continued this view by his famous comment that
markets are driven by "animal spirits." More recently, Nobel Laureate Harry
Markowitz (1952, 1959) used wheels of chance to explain standard deviation
to his audience. He did this in order to present his insight that standard devia-
tion is a measure of risk, and the covariance of returns could be used to explain
how diversification (grouping uncorrelated or negatively correlated stocks) re-
duced risk (the standard deviation of the portfolio).

Equating investment with speculation continued with the Black—Scholes op-
tion pricing model, and other equilibrium-based theories. Theories of specula-
tion, including Modern Portfolio Theory (MPT), did not differentiate between
short-term speculators and long-term investors. Why?

Markets were assumed to be "efficient"; that is, prices already reflected all
current information that could anticipate future events. Therefore, only the
speculative, stochastic component could be modeled; the change in prices due
to changes in value could not. If market returns are normally distributed
"white" noise, then they are the same at all investment horizons. This is
alent to the "hiss" heard on a tape player. The sound is the same regardless of
the speed of the tape.

We are left with a theory that has assumed away the differentiating features
of many investors trading over many investment horizons. The risks to
the same. Risk and return grow at a commiserative rate over time. There is no
advantage to being a long-term investor. In addition, price changes are deter-
mined primarily by speculators. By implication, forecasting changes in eco-
nomic value would not be useful to speculators.

This uncoupling of changes in the value of the underlying security from the
economy and the shifting of price changes mostly to speculators have reinforced
the perception that investing and gambling are equivalent, no matter what the
investment horizon. This stance is most clearly seen in the common practice of
actuaries to model the liabilities of pension funds by taking short-term returns
(annual returns) and risk (the standard deviation of monthly returns), and ex-
trapolating them out over 30-year horizons. It is also reflected in the tendency of
individuals and the media to focus on short-term trends and values.

Statistical Characteristics of Markets 21

If markets do not follow a random walk, it is possible that we may be over-
or understating our risk and return potential from investing versus speculating.
In the next section, we will examine the statistical characteristics of markets
more closely.

STATISTICAL CHARACTERISTICS OF MARKETS

In general, statistical analysis requires the normal distribution, or the familiar
bell-shaped curve. It is well known that market returns are not normally dis-
tributed, but this information has been downplayed or rationalized away over

the years to maintain the crucial assumption that market returns follow a ran-

dom walk.
Figure 2.1 shows the frequency distribution of 5-day and 90-day Dow Jones

Industrials returns from January 2, 1888, through December 31, 1991, some
103 years. The normal distribution is also shown for comparison. Both return
distributions are characterized by a high peak at the mean and fatter tails than
the normal distribution, and the two Dow distributions are virtually the same
shape. The kink upward at four standard deviations is the total greater than
(less than) four (—4) standard deviations above (below) the mean. Figure 2.2
shows the total probability contained within intervals of standard deviation for
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FIGURE 2.1 Dow Jones Industrials, frequency distribution of returns: 1888—1991.
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FIGURE 2.2 Dow Jones Industrials, frequency within intervals.

the two Dow investment horizons. Again, the two distributions are very simi-
lar, and they are not "normal." Figure 2.3 shows the difference between the
5-day return distribution and the normal distribution. The tails are not only
fatter than the normal distribution, they are uniformly fatter. Up to four stan-
dard deviations away from the mean, we have as many observations as we did
two standard deviations away from the mean. Even at four sigmas, the tails are
not converging to zero.

Figure 2.4 shows similar difference curves for (a)l-4ay, (b)lO-day, (c)20-
day, (d)30-day, and (e)90-day returns. In all cases, the tails are fatter, and the
peaks are higher than in the normal distribution. In fact, they all look similar
to one another.
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FIGURE 2.3 Dow Jones Industrials, 5-day returns — normal frequency.
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FIGURE 2.4a Dow Jones Industrials, 1-day returns — normal frequency.
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FIGURE 2.4b Dow Jones Industrials, 10-day returns — normal frequency.
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FIGURE 2.4c Dow Jones Industrials, 20-day returns — normal frequency.
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FIGURE 2.4d Dow Jones Industrials, 30-day returns — normal frequency.
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FIGURE 2.4e Dow Jones Industrials, 90-day returns — normal frequency.
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26 Failure of the Gaussian_Hypothesis

What does this mean? The risk of a large event's occurring is much higher
than the normal distribution implies. The normal distribution says that the
probability of a greater-than-three standard deviation event's occurring is 0.5
percent, or 5 in 1,000. Yet, Figure 2.2 shows us that the actual probability is
2.4 percent, or 24 in 1,000. Thus, the probability of a large event is almost five
times greater than the normal distribution implies. As we measure still larger
events, the gap between theory and reality becomes even more pronounced.
The probability of a four standard deviation event is actually 1 percent instead
of 0.01 percent, or 100 times greater. In addition, this risk is virtually identical
in all the investment horizons shown here. Therefore, daily traders face the
same number of six-sigma events in their time frame as 90-day investors face in
theirs. This statistical self-similarity, which should sound familiar to those
who have read Chapter I, will be discussed in detail in Chapter 7.

Figures 2.5 and 2.6 show similar distributions for the yen/dollar exchange
rate (197 1—1990), and 20-year U.S. T-Bond yields (1979—1992), respectively.
Fat tails are not just a stock market phenomenon. Other capital markets show
similar characteristics. These fat-tailed distributions are often evidence of a
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FIGURE 2.5 Yen/Dollar exchange rate, frequency distribution of returns:
1971—1990.
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The Term Structure of Volatility

FIGURE
1979—1992.
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2.6 Twenty-year U.S. T-Bond yields, frequency distribution of returns:

long-memory system generated by a nonlinear stochastic process. This non-
linear process can be caused by time-varying variance (ARCH), or a long-
memory process called Pareto—Levy. In due course, we will discuss both.
At this point, we can simply say that fat-tailed distributions are often symp-
tomatic of a nonlinear stochastic process.

THE TERM STRUCTURE OF VOLATILITY

Another basic assumption needed to apply the normal distribution involves the
term structure of volatility. Typically, we use standard deviation to measure
volatility, and we assume that it scales according to the square root of time. For
instance, we "annualize" the standard deviation of monthly returns by multi-
plying it by the square root of 12. This practice is derived from Einstein's
(1905) observation that the distance that a particle in brownian motion covers
increases with the square root of time used to measure it.

However, despite this widespread method for "annualizing risk," it has been
well known for some time that standard deviation scales at a faster rate than
the square root of time. Turner and Weigel (1990), Shiller (1989), and Peters
(1991b) are recent empirical studies confirming this scale rate. Lagged white
noise, ARCH disturbances, and other causes have been investigated to account
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28 Failure of the Gaussian Hypothesis

for this property, which goes so contrary to random walk theory and the Eff i-
cient Market Hypothesis (EMH).

Stocks

The term structure of volatility is even stranger than these researchers thought.
Figure 2.7 is a plot of the log of standard deviation versus the log of time for the
103-year daily Dow Jones Industrials data. This graph was done by evenly divid-
ing the full 103.year period into all subintervals that included both the begin-
fling and end points. Because the number of usable subperiods depends on the
total number of points, an interval of 25,000 days was used. Returns were calcu-
lated for contiguous periods, and the standard deviations of these returns were
calculated. Table 2.1 lists the results. Thus, we have subperiods ranging from
25,000 one-day returns, to four 6,250-day returns, or about 28 years.

The square root of time is shown by the solid 45-degree line in Figure 2.7.
Volatility does indeed grow at a faster rate than the square root of time. Table
2.2 first shows the regression results up to 1,000 days (N = <1,000 days). Up
to this point, standard deviation grows at the 0.53 root of time. Compared
to the regression results after 1,000 days (N = >1,000 days), the slope
has dropped dramatically to 0.25. If we think of risk as standard deviation,

The Term Structure of Volatility -
29

Table 2.1 Dow jones Industrials, Term Structure of
Volatility: 1888—1990

Number of
Days

Standard
Deviation

Number of
Days

Standard
Deviation

1 0.011176 130 0.135876
2 0.01 6265 200 0.196948
4 0.022354 208 0.196882
5 0.025838 250 0.21 3792
8 0.032904 260 0.20688

10 0.037065 325 0.21 3301
13 0.041749 400 0.314616
16 0.048712 500 0.309865
20 0.052278 520 0.301 762
25 0.058831 650 0.298672
26 0.061999 1,000 0.493198
40 0.075393 1,040 0.314733
50 0.087089 1,300 0.293109
52 0.087857 1,625 0.482494
65 0.0989 2,000 0.548611
80 0.107542 2,600 0.479879

100 0.125939 3,250 0.660229
104 0.120654 5,200 0.61 2204
125 0.137525 6,500 0.475797

0.5

0

-0.5

-1.5
00

-2

-2.5

FIGURE 2.7 Dow jones Industrials, volatility term structure: 1888—1990.

Table 2.2 Dow Jones Industrials, Regression Results,
Term Structure of Volatility: 1888—1990

0 1 2 3
Log(Number of Days)

5

N = <1,000 Days N = >1,000 Days

Regression output:
Constant —1.96757 —1.47897
Standard error

of Y (estimated)
R squared

0.026881
0.996032

0.10798
0.61 2613

Number of
observations 30 10

Degrees of
freedom

X coefficient(s)
28

0.53471 3
8

0.347383
Standard error

of coefficient 0.006378 0.097666
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30 Failure of the Gaussian Hypothesis

investors incur more risk than is implied by the normal distribution for invest-
ment horizons of less than four years. However, investors incur increasingly
less risk for investment horizons greater than four years. As we have always
known, long-term investors incur less risk than short-term investors.

Another approach is to examine the ratio of return to risk, or, as it is better
known, the "Sharpe ratio," named after its creator, Nobel Laureate William
Sharpe. The Sharpe ratio shows how much return is received per unit of risk,
or standard deviation. (See Table 2.3.) For periods of less than 1,000 days, or
four years, the Sharpe ratio steadily declines; at 1,200 days, it increases dra-
matically. This means that long-term investors are rewarded more, per unit of
risk, than are short-term investors.

Statistically speaking, the term structure of volatility shows that the stock
market is not a random walk. At best, it is a stochastic "bounded" set. This
means that there are limits to how far the random walker will wander before he
or she heads back home.

The most popular explanation for boundedness is that returns are mean re-
verting. A mean-reverting stochastic process can produce a bounded set, but not

Table 2.3 Dow Jones Industrials: 1888—1990

Number of
Days

Sharpe
Ratio

Number of
Days

Sharpe
Ratio

I 1.28959 130 1.13416
2 1.217665 200 0.830513
4 1.289289 208 0.864306
5 1.206357 250 0.881
8 1.190143 260 0.978488

10 1.172428 325 1.150581
13 1.201 372 400 0.650904
16 1.086107 500 0.838771
20 1.178697 520 0.919799
25 1.163449 650 1.173662
26 1.0895 1,000 0.66218

40 1.133486 1,040 1.691087

50 1.061851 1,300 2.437258
52 1.085109 1,625 1.124315
65 1.070387 2,000 1.070333

80 1.114178 2,600 1.818561

100 1.015541 3,250 1.200915

104 1.150716 5,200 2.234748

125 1.064553 6,500 4.624744

The Term Structure of Volatility 31

an increasing Sharpe ratio. A mean reverting process implies a zero sum game.
Exceptionally high returns in one period are offset by lower than average returns
later. The Sharpe ratio would remain constant because returns would also be
bounded. Thus, mean reversion in returns is not a completely satisfying explana-
tion for the boundedness of volatility. Regardless, the process that produces the
observed term structure of volatility is clearly not Gaussian, nor is it described

well by the normal distribution.
Finally, we can see that short-term investors face different risks than long-

term investors in U.S. stocks. "Short-term" now means investment horizons of
less than four years. At this level, we have seen that the frequency distribution of
returns is self-similar up to 90 days. We can speculate that this self-similar
statistical structure will continue up to approximately four-year horizons, al-
though we will all be long gone before we can obtain enough empirical evidence.
In the longer term, something else happens. The difference in standard deviation
between the long term and short term affects how we analyze markets. The tools
we use depend on our investment horizon. This certainly applies to stocks, but
what about other markets?

Bonds

Despite the fact that the U.S. bond market is large and deep, there is an ab-
sence of "high-frequency" information; that is, trading information is hard to
come by at intervals shorter than monthly. Bonds are traded over-the-counter,
and no exchange exists to record the trades. The longest time series I could
obtain was daily 20-year T-Bond yields maintained by the Fed from January I,
1979, through September 30, 1992, a mere 14 years of data. (See Figure 2.8.)
However, we can see—less convincingly, to be sure—a term structure of bond
volatility that is similar to the one we saw for stocks. Table 2.4 summarizes the
results.

Currencies

For currencies, we face similar data problems. Until the Bretton Woods agree-
ment of 1972, exchange rates did not float; they were fixed by the respective
governments. From 1973 onward, however, we have plenty of information on
many different, actively traded exchange rates.

In Figure 2.5, we saw that the yen/dollar exchange rate had the now familiar
fat-tailed distribution. Figure 2.9(a)—(c) shows similar frequency distributions
for the mark/dollar, pound/dollar, and yen/pound exchange rates. In all cases,
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32 Failure of the Gaussian_Hypothesis The Term Structure of Volatility 33

FIGURE 2.8 Daily bond yields, volatility term structure: January 1, 1979—
September 30, 1992.

we have a similarly shaped distribution. In fact, the frequency distribution of
currency returns has a higher peak and fatter tails than U.S. stocks or bonds.

Figure 2.10(a)—(c) shows the term structure of volatility for the three ex-
change rates, and Table 2.5 shows the log/log regression results. In all cases,
the slope—and hence, the scaling of standard deviation—increases at a faster
rate than U.S. stocks or bonds, and they are not bounded.

Table 2.4 Long T-Bonds, Term Structure of Volatility:
January 1, 1978—June 30, 1990

N = <1,000 Days N = >1,000 Days

Regression output:
Constant —4.0891 —2.26015
Standard error

of Y (estimated) 0.053874 0.085519
R squared 0.985035 0.062858
Number of

observations 21 3

Degrees of
freedom 19 1

X coefficient(s) 0.5481 02 —0.07547
Standard error

olcoellicient 0.015499 0.29141

-2

-2.5
g

-3

-3.5

-45

15

10

0.5 1 1.5 2 2.5
Log(Number of Days)

5

3.5

0
-5 -4 -3 -2 -1 0 1 2 3 4 5

Standard Deviations

FIGURE 2.9a Mark/Dollar, frequency distribution of returns.

To examine whether U.S. stocks remain a bounded set over this period, we

check the term structure of volatility in Figure 2.7. It remains bctunded. Table 2.5

includes these results as well. Therefore, either currencies have a longer
"bounded" interval than stocks, or they have no bounds. The latter would imply
that exchange rate risk grows at a faster rate than the normal distribution but never
stops growing. Therefore, long-term holders of currency face ever-increasing

20
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5

0
-5 -4 -3 -2 -1 0 1 2 3 4

Standard Deviations

FIGURE 2.9b Pound/Dollar, frequency distribution of returns.
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FIGURE 2.lOb Pound/Dollar exchange rate, volatility term structure.
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FIGURE 2.9c Yen/Pound, frequency distribution of returns.
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FIGURE 2.lOa Mark/Dollar exchange rate, volatility term structure.
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FIGURE 2.lOc Yen/Poundexchange rate, volatility term structure.
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The Bounded Set 37

of risk as their investment horizon widens. Unlike stocks and bonds, curren-

N N cies offer no investment incentive to a buy-and-hold strategy.
N In the short term, stock, bond, and currency speculators face similar risks,

d d but in the long term, stock and bond investors face reduced risk.

THE BOUNDED SET

The appearance of bounds for stocks and bonds, but not for currencies, seems
puzzling at first. Why should currencies be a different type of security than
stocks and bonds? That question contains its own answer.

In mathematics, paradoxes occur when an assumption is inadvertently for-
0 N. .0 N N N N

UI gotten. A common mistake is to divide by a variable that may take zero as a
value. In the above paragraph, the question called a currency a "security."

Q Currencies are traded entities, but they are not securities. They have no in-
vestment value. The only return one can get from a currency is by speculating

E
on its value versus that of another currency. Currencies are, thus, equivalent
to the purely speculative vehicles that are commonly equated with stocks and

bonds.
Stocks and bonds are different. They do have investment value. Bonds earn

interest, and a stock's value is tied to the growth in its earnings through eco-
nomic activity. The aggregate stock market is tied to the aggregate economy.

N. CI
Currencies are not tied to the economic cycle. In the 1950s and 1960s, we had

an expanding economy and a strong dollar. In the 1980s, we had an expanding
economy and a falling dollar. Currencies do not have a "fundamental" value
that is necessarily related to economic activity, though it may be tied to eco-
nomic variables like interest rates.

r'l
Why are stocks and bonds bounded sets? A mean-reverting stochastic pro-

cess is a possible explanation of boundedness, but it does not explain the faster-
growing standard deviation. Bounds and fast-growing standard deviations are
usually caused by deterministic systems with periodic or nonperiodic cycles.

Figure 2.11 shows the term structure of volatility for a simple sine wave. We

can clearly see the bounds of the system and the faster-growing standard devi-
ation. But we know that the stock and bond markets are not periodic. Granger

2- 2
(1964) and others have performed extensive spectral analysis and have found
no evidence of periodic cycles.

>- S
However, Peters (1991b) and Cheng and Tong (1992) have found evidence

0 0 of nonperiodic cycles typically generated by nonlinear dynamical systems,
OOUUI or "chaos."
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38 Failure of (he Gaussian Hypothesis

0 0.5 1 1.5
Log(Time)

FIGURE 2.11 Sine wave, volatility term structure.

At this point, we can see evidence that stocks, bonds, and currencies are
possible nonlinear stochastic processes in the short term, evidenced by their
frequency distributions and their term structures of volatility. However, stocks
and bonds show evidence of long-term determinism. Again, we see local ran-
domness and global determinism.

SUMMARY

In this book, we will examine techniques for distinguishing among an indepen-
dent process, a nonlinear stochastic process, and a nonlinear deterministic pro-
cess, and will probe how these distinctions influence our investment strategies
and our modeling capabilities. These strategies and modeling capabilities are
closely tied to the asset type and to our investment horizon.

We have seen evidence that stocks and bonds are nonlinear stochastic in the
short term and deterministic in the long term. Currencies appear to be nonlin-
ear stochastic at all investment horizons. Investors would be more interested in

the former; traders can work with all three vehicles in the short term.

3
A Fractal Market Hypothesis

We have seen in the previous chapter that the capital markets are not well-
described by the normal distribution and random walk theory. Yet, the Effi-
cient Market Hypothesis continues to the dominant paradigm for how the
markets work. Myron Scholes (coauthor of the option pricing
formula) said in The New York Observer, "It's not enough just to criticize." So,
in this chapter, 1 offer an alternative theory of market structure.

The Efficient Market Hypothesis (EMH) was covered in detail in my earlier
book (Peters, l991b). However, a brief review of the EMH is necessary in order
to offer an alternative. After that review, we shall go back to basics: Why do

markets exist? What do participants expect and require from markets? From
there, we shall formulate the Fractal Market Hypothesis. The Fractal Market
Hypothesis is an alternative to the EMH, not to the Capital Asset Pricing Model
(CAPM). But, because it is based on efficient markets, the CAPM also needs a
replacement. Undoubtedly, such a replacement will be developed—perhaps, but
not necessarily, based on the Fractal Market Hypothesis.

The Fractal Market Hypothesis gives an economic and mathematical struc-
ture to fractal market analysis. Through the Fractal Market Hypothesis, we can
understand why self-similar statistical structures exist, as well as how risk is
shared distributed among investors.

EFFICIENT MARKETS REVISITED

The EMH attempts to explain the statistical structure of the markets. In the
case of the EMH, however, the theory came after the imposition of a statistical
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40 A Fractal Market Hypothesis Stable Markets versus Efficient Markets 41

structure. Bachelier (1900) first proposed that markets follow a random walk
and can be modeled by standard probability calculus. However, he offered little
empirical proof that such was the case. Afterward, a number of mathemati-
cians realized that stock market prices were a time series, and as long as the
markets fulfilled certain restrictive requirements, they could be modeled by
probability calculus. This approach had the advantage of offering a large body
of tools for research. However, there was a division in the mathematical com-
munity about whether statistics (which dealt primarily with sampling and
quality control) could be applied to time series.

The most stringent requirement was that the observations had to be indepen-
dent or, at best, had to have a short-term memory; that is, the current change in
prices could not be inferred from previous changes. This could occur only if
price changes were a random walk and if the best estimate of the future price
was the current price. The process would be a "martingale," or fair game. (A
detailed history of the development of the EMH can be found in Peters
(l991a).) The random walk model said that future price changes could not be
inferred from past price changes. It said nothing about exogenous informa-
tion—economic or fundamental information. Thus, random walk theory was
primarily an attack on technical analysis. The EMH took this a step further by
saying, in its "semistrong" form, that current prices reflected all public infor-
mation—all past prices, published reports, and economic news—because of
fundamental analysis. The current prices reflected this information because
all investors had equal access to it, and, being "rational," they would, in their
collective wisdom, value the security accordingly. Thus investors, in aggre-
gate, could not profit from the market because the market "efficiently" valued
securities at a price that reflected all known information.

If there had been sufficient empirical evidence to justify the EMH, then its
development would have followed normal scientific reasoning, in which:

• A certain behavior and structure are first observed in a system or process.
• A theory is then developed to fit the known facts.
• The theory is modified or revised as new facts become known.

In the case of the EMH, the theory was developed to justify the use of statistical
tools that require independence or, at best, a very short-term memory. The the-
ory was often at variance with observed behavior. For instance, according to the
EMH, the frequency of price changes should be well-represented by the normal
distribution. We have seen in Chapter 2 that this is not the case. There are far too
many large up-and-down changes at all frequencies for-the normal curve to be

fitted to these distributions. However, the large changes were labeled special

events, or "anomalies," and were left out of the frequency distribution. When

one leaves out the large changes and renormalizes, the normal distribution is the

result. Price changes were labeled "approximately normal." Alternatives to the
normal distribution, like the stable Paretian distribution, were rejected even
though they fit the observed values without modification. Why7 Standard statis-
tical analysis could not be applied using those distributions.

•

The EMH, developed to make the mathematical environment easier, was
truly a scientific case of putting the cart before the horse. Instead, we need to
develop a market hypothesis that fits the observed facts and takes into account
why markets exist to begin with.

STABLE MARKETS VERSUS EFFICIENT MARKETS

The New York Stock Exchange was started by a group of traders who gathered
beneath that famous buttonwood tree in New York City. They shared one basic
need: liquidity. They envisioned one place where they could all meet and find
a buyer if one of them wanted to sell, and a seller if one of them wanted to buy.

They wanted these transactions to bring a good price, but sometimes one takes

what one can get. They needed sufficient liquidity to allow investors with dif-
ferent investment horizons to invest indifferently and anonymously with one
another. In the past two centuries, technological advances have made trading of

large volumes of stock easier; no matter what their investment horizon, buyers
and sellers are matched up in a quick, efficient manner. Thus, day traders with

a 15-minute investment horizon could trade efficiently with institutional in-
vestors with a monthly or longer investment horizon. Except for securities reg-
ulation to protect investors from fraud, there has been no attempt to make the
trades "fair." A buyer who wants to buy a large block of a thinly traded stock
must pay a premium for it. Investors who want to sell into a market with low
demand will sell at a lower price than they would like. The technology is in

place to ensure that a trader will find a buyer (or seller, as the case may be), but
there is no agreed-on mechanism for determining what the "fair price" should
be. The capitalist system of supply and demand is strictly adhered to.

Investors require liquidity from a market. Liquidity will ensure that:

1. The price investors get is close to what the market considers fair;
2. Investors with different investment horizons can trade efficiently with

one another;
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3. There are no panics or stampedes, which occur when supply and de-
mand become imbalanced.

Liquidity is not the same as trading volume. The largest crashes have oc-
curred when there has been low liquidity but high trading volume. Another
name for low liquidity could be imbalanced trading volume.

The EMH says nothing about liquidity. It says that prices are always fair
whether liquidity exists or not, or, alternatively, that there is always enough
liquidity. Thus, the EMH cannot explain crashes and stampedes; when liquid-
ity vanishes, getting a "fair" price may not be as important as completing the
trade at any cost.

A stable market is not the same as an "efficient" market, as defined by the
EMH. A stable market is a liquid market. If the market is liquid, then the price
can be considered close to "fair." However, markets are not always liquid.
When lack of liquidity strikes, participating investors are willing to take any
price they can, fair or not.

THE SOURCE OF LIQUIDITY

If all information had the same impact on all investors, there would be no liquid-
ity. When they received information, all investors would be executing the same
trade, trying to get the same price. However, investors are not homogeneous.
Some traders must trade and generate profits every day. Some are trading to
meet liabilities that will not be realized until years in the future. Some are highly
leveraged. Some are highly capitalized. In fact, the importance of information
can be considered largely dependent on the investment horizon of the investor.

Take a typical day trader who has an investment horizon of five minutes 'und
is currently long in the market. The average five-minute price change in 1992
was — .000284 percent, with a standard deviation of 0.05976 percent. If, for
technical reasons, a six standard deviation drop occurred for a five-minute
horizon, or .5 ercent, our day trader could be wiped out if the fall contin-
ued. Howev ;an institutional trader—a pension fund, for example—with a
weekly trading horizon, would probably consider that drop a buying opportu-
nity because weekly returns over the past ten years have averaged 0.22 percent
with a standard deviation In addition, the technical drop has
not changed the outlook of ekly trader, who looks at either longer tech-
nical or fundamental information. Thus, the day trader's six-sigma event is a
0.15-sigma event to the weekly trader, or no big deal. The weekly trader steps
in, buys, and creates liquidity. This liquidity, in turn, stabilizes the market.

L

All of the investors trading in the market simultaneously have different in-

vestment horizons. We can also say that the information that is important at
each investment horizon is different. Thus, the source of liquidity is investors
with different investment horizons, different information sets, and conse-
quently, different concepts of "fair price."

INFORMATION SETS AND INVESTMENT HORIZONS

In any trading room, virtually all of the tools of the day trader are technical.
Although there are likely to be news services that offer earnings announce-
ments, and reports from securities analysts may be lying about, the charts are
the most important tool. A portfolio manager is likely to have both technical
and fundamental information, but the proportions will be reversed. The buy-

and-sell decision, in normal circumstances, will depend on fundamental infor-
mation, although technical analysis may be used in the course of trading.

There are exceptions to these two simplified portraits, but I believe that most
practitioners will find them close to experience. Short-t&m investors primarily
follow technical analysis. Longer-term investors are more likely to follow funda-
mentals. (There are, of course, many portfolio managers with short investment
horizons.) As long as this pattern holds true, the "fair" value of a stock is identi-

fied in two different ways:

1. For day traders, the bogey is the high for the day if they are selling, or
the low for the day if they are buying. Whether this price has anything
to do with intrinsic value is a moot point.

2. For long-term investors, the actual buying or selling price becomes less
important, relative to the high or low of the day. It is not unimportant,
but if the stock has been held for six months, a +31 percent return is still
considered as acceptable as +32 percent. However, that 1 percent differ-
ence can be very significant for a day trader.

Liquidity also depends on the type of information that is circulating through
the market, and on which investment horizon finds it important.

STATISTICAL CHARACTERISTICS OF MARKETS, REVISITED

In Chapter 2, we discussed some of the statistical characteristics of markets.
For stocks, bonds, and currencies we found that the frequency distribution of
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44 A Fractal Market Hypothesis

returns is a fat-tailed, high-peaked distribution that exists at many different
investment horizons. Table 3.1 shows data for 5-minute, 30-minute, and 60-
minute returns for 1989 through 1990. Compare them to the frequency distri-
butions shown in Chapter 2. There is little difference between them, and they
are definitely not normally distributed. A new market hypothesis would have
to account for this observed property of the markets.

A second property we observed in Chapter 2 involved the term structure of
volatility. The sta.ndard deviation of returns increased at a faster rate than the
square root of time. For stocks and bonds, the term structure of volatility was
bounded; for currencies, there were no bounds. Again, these are important prop-
erties that must be accounted for. We must also account for why standard Gaus-
sian statistics seems to work so well at some times, and so poorly at others. It is
well known that correlations come and go and that volatility is highly unstable.
In addition, the betas of CAPM are usually stable, but not always. Confusing the
debate over the EMH is the fact that time periods can be found to support both
sides of the argument. When markets are considered "stable," the EMH and
CAPM seem to work fine. However, during panics and stampedes, those models
break down, like "singularities" in physics. This is not unexpected, because the
EMH and the CAPM are equilibrium models. They cannot handle the transition
to turbulence. The new market hypothesis would need the ability to explain this
singular characteristic of traded markets.

THE FRACTAL MARKET HYPOTHESIS

The Fractal Market Hypothesis emphasizes the impact of liquidity and invest-
ment horizons on the behavior of investors. To make the hypothesis as general
as possible, it will place no statistical requirements on the process. We
leave that to later chapters. The purpose of the Fractal Market Hypothesis is
to give a model of investor behavior and market price movements that fits our
observations.

Markets exist to provide a stable, liquid environment for trading. Investors
wish to get a good price, but that would not necessarily be a "fair" price in the
economic sense. For instance, short covering rarely occurs at a fair price. Mar-
kets remain stable when many investors participate and have many different
investment horizons. When a five-minute trader experiences a six-sigma event,
an investor with a longer investment horizon must step in and stabilize the mar-
ket. The investor will do so because, within his or her investment horizon, the
five-minute trader's six-sigma event is not unusual. As long as another investor

The Fractal Market Hypothesis 45

Table 3.1 Frequency distributions (%) of intraday returns

Standard 1989—1990 1989—1990 1989 1990

Deviations 60-Minute 30-Minute 5-Minute 5-Minute

Less than —4.00 0.40% 0.3 7% 0.52% 0.47%
—3.80 0.05 0.11 0.08 0.08

—3.60 0.00 0.05 0.11 0.08

—3.40 0.05 0.15 0.15 0.09

—3.20 0.10 0.12 0.12 0.15

—3.00 0.07 0.16 0.17 0.13

—2.80 0.10 0.27 0.18 0.20
—2.60 0.25 0.13 0.23 0.23

—2.40 0.50 0.30 0.35 0.28

—2.20 0.69 0.41 0.48 0.35

—2.00 0.79 0.46 0.51 0.41

—1.80 0.89 0.66 0.65 0.58

—1.60 0.87 0.94 0.76 0.67

—1.40 1.46 1.18 0.89 0.78

—1.20 1.61 1.75 1.21 0.99

—1.00 2.70 2.27 1.34 1.62

—0.80 3.05 3.21 2.27 2.16

—0.60 4.61 4.30 3.60 3.85

—0.40 6.49 7.19 6.71 7.15

—0.20 8.45 9.18 11.75 13.77

0.00 16.11 15.22 16.44 19.58

0.20 13.28 15.14 19.92 16.26

0.40 9.52 9.57 10.80 10.60

0.60 7.78 8.37 6.28 6.04

0.80 5.63 5.25 3.65 3.00

1.00 4.61 4.08 2.52 2.13

1.20 3.02 2.48 1.86 1.42

1.40 1.81 1.63 1.25 1.43

1.60 1.16 1.39 1.00 1.18

1.80 0.99 0.86 0.82 0.95

2.00 0.82 0.73 0.67 0.65

2.20 0.57 0.58 0.50 0.47

2.40 0.55 0.36 0.43 0.45

2.60 0.35 0.27 0.26 0.32

2.80 0.12 0.20 0.31 0.28

3.00 0.17 0.17 0.20 0.22
3.20 0.05 0.12 0.15 0.24

3.40 0.07 0.07 0.13 0.15

3.60 0.05 0.08 0.12 0.14

3.80 0.05 0.01 0.06 0.08

Greater than 4.00 0.15 0.20 0.53 0.47
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46 A Fractal Market Hypothesis

has a longer trading horizon than the investor in crisis, the market will stabilize
itself. For this reason, investors must share the same risk levels (once an adjust-
ment is made for the scale of the investment horizon), and the shared risk ex-
plains why the frequency distribution of returns looks the same at different
investment horizons. We call this proposal the Fractal Market Hypothesis be-
cause of this self-similar statistical structure.

Markets become unstable when the fractal structure breaks down. A break-
down occurs when investors with long investment horizons either stop partici-
pating in the market or become short-term investors themselves. Investment
horizons are shortened when investors fee] that longer-term fundamental in-
formation, which is the basis of their market valuations, is no longer important
or is unreliable. Periods of economic or political crisis, when the long-term
outlook becomes highly uncertain, probably account for most of these events.

This type of instability is not the same as bear markets. Bear markets are
based on declining fundamental valuation. Instability is characterized by ex-
tremely high levels of short-term volatility. The end result can be a substantial
fall, a substantial rise, or a price equivalent to the start—all in a very short time.
However, the former two outcomes seem to be more common than the latter.

An example was market reaction when President Kennedy was assassinated
on November 22, 1963. The sudden death of the nation's leader sent the market
into a tail spin; the impact his death would have on the long-term prospects for
the country was uncertain. My proposition is that long-term investors either did
not participate on that day, or they panicked and became short-term investors.
Once fundamental information lost its value, these long-term investors short-
ened their investment horizon and began trading on overwhelmingly negative
technical dynamics. The market was closed until after the President's funeral.
By the time the market reopened, investors were better able to judge the impact
of the President's death on the economy, long-term assessment returned, and
market stabilized.

Prior to the crash of October 19, 1987, long-term investors had begun focusing
on the long-term prospects of the market, based on high valuation and a tighten-
ing monetary policy of the Fed. As a result, they began selling their equity
holdings. The crash was dominated entirely by traders with extremely short in-
vestment horizons. Either long-term investors did nothing (which meant that they
needed lower prices to justify action), or they themselves became short-term
traders, as they did on the day of the Kennedy assassination. Both behaviors prob-
ably occurred. Short-term information (or technical information) dominated in
the crash of October 19, 1987. As a result, the market reached new heights of
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instability and did not stabilize until long-term investors stepped in to buy during

the following days.
More recently, the impending Gulf War caused a classic market roller coaster

on January 19, 1990. James Baker, then Secretary of State, met with the Iraqi
Foreign Minister, Tank Aziz, to discuss the Iraqi response to the ultimatum de-
livered by the Allies. The pending war caused investors to concentrate on the
short term; they had evidently decided that fundamental information was useless
in such an uncertain environment. As a result, the market traded on rumors and
idle speculation. When the two statesmen met for longer than expected, the Dow
Jones Industrials soared 40 points on expectation that a negotiated solution
was at hand. When the meeting finally broke and no progress was reported, the
market plummeted 39 points. There was no fundamental reason for such a wide
swing in the market. Investors had, evidently, become short-term-oriented, or
the long-term investors did not participate. In either case, the market lost liquid-

ity and became unstable.
The fractal statistical structure exists because it is a stable structure, much

like the fractal structure of the lung, discussed in Chapter 1. In the lung, the
diameter of each branching generation decreases accoiding to a power law.
However, within each generation, there is actually a range of diameters. These
exist because each generation depends on previous ones. If one generation was
malformed, and each branch was the same diameter, then the entire lung could
become malformed. If one branch is malformed in a fractal structure, the over-
all statistical distribution of diameters makes up for the malformed branch. In
the markets, the range of statistical distributions over different investment
horizons fulfills the same function. As long as investors with different invest-
ment horizons are participating, a panic at one horizon can be absorbed by the
other investment horizons as a buying (or selling) opportunity. However, if the
entire market has the same investment horizon, then the market becomes un-
stable. The lack of liquidity turns into panic.

When the investment horizon becomes uniform, the market goes into "free
fall"; that is, discontinuities appear in the pricing sequence. In a Gaussian en-
vironment, a large change is the sum of many small changes. However, during
panics and stampedes, the market often skips over prices. The discontinuities
cause large changes, and fat tails appear in the frequency distribution of re-
turns. Again, these discontinuities are the result of a lack of liquidity caused by
the appearance of a uniform investment horizon for market participants.

Another explanation for some large events exists. If the information re-
ceived by the market is important to both the short- and long-term horizons,
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48 A Fractal Market_Hypothesis Summary -

then liquidity can also be affected. For instance, on April 1, 1993, Phillip Mor-
ris announced price cuts on Marlboro cigarettes. This, of course, reduced the
long-term prospects for the company, and the stock was marked down accord-
ingly. The stock opened at $48, 17V8 lower than its previous close of $55V8.
However, before the stock opened, technical analysts on CNBC, the cable fi-
nancial news network, said that the stock's next resistance level was 50. Phillip
Morris closed at 49½. It is possible that 49½ was Phillip Morris' "fair" value,
but it is just as likely that technicians stabilized the market this time.

Even when the market has achieved a stable statistical structure, market dy-
namics and motivations change as the investment horizon widens. The shorter the
term of the investment horizon, the more important technical factors, trading
activity, and liquidity become. Investors follow trends and one another. Crowd
behavior can dominate. As the investment horizon grows, technical analysis
gradually gives way to fundamental and economic factors. Prices, as a result, re-
flect this relationship and rise and fall as earnings expectations rise and fall.
Earnings expectations rise gradually over time. If the perception is a change in
economic direction, earnings expectations can rapidly reverse. If the market has
no relationship with the economic cycle, or if that relationship is very weak, then
trading activity and liquidity continue their importance, even at long horizons.

If the market is tied to economic growth over the long term, then risk will
decrease over time because the economic cycle dominates. The economic cycle
is less volatile than trading activity, which makes long-term stock returns less
volatile as well. This relationship would cause variance to become bounded.

Economic capital markets, like stocks and bonds, have a short-term fractal
statistical structure superimposed over a long-term economic cycle, which may
be deterministic. Currencies, being a trading market only, have only the fractal
statistical structure.

Finally, information itself would not have a uniform impact on prices; in-
stead, information would be assimilated differently by the different investment
horizons. A technical rally would only slowly become apparent or important to
investors with long-term horizons. Likewise, economic factors would change
expectations. As long-term investors change their valuation and begin trading,
a technical trend appears and influences short-term investors. In the short
term, price changes can be expected to be noisier because general agreement
on fair price, and hence the acceptable band around fair price, is a larger com-
ponent of total return. At longer investment horizons, there is more time to di-
gest the information, and hence more consensus as to the proper price. As a
result, the longer the investment horizon, the smoother the time series.

SUMMARY

The Fractal Market Hypothesis proposes the following:

1. The market is stable when it consists of investors covering a large num-
ber of investment horizons. This ensures that there is ample liquidity for

traders.
2. The information set is more related to market sentiment and technical

factors in the short term than in the longer term. As investment hori-
zons increase, longer-term fundamental information dominates. Thus,
price changes may reflect information important only to that invest-
ment horizon.

3. If an event occurs that makes the validity of fundamental information
questionable, long-term investors either stop participating in the market
or begin trading based on the short-term information set. When the over-
all investment horizon of the market shrinks to a uniform level, the mar-
ket becomes unstable. There are no long-term investors to stabilize the
market by offering liquidity to short-term investors.

4. Prices reflect a combination of short-term technical trading and long-
term fundamental valuation. Thus, short-term price are likely to
be more volatile, or "noisier," than long-term trades. The underlying
trend in the market is reflective of changes in expected earnings, based on

the changing economic environment. Short-term trends are more likely
the result of crowd behavior. There is no reason to believe that the length
of the short-term trends is related to the long-term economic trend.

5. If a security has no tie to the economic cycle, then there will be no long-
term trend. Trading, liquidity, and short-term information will dominate.

Unlike the EMH, the Fractal Market Hypothesis (FMH) says that informa-
tion is valued according to the investment horizon of the investor. Because the
different investment horizons value information differently, the diffusion of in-
formation will also be uneven. At any one time, prices may not reflect all avail-
able information, but only the information important to that investment horizon.

The FMH owes much to the Coherent Market Hypothesis (CMI-() of Vaga
(1991) and the K-Z model of Larrain (1991). I discussed those models exten-

sively in my previous book, Like the CMH, the FMH is based on the premise

that the market assumes different states and can shift between stable and un-
stable regimes. Like the K-Z model, the FMH finds that the chaotic regime
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occurs when investors lose faith in long-term fundamental information. In

many ways, the FMH combines these two models through the use of investment

horizons: it specifies when the regime changes and why markets become un-

stable when fundamental information loses its value. The key is that the FMH

says the market is stable when it has no characteristic time scale or investment

horizon. Instability occurs when the market loses its fractal structure and as-

sumes a fairly uniform investment horizon.
In this chapter, 1 have outlined a new view on the structure of markets. Unfor- FRAc1A I (R IS)

tunately, most standard market analysis assumes that the market process is, es-

sentially, stochastic. For testing the Efficient Market Hypothesis (EMH), this

assumption causes few problems. However, for the FMH, many of the standard

tests lose their power. That is not to say that they are useless. Much research using

standard methodologies has pointed to inconsistencies between the EMH and ob-

served market behavior; however, new methodologies are also needed to take ad-

vantage of the market structure outlined in the FMH. Many methodologies have

already been developed to accomplish these ends. In Part Two, we will examine

one such methodology: R/S analysis. My emphasis on R/S analysis does not as-

sume that it will supplant other methodologies. My purpose is to show that it is a

robust form of time-series analysis and should be one of any analyst's tools.
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4
Measuring Memory
The Hurst Process and
R/S Analysis

Standard statistical analysis begins by assuming that the system under study is

primarily random; that is, the causal process that created the time series has

many component parts, or degrees of freedom, and the interaction of those

components is so complex that a deterministic explanation is not possible.

Only probabilities can help us understand and take advantage of the process.

The underlying philosophy implies that randomness and determinism cannot

coexist. In Chapter 1, we discussed nonlinear stochastic and deterministic sys-

tems that were combinations of randomness and determinism, such as the
Chaos Game. Unfortunately, as we saw in Chapter 2, these systems are not

well-described by standard Gaussian statistics. So far, we have examined these

nonlinear processes using numerical experiments on a case-by-case basis. En

order to study the statistics of these systems and create a more general analyt-

ical framework, we need a probability theory that is nonparametric. That is, we

need a statistics that makes no prior assumptions about the shape of the proba-

bility distribution we are studying.
Standard Gaussian statistics works best under very restrictive assumptions.

The Central Limit Theorem (or the Law of Large Numbers) states that, as we

have more and more trials, the limiting distribution of a random system will be

the normal distribution, or bell-shaped curve. Events measured must be

"independent and identically distributed" (LID). That is, the events must not

53
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R T050

where R = the distance covered
T = a time index

influence one another, and they must all be equally likely to occur. It has long
been assumed that most large, complex systems should be modeled in this man-
ner. The assumption of normality, or near-normality, was usually made when
examining a large, complex system so that standard statistical analysis could
be applied.

But what if a system is not lID? Then adjustments are made to create statis-
tical structures which, while not lID, are close enough so standard methods
can still be applied, with some modifications. There certainly are instances
where that logic is justified, but it amounted to a rationalization process in the
case of capital markets and economic theory, and the process has led us to our
current dead end. En Chaos and Order in the Capital Markets, I discussed this
at some length. I do not intend to repeat those arguments here, but it is worth
mentioning that statistical analysis of markets came first and the Efficient
Market Hypothesis followed.

If the system under study is not lID, or close, then what are we to do? We need
a nonparametric method. Luckily, a very robust, nonparametric methodology
was discovered by H. E. Hurst, the celebrated British hydrologist, who in 1951
published a paper titled "The Long-Term Storage Capacity of Reservoirs." Su-
perficially, the paper dealt with modeling reservoir design, but Hurst extended
his study to many natural systems and gave us a new statistical methodology for
distinguishing random and nonrandom systems, the persistence of trends, and
the duration of cycles, if any. In short, he gave us a method, called rescaled
range, or R/S analysis, for distinguishing random time series from fractal time
series. We now turn to his methodology.

This chapter gives a brief background of Hurst's reasoning and examples of
his early work. In Chapter 5, we will look at the significance of the results.
Chapter 6 will show how R/S analysis can be used to analyze periodic and non-

periodic cycles.

BACKGROUND: DEVELOPMENT OF k/S ANALYSIS

H. E. Hurst (1900—1978) built dams. In the early 20th century, he worked on the
Nile River Dam Project. He studied the Nile so extensively that some Egyptians
reportedly nicknamed him "the Father of the Nile." The Nile River posed an in-
teresting problem for Hurst as a hydrologist. When designing a dam, hydrolo-
gists are concerned with the storage capacity of the resulting reservoir. An
influx of water occurs from a number of natural elements (rainfall, river over-
flows, and so on), and a regulated amount is released for crops. The storage ca-
pacity of the reservoir is based on an estimate of the water inflow and of the

need for water outflow. Most hydrologists begin by assuming that the water in-

flow is a random process—a perfectly reasonable assumption when dealing with

a complex ecosystem. Hurst, however, had studied the 847-year record that the

Egyptians had kept of the Nile River's overflows, from 622 AD. to 1469 AD. To

him, the record did not appear random. Larger-than-average overflows were

more likely to be followed by more large overflows. Abruptly, the process would

change to a lower-than-average overflow, which was followed by other lower-

than-average overflows. In short, there appeared to be cycles, but their length

was nonperiodic. Standard analysis revealed no statistically significant correla-

tions between observations, so Hurst developed his own methodology.

Hurst was aware of Einstein's (1908) work on brownian motion (the erratic

path followed by a particle suspended in a fluid). Brownian motion became the

primary model for a random walk process. Einstein found that the distance

that a random particle covers increases with the square root of time used to

measure it, or:
(4.1)

Equation (4.1) is called the Tto the one-half rule, and is commonly used in

statistics. We use it in financial economics to annualize volatility or standard

deviation. We take the standard deviation of monthly returns and multiply it by

the square root of 12. We are assuming that the dispersion of returns increases

with the square root of time. Hurst felt that, using this property, he could test

the Nile River's overflows for randomness.
We begin with a time series, x to represent n consecutive

values. (In this book, we will refer to the time series x to mean all xr, where

r = 1 to n. A specific element of x will include its subscript. This notation will

apply to all time series.) The time index is unimportant in general. In Hurst's

case, it was annual discharges of the Nile River. For markets, it can be the daily

changes in price of a stock index. The mean value, Xm, of the time series x is

defined as:

Xm (x1 + . . . +
(4.2)

The standard deviation, is estimated as:

(sn = —
11/ (4.3)
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56 Measuring Memory_The Hurst Process and R/S Analysis

which is merely the standard normal formula for standard deviation. The
rescaled range was calculated by first rescaling or "normalizing" the data by
subtracting the sample mean: —

r = I n v' (4.4)

The resulting series, Z, now has a mean of zero. The next step creates a cu-
mulative time seriesY:

I
+ Zr)) r = 2 n (4.5)

Note that, by definition, the last value of Y (Ye) will always be zero because
Z has a mean of zero. The adjusted range, is the maximum minus the min-
imum value of the Yr:

(4.6)

The subscript, n, for R0 now signifies that this is the adjusted range for
x1 Because Y has been adjusted to a mean of zero, the maximum
value of Y will always be greater than or equal to zero, and the minimum will
always be less than or equal to zero. Hence, the adjusted range, will always
be nonnegative.'!

This adjusted range, is the distance that the system travels for time index
n. If we set n = T, we can apply equation (4.1), provided that the time series, x,
is independent for increasing values of n. However, equation (4.1) applies only
to time series that are in brownian motion: they have zero mean, and variance
equal to one. To apply this concept to time series that are not in brownian
tion, we need to generalize equation (4.1) and take into account systems that
are not independent. Hurst found that the following was a more general form of
equation (4.1):

(4.7)

The subscript, n, for refers to the RIS value for c = a
Constant.

The RIS value of equation (4.7) is referred to as the resca/ed range because
it has zero mean and is expressed in terms of local standard deviation. In gen-
eral, the R/S value scales as we increase the time increment, a, by a power-law

I
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value equal to H, generally called the Hurst exponent. This is the first connec-

tion of the Hurst phenomena with the fractal geometry of Chapter 1. Remem-

ber, all fractals scale according to a power law. In the mammalian lung, the

diameter of each branch decreased in scale according to an inverse power-law

value. This inverse power-law value was equal to the fractal dimension of the

structure. However, in the case of time series, we go from smaller to larger in-

crements of time, rather than from larger to smaller branching generations, as

in the lung. The range increases according to a power. This is called power-law

scaling. Again, it is a characteristic of fractals, though not an exclusive one. We

need other characteristics before we can call the Hurst phenomena "fractal."

Those will come in due course.
Rescaling the adjusted range, by dividing by the standard deviation, turned

out to be a master stroke. Hurst originally performed this operation so he could

compare diverse phenomena. As we shall see, rescaling also allows us to com-

pare periods of time that may be many years apart. In comparing stock returns

of the 1920s with those of the 1 980s, prices present a problem because of infla-

tionary growth. Rescaling minimizes this problem. By rescaling the data to

zero mean and standard deviation of one, to allow diverse phenomena and time

periods to be compared, Hurst anticipated renormalization group theory in

physics. Renormalization group theory performs similar transformations to

study phase transitions, where characteristic scales cease to exist. Rescaled

range analysis can also describe time series that have no characteristic scale.

Again, this is a characteristic of fractals.
The Hurst exponent can be approximated by plotting the log (RISc) versus

the log (n) and solving for the slope through an ordinary least squares regres-

sion. In particular, we are working from the following equation:

Iog(c) + H*log(n) (4.8)

If a system were independently distributed, then H = 0.50. Hurst first in-

vestigated the Nile River. He found H = 0.91! The rescaled range was increas-

ing at a faster rate than the square root of time. It was increasing at the 0.91

root of time, which meant that the system (in this case, the range of the height

of the Nile River) was covering more distance than a random process would. In

order to cover more distance, the changes in annual Nile River overflows had to

be influencing each other. They had to be correlated. Although there are au-

toregressive (AR) processes that can cause short-term correlations, these river

overflows were one year apart. It seemed unlikely that a simple AR(1) or

AR(2) process was causing these anomalous results.
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When Hurst decided to check other rivers, he found that the records were

not as extensive as for the Nile. He then branched out to more diverse natural

phenomena—rainfall, sunspots, mud sentiments, tree rings, anything with a

long time series. His results are reprinted in Table 4.1 and Figure 4.1. Both are

reproduced from Hurst (1951).
Figure 4.1 is the first in a series of log/log plots that we will be investigat-

ing. Hurst originally labeled the scaling factor "K." Mandelbrot renamed it

"H" in Hurst's honor, and we continue that tradition. Therefore, in Figure 4.1

and Table 4.1, K H. The slope of these log/log plots is the Hurst exponent H.
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FIGURE 4.1 Hurst (1951) RIS analysis. (Reproduced with permission of the Amer-

ican Society of Civil Engineers.)
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60 Measuring Memory—The Hurst Process and R/S Analysis

In all cases, Hurst found H greater than 0.50. He was intrigued that H often
took a value of approximately 0.70. Could there be some sort of universal phe-
nomenon taking place? Hurst decided to find out.

THE JOKER EFFECT

Before the age of computers, it took fortitude to be an applied mathematician.
The numerical experiments, which we conduct so easily on personal computers or
at workstations, were especially time-consuming and prone to error. Hurst felt
that a biased random walk was causing his results, but he needed a simulation
method. He devised an elegant process that serves as an excellent metaphor for the
Hurst process. This process has been described in Feder (1988), Mandelbrot
(1982), and Peters (1989, 199la), but because Ifeel that understanding the Hurst
phenomena is fundamentally bound up in the simulation method, I am repeating
it here in abbreviated form. Although I am introducing additional insights, read-
ers familiar with my earlier work may wish to skip to the next section. For readers
who are new to the Hurst phenomena, this section is essential.

Hurst simulated a random process by using a probability pack of cards, that
is, a deck of 52 cards that contained ±1, ±3, ±5, ±7, and ±9, to approximate
a normal distribution. He would shuffle this deck and, by noting the number of
repeated cuttings, generate a random time series. Performing R/S analysis on
the resulting series generated a Hurst exponent of approximately 0.50. It was
close enough to meet the standards of the day. Hurst performed 1,000 trials
and found that the slope varied little.

To simulate a biased random walk, he would first shuffle the deck and cut it
once, noting the number. For this example, we will use +3 as the initial cut. He
would replace this card and reshuffle the deck. Then he would deal out two
hands of 26 cards, which we will name decks A and B. Because the initial cut
was +3, he would take the three highest cards from deck A and place them in
deck B. He would then remove the three lowest cards in deck B. Deck B was
then biased to a level of +3. Finally, he would place a joker in deck B and
reshuffle it. He would use the now biased deck B as his time series generator,
until he cut the joker. Then Hurst would create a new biased hand.

Hurst did 1,000 trials of 100 hands. He calculated H = 0.72, much as he had
done in nature. Think of the process involved: first, the bias of each hand,
which is determined by a random cut of the deck; then, the generation of the
time series itself, which is another series of random cuts; and finally, the ap-
pearance of the joker, which again occurs at random. Despite the use of all

K/S Analysis: A Step-by-Step Guide
61

these random events, H 0.72 would always appear. Again, we have local ran-

domness and a global structure, much like the Chaos Game in Chapter 1. In

this case, it is a global statistical structure rather than a geometric one.

If markets are Hurst processes, they exhibit trends that persist until an eco-

nomic equivalent of the joker arises to change that bias in magnitudes or direc-

tion, or both.

RANDOMNESS AND PERSISTENCE: INTERPRETING

THE HURST EXPONENT

According to the original theory, H = 0.50 would imply an independent process.

It is important to realize that R/S analysis does not require that the underlying

process be Gaussian, just independent. This, of course, would include the normal

distribution, but it would also include non-Gaussian independent processes like

the Student-t, or gamma, or any other shape. RIS analysis is nonparametric, so

there is no requirement for the shape of the underlying distribution.

0.50 < H  1.00 implies a persistent time series, and a persistent time se-

ries is characterized by long memory effects. Theoretically, what happens to-

day impacts the future forever. In terms of chaotic dynamics, there is sensitive

dependence on initial conditions. This long memory occurs regardless of time

scale. All daily changes are correlated with all future daily changes; all weekly

changes are correlated with all future weekly changes. There is no characteris-

tic time scale, the key characteristic of fractal time series.

0 H < 0.50 signifies antipersistence. An antipersiStent system covers less

distance than a random one. For the system to cover less distance, it must re-

verse itself more frequently than a random process. Theorists with a standard

background would equate this behavior with a mean-reverting process. How-

ever, that assumes that the system under study has a stable mean. We cannot

make this assumption.
As we have seen, persistent time series are the most common type found in

nature. We will also see that they are the most common type in the capital mar-

kets and in economics. To assess that statement, we must turn to more practi-

cal matters, such as calculating numbers.

R/S ANALYSIS: A STEP-BY-STEP GUIDE

R/S analysis is a simple process that is highly data-intensive. This sec-

tion breaks equations (4.2) through (4.8) into a series of executable steps. A
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62 Measuring Memory.—The Hurst Process and R/S Analysis An Example: The YenJDoIIar Exchange Rate

program in the GAUSS language is supplied in Appendix 2. These are the
sequential steps:

1. Begin with a time series of length M. Convert this into a time series of
length N = M — I of logarithmic ratios:

N log(M(+ l)/Mj), i 1,2,3 (M — I) (4.9)

2. Divide this time period into A contiguous subperiods of length n, such
that A*n N. Label each subperiod 'a, with a = 1, 2, 3 A. Each
element in La is labeled Nk. such that k = 1, 2, 3 n. For each
of length n, the average value is defined as:

e5 = (1/n)*
k=I

(4.10)

where ea = average value of the contained in subperiod 'a length n

3. The time series of accumulated departures (Xka) from the mean value
for each subperiod 'a is defined as:

Xka E(Nja — e5)

k=l,2,3 n

(4.11)

4. The range is defined as the maximum minus the minimum value of Xk,a
within each subperiod 1a

R1 max(Xk5) — min(Xka)

where I k   n.

S. The sample standard deviation calculated for each subperiod Ia:
a

= ((1/n)*
k=I

(4.12)

6. Each range, R1, is now normalized by dividing by the S1, corresponding
to it. Therefore, the rescaled range for each subperiod is equal to

From step 2 above, we had A contiguous subperiods of length n.

Therefore, the average RIS value for length n is defined as:

A

(RIS)0 = (l/A)* (R1/S1)
a=l

(4.13)

7. The length n is increased to the next higher value, and (M — 1)/n is an

integer value. We use values of n that include the beginning and ending

points of the time series, and steps 1 through 6 are repeated until

n = (M — 1)12. We can now apply equations (4.7) and (4.8) by perform-

ing an ordinary least squares regression on log(n) as the independent

variable and as the dependent variable. The intercept is the es-

timate for Iog(c), the constant. The slope of the equation is the estimate

of the Hurst exponent, H.

In subsequent chapters, we will elaborate more on other practical matters.

For now, we add one other rule of thumb:. In general, run the regression over

values of n 10. Small values of n produce unstable estimates when sample

sizes are small. In Chapter 5, when we go over significance tests, we will see

other rules of thumb.

AN EXAMPLE: THE YEN/DOLLAR EXCHANGE RATE

As an initial example, R/S analysis has been applied to the daily yen/dollar

exchange rate from January 1972 to December 1990. Unfortunately, an autore-

gressive (AR) process can bias the Hurst exponent, H, for reasons given in

ChapterS. Therefore, we have used AR(1) residuals of the change in exchange

rate; that is, we have transformed the raw data series in the following manner:

— (a + b*Y((L))

where = new value at time
change in the yen/dollar exchange rate at time

a,b = constants

Beginning with the we used step 2 above and calculated the R/S values

for various N. The results are shown in Table 4.2, and the log/log plot is shown
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Regression output, Daily yen:
Constant
Standard error of Y (estimated)

—0.187

R squared
o.oi 2

Hurst exponent 0.642
Standard error of coefficient
Significance 5.848

as Figure 4.2. Note that the yen/dollar exchange rate produces the anomalous
value, H = 0.64.

Because the Hurst exponent is different from 0.50, we are tempted to say
that the yen/dollar exchange rate exhibits the Hurst phenomena of persistence.
But, how significant is this result? Without some type of asymptotic theory, it
would be difficult to assess significance. Luckily, we have developed signifi-
cance tests, and they are the subject of Chapter 5.

1.5

5
Testing R/S Analysis

We are always faced with one major que'stion when analyzing any process:
How do we know that our results did not happen by chance? We know from

experience, or anecdotally from others, that "freak" things happen—highly
improbable events do occur. Random events, even those that are highly un-

likely, are labeled trivial. In statistics, we check our results against the proba-
bility that they could be trivial. If they occur only 5 percent of the time or less,

we say that we are 95 percent sure that they did not occur at random and are

significant. We say that there is still a 5 percent chance that this event did hap-

pen by accident, but we are highly confident that the results are significant and

tell us something important about the process under study. Significance testing

around probabilistic confidence intervals has become one of the main foci of

statistics.
Therefore, to evaluate the significance of R/S analysis, we also need conf i-

dence tests of our findings, much like the "t-statistics" of linear regression. R/S

analysis has been around for some years, but a full statistical evaluation of the

results has been elusive. Using powerful personal computers, we can now do

simulations to calculate the expected value of the R/S statistic and the Hurst

exponent. When these simulations are combined with previously developed
asymptotic theory, it is now possible to assess the significance of our findings.

We do so by first investigating the behavior of RIS analysis when the system un-

der study is an independent, random system. Once we have fully investigated the
expected results for a random system, we can compare other processes to the
random null hypothesis and gauge their significance.

65

64 Measuring Memory—The Hurst Process and R/S Analysis

Table 4.2 R/S Analysis

2:

0.5

o
0.5 1 1.5 2 2.5 3 3.5 4

Log(Number of Days)

FIGURE 4.2 R/S analysis, daily yen: January 1972 through December 1990.
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66 Testing R/S Analysis

This chapter traces the historical development of the random null hypothe-
sis, proceeds with the development of full tests, and concludes with a guide to
application.

THE RANDOM NULL HYPOTHESIS

Hypothesis testing postulates the most likely result as the probable answer. If
we do not understand the mechanics behind a particular process, such as the
stock market, then a statistical structure that is independent and identically
distributed (lID), and is characterized by a random walk, is our best first
guess. The structure is Gaussian, and its probability density function is the
normal distribution, or bell-shaped curve. This initial guess is called the null
hypothesis. We chose the Gaussian case as the null hypothesis because it is eas-
ier, mathematically speaking, to test whether a process is a random walk and
be able to say it is not one, than it is to prove the existence of fractional brow-
nian motion (or some other long memory process). Why? The Gaussian case
lends itself to optimal solutions and is easily simulated. In addition, the Effi-
cient Market Hypothesis (EMH) is based on the Gaussian case, making it the
null hypothesis by default.

Hurst (1951) based his null hypothesis on the binomial distribution and the
tossing of coins. His result for a random walk is a special case of equation (4.7):

= (5.1)

where n = the number of observations

Feller(1951) found a similar result, but he worked strictly with the adjusted
range, R. Hurst postulated equation (5.1) for the resealed range, but it was not
really proven in the formal sense. Feller worked with the adjusted range (that
is, the cumulative deviations with the sample mean deleted), and developed the
expected value of R' and its variance. The rescaled range, R/S, was considered
intractable because of the behavior of the sample standard deviation, espe-
cially for small values of N. It was felt that, because the adjusted range could
be solved and should asymptotically (that is, at infinity) be equivalent to the
rescaled range, that result was close enough.

Feller (1951) found the following formulas, which were essentially identical
to Hurst's equation (5.1) for the expected value of the adjusted range, and also
calculated its variance:

The Random Null Hypothesis
67

E(R(n)) = (5.2)

Var(E(R'(n))) = — lr/2)*n (5.3)

The variance formula, equation (5.3), supplies the variance for one value of

R'(n). Because we can expect that the R/S values of a random number will be

normally distributed (we will show this later through simulations), the vari-

ance of R(n) will decrease, the more samples we have. For instance, if we have

a time series that consists of N = 5,000 observations, we have 100 independent

samples of R'(SO) if we use nonoverlapping time periods. Therefore, the ex-

pected variance of our sample will be Var(E(R'(n)))/lOO, as shown in elemen-

tary statistics.
Equations (5.1) and (5.2) are standard assumptions under the null hypothe-

sis of brownian motion. The range increases with the square root of time. Hurst

went a bit further and suggested that the rescaled range also increases with the

square root of time. Feller also said that the variance of the range increases
linearly with time. Neither result is particularly surprising, given our discus-

sions in Chapter 4. However, we now have access to tools that Hurst, in partic-

ular, would have found very useful.

Monte Carlo Simulations

The tool that has eased the way is the personal computer. With random number
generators, we can use the process outlined in Chapter 4, especially equations

(4.7) and (4.8), and simulate many samplings of RIS values. We can calculate

the means and variances empirically, and see whether they conform to equa-

tions (5.1), (5.2), and (5.3). This process is the well-known "Monte Carlo"

method of simulation, which is particularly appropriate for testing the Gaus-

sian Hypothesis.
Before we begin, we must deal with the myth of "random numbers." No ran-

dom number generator produces true random numbers. Instead, an algorithm

produces pseudo-random numbers—numbers that are statistically independent

according to most Gaussian tests. These pseudo-random numbers actually have

a long cycle, or memory, after which they begin repeating. Typically, the cy-

cles are long enough for the repetition to be undetectable. Recently, however, it

was found that pseudo-random numbers can corrupt results when large
amounts of data are used in Monte Carlo simulations. We usually do not have

this problem in financial economics. However, many of the algorithms used as

random number generators are versions of chaotic systems. R/S analysis is
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particularly adept at uncovering deterministic chaos and long memory pro-
cesses. Therefore, to ensure the randomness of our tests, all random number
series in this book are scrambled according to two other pseudo-random num-
ber series before they are used. This technique does not eliminate all depen-
dence, but it reduces it to virtually unmeasurable levels, even for R/S analysis.

We begin with a pseudo-random number series of 5,000 values (normally
distributed with mean zero and standard deviation of one), scrambled twice.
We calculate R/S values for all n that are evenly divisible into 5,000; that
is, each value will always include the beginning and ending value of the
complete time series. We then repeat this process 300 times, so that we have
300 values for each n. The average of these is the expected value,

for a system of Gaussian random numbers. Variances are calculated,
and the final values are compared to those obtained by using equations (5.1),
(5.2), and (5.3). The results are shown in Table 5.1 and graphed in Figure 5.1.

The simulated values converge to those in equations (5.1) and (5.2)
when n is greater than 20. However, for smaller values of n, there is a consis-
tent deviation. The values created by the simulation are systematically
lower than those from Feller's and Hurst's equations. The variances of the

were also systematically lower than Feller's equation (5.3). Hurst, how-
ever, knew that he was calculating an asymptotic relationship, one that would
hold only for large n. Feller also knew this. Rescaling was another problem.

Number of
Observations Monte Carlo Hurst

Anis and Lloyd
(1 976)

Empirical
Correction

10 0.4577 0.5981 0.4805 0.4582
20 0.6530 0.7486 0.6638 0.6528
25 0.71 23 0.7970 0.7208
40 0.8332 0.8991 0.8382 0.8327
50 0.8891 0.9475 0.8928 0.8885

100 1.0577 1.0981 1.0589 1.0568
125 1.1097 1.1465 1.1114 1.1097
200 1.2190 1.2486 1.2207 1.2196
250 1.2710 1.2970 1.2720 1.2711
500 1.4292 1.4475 1.4291 1.4287
625 1.4801 1.4960 1.4795 1.4792

1,000 1.5869 1.5981 1.5851 1.5849
1,250 1.6351 1.6465 1.6349 1.6348
2,500 1.7839 1.7970 1.7889 1.7888
Mean square error: 0.0035 0.0001 0.0000

FIGURE 5.1 R/S values, Monte Carlo simulation versus Hurst's equation.

Feller was working with the adjusted range, not the rescaled range. Was the

scaling behavior of the standard deviation relative to the range for small values

of n causing this deviation? The fact remains that the mean value of the R/S

statistic is quite different from the value predicted by Feller's theory.

Many years later, Anis and Lloyd (1976) developed the following equation

to circumvent the systematic deviation of the R/S statistic for small n:

= [f{o.5*(n — I)) / (5.4)

The derivation of this equation is beyond the scope of this book. Those in-

terested in the derivation should consult Anis and Lloyd (1976). For large val-

ues of n, equation (5.4) becomes less useful because the gamma values become

too large for most personal computer memories. However, using Sterling's

Function, the equation can be simplified to the following:

= r) I r (5.5)

Equation (5.5) can be used when n > 300. As n becomes larger, equation (5.5)

approaches equation (5.2). Equations (5.4) and (5.5) adjust for the distribution

68 Testing R/S Analysis The Random Null Hypothesis
69
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Table 5.1 Log (RIS) Value Estimates

PD
F com

pression, O
C

R
, w

eb-optim
ization w

ith C
VISIO

N
's PdfC

om
pressor

http://www.cvisiontech.com/pdf_compressor_31.html


70 Testing R/S Analysis The Random Null Hypothesis
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of the variance of the normal distribution to follow the gamma distribution;
that is, the standard deviation will scale at a slower rate than the range for
small values of n. Hence, the rescaled range will scale at a faster rate (H will
be greater than 0.50) when n is small. Mandelbrot and Wallis (l969a,b,c) re-
ferred to the region of small n as "transient" because n was not large enough
for the proper behavior to be seen. However, in economics, we rarely have
enough data points to throw out the smaller n: that may be all that we have.
Mandelbrot and Wallis would not start investigating scaling behavior until
H = 20. Theoretically, Anis and Lloyd's formula was expected to explain the
behavior seen from the Monte Carlo experiments.

Table 5.1 and Figure 5.2 show the results. There is some progress, but equa-
tions (5.4) and (5.5) still generate RIS values for small n that are higher than
the sampled values.

There is a possibility that the results are caused by a bias, originating in the
pseudo-random number generator, that double scrambling does not reduce.
Perhaps a sample size of 300 is still not enough. To test for sample bias, an
independent series of numbers was used. This series was 500 monthly S&P 500
changes, normalized to mean zero and unit variance. These numbers were
scrambled 10 times before starting. Then they were randomly scrambled 300

0.5

0

FIGURE 5.2 RIS values, Monte Carlo simulation versus Anis and Lloyd's equation.

Table 5.2 Log (R/S) Value Estimates

Number of
Observations

Scrambled
S&P 500 Monte Carlo

0.4551 0.457710
20 0.6474

0.712325
0.889150 0.8812
1.0577100
1.1097125

250

1.1012
1.2591 1.2710

times, and R/S values were calculated as before. Table 5.2 shows the results.

They are virtually indistinguishable from the Gaussian generated series. The

results are even more remarkable when we consider that market returns are not

normally distributed; they are fat-tailed with a high peak at the mean, even

after scrambling. From these results, we can say that the Anis and Lloyd for-

mula is missing something for values of n less than 20. What they are missing

is unknown. However, empirically, I was able to derive a correction to the Anis

and Lloyd formula. This correction multiplies (5.4) and (5.5) with a correction

factor and yields:

((n — 0.5) / — r) / r (5.6)

The results of this empirically derived correction are shown in Table 5.1

and Figure 5.3. The correction comes very close to the simulated R/S values.

From this point forward, all expected RIS values under the random null hy-

pothesis will be generated using equation (5.6).

The Expected Value of the Hurst Exponent

Using the results of equation (5.6), we can now generate expected values of the

Hurst exponent. Judging from Table 5.1 and Figure 5.3, we can expect that the

Hurst exponent will be significantly higher than 0.50 for values less than

500—showing, again, that H 0.50 for an independent process is an asymp-

totic limit. The expected Hurst exponent will, of course, vary, depending on

the values of n we use to run the regression. In theory, any range will be appro-

priate as long as the system under study and the E(R/S) series cover the same

values of n. In keeping with the primary focus of this book, which is financial

2

1.5

0.5 1 1.5 2 2.5 3 3,5 4
Log(Number of Observations)
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72 Testing R/S Analysis The Random Null Hypothesis
73

FIGURE 5.3 R/S values, Monte Carlo simulation versus corrected Anis and Lloyd
equation.

economics, we will begin with n = 10. The final value of n will depend on the
system under study. in Peters (199 Ia), the monthly returns of the S&P 500
were found to have persistent scaling for n <50 months, with H = 0.78. As
shown in Figure 5.4, the E(H) is equal to 0.6 13 for 10 n   50, a signifi-
cantly lower value—at least it looks significantly lower. But is it?

Because the R/S values are random variables, normally distributed, we
would expect that the values of H would also be normally distributed. In
case, the expected variance of the Hurst exponent would be:

Var(H)n = l/T (5.7)

where T = the total number of observations in the sample

This would be the variance around the as calculated from
Note that the Var(H)n does not depend on n or H, but, instead, depends on the
total sample size, T.

Once again, Monte Carlo experiments were performed to test the validity of
equation (5.7). For a normally distributed random variable scrambled twice,

FIGURE 5.4 E(H) for 10< n <50, nonnormalized frequency in percent.

7,000 values of H were calculated for 10 n 50. The simulations were done

for T = 200, 500, 1,000, and 5,000. Table 5.3 shows the results:

1. The mean values of H conform to E(H) using the E(R/S) values from
equation (5.6), showing that the empirical correction to Anis and
Lloyd's formula is valid.

2. The variance in each case is very close to l/T.

The simulations were repeated for 10   n   500, 10 n < 1,000, and

10 n 5,000. In each case, the E(l-I) conformed to the value predicted by

equation (5.6), and the variance is approximately equal to l/T. Based on the re-

sults in Table 5.1, we can say that E(H) for LID random variables can be cal-

culated from equation (5.6), with variance lIT. Figure 5.5 shows the "normal-
ized" distributions for various values of T. As expected, they appear normally

distributed.
What if the independent process is other than Gaussian? As we saw in Table

5.2, a fat-tailed, high-peaked independent distribution does exhibit mean val-

ues as predicted in equation (5.6). However, the variance does differ. Unfortu-
nately, the variance for distributions that are not normally distributed differs
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74 Testing R/S Analysis

Table 5.3 Standard Deviation of E(H): 10 < n < 50

Simulated Theoretical Simulated Theoretical
Number of Hurst Hurst Standard Standard
Observations Exponent Exponent Deviation Deviation

200 0.613 0.613 0.0704 0.0704
500 0.615 0.613 0.0451 0.0446

1,000 0.615 0.613 0.0319 0.0315
5,000 0.616 0.613 0.0138 0.0141

10,000 0.614 0.613 0.010) 0.0100

on an individual basis. Therefore, our confidence interval is only valid for lID
random variables. There are, of course, ways of filtering out short-term depen-
dence, and we will use those methods below.

The following section examines RJS analysis of different types of time se-
ries that are often used in modeling financial economics, as well as other types
of stochastic processes. Particular attention will be given to the possibility of a
Type II error (classification of a process as long-memory when it is, in reality,
a short-memory process).

FIGURE 5.5 E(H) for 10 < n < 50, normalized frequency: 1 500, 1,000, 5,000,
10,000,

Stochastic Models
75

STOCHASTIC MODELS

Five basic types of short-memory processes have been proposed for financial

time series:

1. Autoregressive (AR);
2. Moving average (MA);
3. Autoregressive moving average (ARMA);
4. Autoregressive integrated moving average (ARIMA);

5. Autoregressive conditional heteroskedastic (ARCH).

Each of these has a number of variants, which are refinements of the basic

models. These refinements attempt to bring the characteristics of the time se-

ries closer to actual data, We will examine each of these processes in turn, but

we will focus on the basic models. Variants of the basic models will be left to

future research. In addition, a long-memory process called fractional brown-

ian motion has been proposed by Mandelbrot (1964, 1972, 1982). The study of

fractional brownian motion will be deferred to Chapter 13. Table 5.4 summa-

rizes the following section.

Autoregressive Processes

An autoregressive process is one in which the change in a variable at a point in

time is linearly correlated with the previous change. In general, the correlation

declines exponentially with time and is gone in a relatively short period. A

general form follows:

= + + (5.8)

where C C I

a,b = constants with lal 1, lbl I

e = a white noise series with mean 0, and variance

Equation (5.8) is an autoregressive process of order 2, or AR(2), because the

change in time n is related to the change in the last two periods. It is possible to

have an AR(q) process where the change in C at time n is dependent on the

previous q periods. To test for the possibility of an AR process, a regression is

run where the change at time n is the dependent variable, and the changes in

the previous q periods (the lags) are used as the independent variables. The
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t-statistic for each lag is evaluated, if any t-statistics are significant at the 5

percent level, then we can form a hypothesis that an AR process is at work. The

restrictions on the range of values for the coefficients ensure that the process

is stationary, meaning that there is no long-term trend, up or down, in the

mean or variance.
Financial time series of high frequency (changes occur daily or more than

once daily) generally exhibit significant autoregressive tendencies. We would

expect this trait, because high-frequency data are primarily trading data, and

traders do influence one another. Hourly data, for instance, can show signifi-

cance at lags up to ten hours. However, once the frequency is taken at weekly

or monthly intervals, the process generally reduces to an AR( 1) or AR(2) pro-

cess. As the time interval lengthens, the correlation effect from trading re-
duces. Therefore, in this simulation, we will concentrate on AR(1) processes,

as defined in equation (5.8).
We have used a strong AR(1) process, with a = 0.50. The change at time n

also contains 50 percent of the previous change. For the e values, 5,000 ran-

dom variables were generated, and R/S analysis was performed. Figure 5.6

shows the results using the V statistic. The V statistic plot shows a signifi-

cant Hurst exponent, as would be expected for an infinite memory process

such as an AR(l).
We can correct for the AR process by taking AR( 1) residuals. We do so by

regressing as the dependent variable against I) as the independent vari-

able. The resulting equation will give a slope (a) and an intercept (c). We cal-

culate the AR(l) residual in the following manner:

= — (c + (5.9)

where is the AR( I) residual of C at time n. In equation (5.9), we have sub-

tracted out the linear dependence of on I)' Figure 5.6 also shows the V

statistic plot of the AR(l) residual time series. The persistence has been re-

duced to insignificant levels.
If, however, a longer AR process is in effect, then residuals for longer lags

would also have to be taken. Such a longer lag structure can be found by re-

gressing lagged values and testing for significant relationships, such as with

t-statistics. However, how long a lag is equivalent to "long" memory? is four

years of monthly returns a "long" memory? I postulate that an AR(48) rela-

tionship for monthly data is long memory, and an AR(48) for daily data is not.

This reasoning is arbitrary but can be justified as follows. For most investors,

a four-year memory will be the equivalent of a long memory because it is far

LI.''.0 '- '.0,- rn
ocodd
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///
/1.2

1 1.5 2 2.5 3

Log(Number of Observations)

beyond their own investment horizon. A four-year memory and an "infinite"
memory have no practical difference, and knowing one or the other will not
change these investors' outlook. However, because a 48-day memory does
change the way an investor perceives market activity, it is "short-term." Once
again, length of time is more important than number of observations.

Moving Average Processes

In a moving average (MA) process, the time series is the result of the moving
average of an unobserved time series:

+ (5.10)

where e = an lID random variable
c a constant, with < I

The restriction on the moving average parameter, c, ensures that the process

is invertible. c > I would imply that (1) future events affect the present, which

would be somewhat unrealistic, and (2) the process is stationary. Restrictions

on e, the random shock, are that, like the AR process, it is an lID random vari-

able with mean zero and variance
The observed time series, C, is the result of the moving average of an unob-

served random time series, e. Again, because of the moving average process,

there is a linear dependence on the past and a short-term memory effect. How-

ever, unlike an AR(1) process, a random shock has only a one-period memory.

Figure 5.7 shows that this can, once again, bias the log/log plot and result in a

significant value of H. We can also see that taking AR( 1) residuals by applying

equation (5.9) overcorrects for the short-term memory problem, and now gives

a significant antipersistent value of H. This appears to be a clue to moving av-

erage behavior; that is, the Hurst exponent flips from strongly persistent to

strongly antipersistent.
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FIGURE 5.6 V statistic, AR(1) process.
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FIGURE 5.7 V statistic, MA(1) process.
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ARMA Models

In this type of model, we have both an autoregressive and a moving average
term. The moving average term is, once again, an unobserved random series:

Cn = + e1 — (5.11)

Models of this type are called mixed models and are typically denoted as
ARMA(p,q) models. p is the number of autoregressive terms, and q represents
the number of moving average terms; that is, an ARMA(2,O) process is the

same as an AR(2) process because it has no moving average terms. An

ARMA(O,2) process is the same as an MA(2) process because it has no autore-

gressive terms.
Figure 5,8 shows that the ARMA(l,l) model can bias RIS analysis because

it is an infinite memory process, like the AR(l) process, although it includes

an MA(l) term. However, the graph also shows that taking AR(l) residuals
minimizes this problem.

1.4
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1.2

C)
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0.8
0.5 1 1.5 2 2.5 3
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FIGURE 5.8 V statistic, ARMA(1,1) process.
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ARIMA Models
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Both AR and ARMA models can be absorbed into a more general class of pro-

cesses. Autoregressive integrated moving average models (ARIMA) are specif-

ically applied to time series that are nonsationary—these processes have an

underlying trend in their mean and variance. However, by taking successive

differences of the data, the result is stationary.
For instance, a price series is not stationary merely because it has a long-

term growth component. It can grow without bound, so the price itself will not

tend toward an average value. However, it is generally accepted by the Efficient

Market Hypothesis (EMH) that the changes in price (or returns) are station-

ary. Typically, price changes are specified as percent changes or, in this case,

log differences. However, this is just the first difference. In some series,

higher-order differences may be needed to make the data stationary. For in-

stance, the difference of the differences is a second-order ARIMA process. It

could go to higher differences.
Therefore, we can say that C1 is a homogeneous nonstationary process of or-

der d if:

d represents how much differenc-

ing is needed. For example:

= C1 —

= —

and so forth.
If w1 is an ARMA(p,q) process, then C1 is considered an integrated autore-

gressive moving average process of order (p,d,q), or an ARIMA(p,d,q) process.

Once again, p is the number of autoregressive terms, and q is the number of mov-

ing average terms. The parameter, d, refers to the number of differencing opera-

tions needed. The process does not have to be mixed. If C1 is an ARIMA(p,d,O)

process, then w is an AR(p) process. Likewise, if C1 is an ARIMA(0,d,q) pro-

cess, then w is an MA(0,q).
For prices, taking AR( I) residuals is an accepted method for making the

process stationary. Therefore, no additional simulations are needed here.

However, the classic ARIMA(p,d,q) model assumes integer differencing. By

relaxing the integer assumption, fractional differencing allows for a wide
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range of processes, including the persistence and antipersistence of the Hurst

process (more fully discussed in Chapter 13). The ARIMA class is discussed

here for completeness and as preparation for the fractional differencing

method, or ARFIMA models.

ARCH Models

Models that exhibit autoregressive conditional heteroskedasticity (ARCH)

have become popular in the past few years, for a number of reasons:

1. They are a family of nonlinear stochastic processes, as opposed to the

linear-dependent AR and MA processes;
2. Their frequency distribution is a high-peaked, fat-tailed one;

3. Empirical studies have shown that financial time series exhibit statisti-

cally significant ARCH.

But what is ARCH?
The basic ARCH model was developed by Engle (1982). Engle considered

time series that were defined by normal probability distributions but time-

dependent variances; the expected variance of a process was conditional on
what it was previously. Variance, although stable for the individual distributions,

would appear to be "time varying," hence the conditional heteroskedasticity of

the process name. The process is also autoregressive in that it has a time depen-

dence. A sample frequency distribution would be an average of these expanding

and contracting normal distributions. As such, it would appear as a fat-tailed,

high-peaked distribution at any point in time. The basic ARCH model was de-

fined as follows:

C, s*e
= c f*e2110

Where e = a standard normal random variable
f a constant

(5.13)

For matters of convenience, f0 = I and f = 0.50 are typical values. We can

see that the ARCH model has a similarity to the AR models discussed previ-

ously: the observed value, C, is onceagain the result of an unobserved series, e,

which is dependent on past realizations of itself. However, the ARCH model is

nonlinear. Small changes will likely be followed by other small changes, and

large changes by other large changes, but the sign will be unpredictable. Also,

because ARCH is nonlinear, large changes will amplify and small changes will

contract. This results in the fat-tailed, high-peaked distribution.
The ARCH model was modified to make the s variable dependent on the

past as well. Bollerslev (1986) formalized the generalized ARCH (or GARCH)

model in the following manner:

C, = s,*e,

= f0 + + (5.14)

For GARCH, it is typical to set f0 = I, f 0.10, and g = 0.80, although all

three variables can range from 0 to 1. GARCH also creates a fat-tailed, high-

peaked frequency distribution. Equations (5.13) and (5.14) are the basic
ARCH and GARCH models; there are many variations. (Readers wishing a
more complete picture are encouraged to consult Bollerslev, Chou, and Kroner

(1990), who did an excellent survey.) The extended ARCH and GARCH mod-

els fine-tune the characteristics so that the models better conform to empirical
observations. However, for our purposes here, there will be little change in the

scaling properties of an ARCH or GARCH process, although the changes im-

prove the theoretical aspects of the models. We will examine these other
"improvements" in Chapter 14.

Because the basic ARCH and GARCH models have many characteristics
that conform to empirical data, simulated ARCH and GARCH values are an
excellent test for R/S analysis.

Figure 5.9 shows the V-statistic plot for the ARCH model, as described
above. The model has a distinctive R/S spectrum, with higher-than-expected
values for short time period, and lower-than-expected values for longer time
periods. This implies that ARCH processes have short-term randomness and
long-term antipersistence. Taking AR(l) residuals does not appear to affect

the graph. This characteristic reflects the "mean reverting" behavior often as-
sociated with basic ARCH models.

GARCH, on the other hand, has marginally persistent values, as shown in

Figure 5.10. However, they are not significant at the 5 percent level. Again, the

AR(l) residual does not affect the scaling process. Unfortunately, these plots
do not match the yen/dollar R/S graph in Figure 4.2, even though GARCH is

often postulated as the appropriate model for currencies. We will examine this

discrepancy further in the coming chapters.
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1 1.5 2 2.5 3 3.5 4
Log(Number of Observations)

FIGURE 5.9 V statistic, ARCH process.

Problems with Stochastic Models

The four models briefly summarized above are the most popular alternative
models to the Hurst process for markets. Each seems to capture certain
ical findings of markets, but none has been completely satisfying. The problem
seems to be that each addresses a local property of markets. Many of these
local properties seem to be tied to some investment horizons, but not all. AR
processes, for instance, are characteristic of very high-frequency data, such as
intraday trades. They are less of a problem with longer-term horizons, such
as monthly returns. GARCH has a fat-tailed, high-peaked distribution, but it is
not self-similar; the GARCH parameters appear to be period-dependent, and
are not constant once an adjustment is made for scale. In general, these models
do not fit with the Fractal Market Hypothesis, but they must be considered
when investigating period-specific data. An exception is the fractional version
of the ARIMA family of models, but discussion of this important class must
wait until Chapter 13. Another exception is the IGARCH model, which has

FIGURE 5.10 V statistic, GARCH process.

finite conditional variance but infinite unconditional variance. This model
will be discussed in Chapter 14.

SUMMARY

In this chapter, we have developed significance tests for R/S analysis. We have
found that an empirical correction to an earlier formula developed by Anis and

Lloyd (1976) will calculate the expected value of the R/S statistic for indepen-
dent random variables. From this, we have been able to calculate the expected

value of the Hurst exponent, H. The variance was found, again through Monte
Carlo simulations, to be lIT, where T is the number of observations. When we
tested a number of popular stochastic models for the capital markets, we found
that none of them exhibited the Hurst effect of persistence, once short-term
memory processes were filtered out. ARCH and GARCH series could not be

filtered, but did not exhibit long-term memory effects in raw form either.
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6
Finding Cycles:
Periodic and Nonperiodic

For some technical analysts, finding cycles is synonymous with market analy-

sis. There is something comforting in the idea that markets, like many natural
phenomena, have a regular ebb and flow. These technicians believe that there

are regular market cycles, hidden by noise or irregular perturbations, that

drive the market's underlying clockwork mechanism. Such "cycles" have

proven fickle to unwary investors. Sometimes they work, sometimes they do

not. Statistical tests, such as spectral analysis, find only correlated noise. The

search for cycles in the market and in the economy has proven frustrating for

all concerned.
Unfortunately, Western science has typically searched for regular or peri-

odic cycles—those that have a predictable schedule of occurrence. This trisdi-

tion probably goes back to the beginnings of science. Originally, there was the

change in the seasons, and the planning that was required for hunting and agri-
culture. Then there was astronomy, which revealed the regular lunar and solar

cycles. Primitive constructs, such as Stonehenge, are based on the regularity
of the vernal and autumnal equinox. Because they are smooth and symmetri-
cal, regular cycles also appealed to the ancient Greeks. They even believed

that nature preferred the perfect circle, and Aristotle created a model of the

universe based on the heavenly bodies' moving in perfect circles. Later, ma-
chines, such as the pendulum, were based on regular, periodic movements.
From this tradition developed Newtonian mechanics and the analysis of peri-

odic cycles mathematically.

86

Early on, problems arose. The calendar caused conflict for centuries; even

now, the problems have not been satisfactorily resolved. The lunar and solar

calendars do not coincide. Our day is based on the rotation of the earth on its

axis, and our year, on the rotation of the earth around the sun. We would like

every solar year to contain the same number of lunar days, but, unfortunately,

this is not so. To compensate for this lack of regularity, we add an extra day to

the solar year every four years. In this way, we impose regularity on an irregu-

lar system.
Western music is based on a 12-note scale that fits within an octave. Unfor-

tunately, perfectly tuning the half-steps (so that they are pure, and without

beats) results in a 12-note scale that is less than an octave. The most popular

fix to this problem spreads the error out over all the notes. This "equal tem-
pered tuning" works in most cases, but it is, again, an attempt to fit regularity

into an irregular system,
In astronomy, it was observed that wandering stars, the planets, did not follow

a regular path, but often reversed direction, briefly. The Greeks continued to be-

lieve that nature would abhor any planetary system that would not consist of per-

fect circles, as outlined earlier by Aristotle. As a result, Ptolemy and his
followers developed elaborate schemes to show that observed irregularity could

result from unobserved regularity. For instance, the planetary reversal phe-

nomenon was explained in the following manner. Planets, while orbiting the

earth (in a perfect circle), also followed a smaller orbital circle, much as our

moon orbits the earth as both orbit the sun. The two regular movements, occur-

ring in conjunction, result in an observed irregular motion. This method ex-
plained the irregularity of planetary movements, while preserving the idea that

nature's underlying structure was still regular. The Ptolemaic model worked

well for explaining observations and predicting planetary movements far in the

future. Unfortunately, its underlying theory was wrong.
In time series analysis, the focus has also been on regular, periodic cycles.

In Fourier analysis, we assume that irregularly shaped time series are the sum

of a number of periodic sine waves, each with differing frequencies and ampli-

tudes. Spectral analysis attempts to break an observed irregular time series,

with no obvious cycle, into these sine waves. Peaks in the power spectrum are

considered evidence of cyclical behavior. Like the Ptolemaic model of the uni-

verse, spectral analysis imposes an unobserved periodic structure on the ob-

served nonperiodic time series. Instead of a circle, it is a sine or cosine wave.
Granger (1964) was the first to suggest that spectral analysis could be ap-

plied to market time series. His results were inconclusive. Over the years, var-
ious transformations of the data were performed to find evidence of cycles
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88 Finding Cycles: Periodic and Nonperiodic

that, intuitively, were felt to be there; but they could not be found. Finally,
most of the field gave up and decided that the cycles were like the lucky runs
of gamblers—an illusion.

Unfortunately, there is no intuitive reason for believing that the underlying
basis of market or economic cycles has anything to do with sine waves or any
other periodic cycle. Spectral analysis would be an inappropriate tool for mar-
ket cycle analysis. In chaos theory, nonperiodic cycles exist. These cycles have
an average duration, but the exact duration of a future cycle is unknown. Is that
where we should look? If so, we need a more robust tool for cycle analysis, a
tool that can detect both periodic and nonperiodic cycles. Luckily, R/S analy-
sis can perform that function.

We begin this chapter by examining the effectiveness of R/S analysis in un-
covering periodic cycles, even when the cycles are superimposed on one another.
We will then turn to nonperiodic cycles and chaotic systems. The chapter con-
cludes by examining some natural systems that are known to exhibit nonperiodic
cycles. We will turn to analyzing markets in Chapter 7.

PERIODIC CYCLES

Hurst (1951) was the first to realize that an underlying periodic component
could be detected with R/S analysis. A periodic system corresponds to a limit
cycle or a similar type of attractor. As such, its phase space portrait would be a
bounded set, In the case of a sine wave, the time series would be bounded by the
amplitude of the wave. Because the range could never grow beyond the ampli-
tude, the R/S values would reach a maximum value after one cycle. Mandelbrot
and Wallis (1969a—1969d) did an extensive series of computer simulations, es-
pecially considering the technology available at the time. We will repeat and
augment some of those experiments here, to show the behavior of R/S analysis in
the presence of periodic components.

We begin with a simple sine wave:

= sin(t) (6.1)

where t = a time index

Figure 6.1 shows the log/log plot for a sine wave with a cycle length of 100
iterations. The break at t = 100 is readily apparent. Other methods, such as
spectral analysis, can easily find such simple periodic components. It is the

1 1.5 2 2.5
Log(Nuznber of Observations)

FIGURE 6.1 RIS analysis, sine wave: cycle 100.

manner in which R/S analysis captures this process that is important. Essen-
tially, once the sine wave has covered a full cycle, its range stops growing, be-
cause it has reached its maximum amplitude. Its maximum range, from peak to
trough, is no larger for 500 observations than it was for 100. The average R/S
stops growing after 100 observations.

Karl Weirstrass, a German mathematician, created the first fractal func-
tion. This function was continuous everywhere, but nowhere differentiable.
The function is an infinite sum of a series of sine (or cosine) waves in which
the amplitude decreases, while the frequency increases according to different
factors. West (1990) has used this function extensively as an introduction to
fractal time series. Flere, we will see how R/S analysis can determine not only
the primary cycle, but the underlying cycles as well, as long as the number of
subcycles is a small, finite number.

The Weirstrass function superimposes an infinite number of sine waves. We
begin with the major, or fundamental frequency, w, with an amplitude of I. A
second harmonic term is added, with frequency bw and amplitude I/a, with a

Periodic Cycles 89
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90 Finding Cycles: Periodic and Nonperiodic Periodic Cycles 91

and b greater than 1. The third harmonic term has frequency b2w and ampli-
tude 1/a2. The fourth term has frequency b3w and amplitude 1/a3. As usual
with a continuous function, the progression goes on indefinitely. Each term
has frequency that is a power of b greater than theprevious one, and amplitude
that is a power of a smaller. Drawing upon equation (1.5) in Chapter 1, the
fractal dimension, D, of this curve would be ln(a)/ln(b). The formal equation
of the Weirstrass function is as follows, written as a Fourier series:

F(t) = (l/an)*cos(bn*w*t) (6.2)

Figure 6.2 shows the Weirstrass function using the first four terms (n =
to 4). Figure 6.3 shows the first four terms broken out, to reveal the superim-
position of the cycles. The final graph is the sum of four sine waves, each with
its own frequency and amplitude. For small time increments, the range will
steadily increase until it crosses the cycle length of the smallest frequency. It
will begin to grow again with the next longer frequency, but it will also have

the shorter frequency superimposed, resulting in a "noisier" cycle. This range
will continue to grow until it reaches the end of its cycle; the range will then
stop growing until it picks up the next, longer frequency. The range for this
frequency will again grow, but it will have the other two shorter frequencies
superimposed. As a result, it will appear noisier still. The final, longest fre-
quency will react as the others.

The log/log plot for RIS analysis is shown as Figure 6.4. The end of each
frequency cycle, and the beginning of the next, can be seen clearly as "breaks"
or flattening in the RIS plot. Notice that the slope for each frequency drops as
well. For the shortest frequency, H 0.95; for the longest frequency,
H 0.72. The portion of the R/S plot for the second shortest frequency in-
cludes a "bump" at its start. This bump is the appearance of the shorter, previ-
ous frequency. In the third shortest frequency, two bumps are vaguely visible.
However, by the third frequency, the superimposition of the self-affine struc-
ture is too jagged to discern smaller structures. This leads us to the conclusion
that R/S analysis can discern cycles within cycles, if the number of cycles is

1.5

0.5

0

FIGURE 6.3 The Weirstrass function, the first four frequencies.
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FIGURE 6.2 The Weirstrass function.
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92 Finding Cycles: Periodic and Nonperiodic Nonperiodic Cycles 93

downward sloping. By plotting V on the y axis and log(n) on the x axis, the
"breaks" would occur when the V chart flattens out. At those points, the long-
memory process has dissipated.

Figure 6.5 shows the V statistic for the Weirstrass equation. Note the flat-
tening in the slope at the end of each periodic cycle. By examining the maxi-
mum value of V at each interval, we can estimate the cycle length for each
frequency.

From Figure 6.5, we can see that R/S analysis is capable of determining pe-
riodic cycles, even when they are superimposed. But we have other tools for
that. The real power of R/S analysis is in finding nonperiodic cycles.

NONPERIODIC CYCLES

A nonperiodic cycle has no absolute frequency. Instead, it has an average fre-
quency. We are familiar with many processes that have absolute frequencies, and

0 I they tend to be big, very important systems. These include the time needed for
0.5 1 1.5 2 2.5 3 3.5 4

Log(Nuinber of Observations)

FIGURE 6.4 R/S analysis, Weirstrass function.

less than four. At greater numbers, the cycles become smeared over. If there
were an infinite number of cycles, as in the complete Weirstrass function, then
the log/log plot would be a straight line with H 0.70.

There is an easier way to see when the breaks in the log/log plot occur, and to
make a better estimate of the cycle length. The following simple statistic was
originally used by Hurst (1951) to test for stability. I have also found that it gives
a more precise measure of the cycle length, which works particularly well in the
presence of noise. The statistic, which is called V, is defined as follows:

= (6.3)

This ratio would result in a horizontal line if the RIS statistic was scaling
with the square root of time, in other words, a plot of V versus iog(n) would be 0.5
flat if the process was an independent, random process. On the other hand, if 0.5 1 1.5 2 2.5 3 3.5 4

the process was persistent and R/S was scaling at a faster rate than the square Log(Nwnber of Observations)

root of time (H > 0.50), then the graph would be upwardly sloping. Con-
versely, if the process was antipersistent (H < 0.50), the graph would be FIGURE 6.5 Weirstrass function, V statistK.
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94 Finding Cycles: Periodic and Nonperiodic

one revolution of the Earth around the sun, and the time it takes for our planet to
rotate once on its axis. We have developed clocks and calendars that precisely
divide these frequencies into increments called years, days, or minutes. The sea-
sonal pattern seems absolutely periodic. Spring is followed by Summer, Au-
tumn, and Winter, in that order. We have become accustomed to implying the
word periodic every time we use the word cycle. Yet, we know that some things
have cycles, but we cannot be sure exactly how long each cycle lasts. The sea-
sonal pattern of the Earth's weather is perfectly predictable, but we know that
exceptionally high temperatures can be followed by more of the same, causing a
"heat wave." We also know that the longer the heat wave lasts, the more likely
that it will come to an end. But we don't know exactly when.

We now know that these nonperiodic cycles can have two sources:

1. They can be statistical cycles, exemplified by the Hurst phenomena of
persistence (long-run correlations) and abrupt changes in direction;

2. They can be the result of a nonlinear dynamic system, or deterministic
chaos. FIGURE 6.6a Fractal time series: H = 0.72.

We will now briefly discuss the differences between these two systems.

Statistical Cycles

2

The Hurst process, examined closely in Chapter 4, is a process that can be de-
scribed as a biased random walk, but the bias can change abruptly, in direction
or magnitude. These abrupt changes in bias, modeled by Hurst as the joker in his
probability pack of cards, give the appearance of cycles. Unfortunately, despite
the robustness of the statistical structure, the appearance of the joker is a
dom event. Because the cutting of the probability deck occurs with replacement,
there is no way to predict when the joker will arrive. When Mandelbrot (1982)
said that "the cycles mean nothing" if economic cycles are a Hurst process, he
meant that the duration of the cycle had no meaning and was not a product of the
time series alone. Instead, the arrival of the joker was due to some exogenous
event that may or may not be predictable. In light of this, Hurst "cycles" have no
average length, and the log/log plot continues to scale indefinitely. Figure 6.6(a)
shows a simulated time series with H 0.72. The time series "looks like" a
stock market chart, with positive and negative runs and the usual amount of
"noise." Figure 6.6(b) is an RIS plot for the same series. Although the series is
over 8,000 observations in length, there is no tendency to deviate from the trend
line. There is no average cycle length.

0.5 1 1.5 2
Log(Number of Observations)

2.5 3

FIGURE 6.bb R/S analysis, fractal time series: H = 0.72.
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96 Finding Cycles: Periodic and Nonperiodic

Chaotic Cycles

Nonlinear dynamical systems are deterministic systems that can exhibit er-
ratic behavior. When discussing chaos, it is common to refer to chaotic maps.
Maps are usually systems of iterated difference equations, such as the famous
Logistic Equation:

X < 1

This type of equation is a wonderful teaching tool because it generates
statistically random numbers, deterministically. However, as a tool for market
or economic analysis, the equation is not really useful. Iterative maps, like the
Logistic Equation, exhibit once-per-iteration chaos; that is, their memory
length is extremely short. They do not exhibit the types of cycles that we see in
economics or investments.

Instead, we will study chaotic flows, continuous systems of interdependent
differential equations. Such systems are used to model large ecosystems (like
weather, for example) and thermodynamic systems. The best known system of
this type is the celebrated attractor of Lorenz (1963), which is well-documented
in many chaos articles and is extensively discussed in Gleick (1987).

A simpler system is the Mackey—Glass (1977)equation, which was developed
to model red blood cell production. Its basic premise is that current production is
based on past production and current measurement. A delay between production
and the measurement of current levels produces a "cycle" related to that delay.
Because the system is nonlinear, over- and underproduction tend to be ampli-
fied, resulting in nonperiodic cycles. The average length of the nonperiodic cy-
cles, however, is very close to the delay time. An additional characteristic of the
Mackey—Glass equation is that it is a delay differential equation: it has an in-
finite number of degrees of freedom, much like the markets. This trait, of
course, makes it a good candidate for simulation. The delay differential equa-
tion can be turned into a difference equation, as follows:

X1 = 0.9"X1_1 + 0.2*XL_, (6.4)

The degree of irregularity and, therefore, the underlying fractal dimension
depend on the time lag, n. However, the equation offers the convenience of vary-
ing the lag and, hence, the cycle used. We can use the Mackey—Glass equation to
test our hypothesis that R/S analysis can estimate the average length of a nonpe-
riodic cycle.

Nonperiodic Cycles 97

The version of the Mackey—Glass equation shown in equation (6.4) is the
original delay differential equation converted into a difference equation. In
this form, it can be easily simulated in a spreadsheet. Beginning with lag
n = 50, the steps are:

1. Insert 0.10 in cell Al. Copy 0.10 down for the first 50 cells in column A.

2. In cell A51, type: 0.9*A50 + .2*al.
3. Copy Cell A51 down for 8,000 cells.

When varying the lag, n, enter 0.10 for the first n cells in column A. Proceed
as above, starting step 2 at cell A(n + 1).

Figure 6.7 shows the first 500 observations of the 8,000 used for this test.
Note the irregular cycle lengths, typical of a nonlinear dynamic system. Figure
6.8 shows the R/S plot for the full 8,000 values, with apparent H = 0.93 for

n <50. However, at H> 50, the slope is practically zero, showing that the max-
imum range has been reached. The Mackey—Glass equation, being a smooth, de-
terministic system, has a Hurst exponent close to I. Figure 6.9 shows the

r
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0
0 500 1000 1500

Number of Observations

FIGURE 6.7 Mackey—Glass equation: observation lag 50.
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V-statistic piot for the same values. The cycle length at approximately 50 obser-
vations is readily apparent. In Figure 6.10, the lag was changed to 100 observa-
tions. The break in the RIS graph now occurs at n = 100, confirming that RIS
analysis can detect different cycle lengths. The reader is encouraged to vary the
lag of the Mackey—Glass equation in order to test this conclusion.

S.

Adding Noise

Figure 6.8 shows that RIS analysis can determine the average length of nonpe-
riodic cycles for a large value of H. However, many tests work very well in the
absence of noise, but once a small amount of noise is added, the process fails.
Examples include Poincaré sections and phase space reconstruction. However,
because R/S analysis was made to measure the amount of noise in a system, we
might expect that RIS analysis would be more robust with respect to noise.

There are two types of noise in dynamical systems. The first is calledobser-
vational or additive noise. The system is unaffected by this noise; instead, the
noise is a measurement problem. The observer has trouble precisely measuring
the output of the system, so the recorded value has a noise increment added.

Log(Number of Observations)

FIGURE 6.9 V statistic, Mackey—Glass equation: observation lag = 50.

98 - Finding Cycles: Periodic and Nonperiodic Nonperiodic Cycles 99
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FIGURE 6.8 R/S analysis, Mackey—Glass equation: observation lag = 50.
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FIGURE 6.10 R/S analysis, Mackey—Glass equation: observation lag = 100.
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100 Finding Cycles: Periodic and Nonperiodic Nonperiodic Cycles 101

For example, suppose you are studying a dripping faucet by measuring the time
between drips. You have set up a measuring device on a table and have placed
a microphone under the spot where the water drips, to record the exact instant
the water drop hits bottom. Unfortunately, you are in a busy lab filled with
other people who are also performing experiments. Every time someone walks
by, your table jiggles a little, and this changes the time when the drip hits the
microphone. Additive noise is external to the process. It is the observer's prob-
lem, not the system's.

Unfortunately, when most people think of noise, they think of additive
noise. However, a second type of noise, called dynamical noise, may be even
more common and is much more of a problem. When the system interprets the
noisy output as an input, we have dynamical noise, because the noise invades
the system. We will examine dynamical noise more closely in Chapter 17.

For now, we will deal with additive noise. Figure 6.11 shows the same
points as Figure 6.7, with one standard deviation of noise added. The time se-
ries looks much more like a natural time series. Figure 6.12 shows the R/S
plot, with H = 0.76. Adding one standard deviation of noise has reduced the

0.5 1 1.5 2
Log(Nurnber ofMonths)

FIGURE 6.12 RIS analysis, Mackey—Glass equation with observational noise.

Hurst exponent, as would be expected, because the time series is now more
jagged. The V statistic in Figure 6.13 is also unaffected by the addition of a
large amount of noise. The cycle length at n 50 can still be estimated.

RIS analysis is particularly robust with respect to noise—indeed, it seems
to thrive on it.

An Empirical Example: Sunspots

In Chaos and Order in the Capital Markets, I examined sunspots. I repeat that
study here, using some of the new techniques outlined in this chapter.

The sunspot series was obtained from Harlan True Stetson's Sunspots and
Their Effects (1938). The time series contains monthly sunspot numbers from
January, 1749, through December, 1937. The series was recorded by people who
looked at the sun daily and counted the number of sunspots. Interestingly, if a
large number of sunspots were closely clustered, they were counted as one large
sunspot. As you can see, there would be a problem with observational noise in

this series, even for the monthly average. In addition, the sunspot system is well-
known for having a nonperiodic cycle of about 11 years. The 11-year cycle has

.76

Observational

2

1.5

0.5

0
2.5 3

FIGURE 6.11 Mackey—Glass equation, observational noise added.
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FIGURE 6.13 V statistic, Mackey—Glass equation: observation lag = 50.

been obtained from observation. Figure 6.14 shows the R/S plot of the sunspot
numbers. The small values of n have a flattened slope, which shows the effects
of the observational noise at short frequencies. Once the slope begins increasing,
we obtain H = 0.72, for n < 11 years. At approximately 11 years, the slope flat-
tens out, showing that the length of the nonperiodic cycle is, indeed, approxi-
mately 11 years. The V-statistic plot in Figure 6.15 confirms that the
approximately 11 years.

SUMMARY

In this chapter, we have seen that RIS analysis can not only find persistence, or
long memory, in a time series, but can also estimate the length of periodic
or nonperiodic cycles. It is also robust with respect to noise. This makes RIS
analysis particularly attractive for studying natural time series and, in particu-
lar, market time series. In the next chapter, we will examine some market and
economic time series for persistence and cycles.
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3 FIGURE 6.14 R/S analysis, sunspots: January 1749_December 1937.
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FIGURE 6.15 V statistic, sunspots: January 1749—December 1937.
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PART THREE
APPLYING FRACTAL
ANALYSIS
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7
Case Study Methodology

In this part of the book, we will analyze a number of market time series using
the tools from Chapters 4 through 6. Readers familiar with Chaos and Order in

the Capital Markets will recall such an analysis in that earlier work. However,

there are some important differences between my earlier study and the one in
these chapters.

The primary purpose of my earlier study was to show evidence that the
Efficient Market Hypothesis (EMH) is flawed, and that markets are Hurst
processes, or biased random walks. That point was effectively made. My

purpose here is to illustrate technique, which can be applied to readers' own
area of interest. Therefore, the study done here is more a step-by-step pro-
cess. Each example has been chosen to study a particular element, or a prob-

lem in applying RIS analysis, and how to compensate for it. The studies are
interesting in themselves, for understanding markets. They have been chosen
as illustrations so that reader's can apply RIS analysis to their own areas of

interest.
This study will use the significance tests and data preparation methods out-

lined in the previous chapters. In my earlier book, those methods had not been
worked out; indeed, my 1991 book has been criticized because the "power" of

RIS analysis was unknown. Using significance tests, we can now analyze the
type of system we are dealing with. As already suggested in Chapter 2, the
different markets may actually have different structures, once the investment
horizon is extended.

The chapter begins with a discussion of the methodology used in the analysis.
We will then analyze different markets on a case-by-case basis. RIS analysis will

107
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109
108 Case Study Methodology Data -______________________________

be used on different time series, and the results will be contrasted for the various
possible stochastic models investigated in Chapter 5. Analysis of the markets
will be followed by analysis of some economic data.

METHODOLOGY

We will analyze 'AR(l) residuals of logarithmic returns for the capital mar-
kets. The AR(l) residuals are used to eliminate—or, at least, to minimize—
linear dependency. As we saw in Chapter 5, linear dependency can bias the
Hurst exponent (and may make it look significant when no long-memory pro-
cess exists) or a Type I error. By taking AR(l) residuals, we minimize the
bias, and, we hope, reduce the results to insignificance. The process is often
called prewhitening, or detrending. The latter term will be used here. De-
trending is not appropriate for all statistical tests, although it seems to be used
in an almost willy-nilly fashion. For some tests, detrending may mask signifi-
cant information. However, in the case of RIS analysis, detrending will elimi-
nate serial correlation, or short memory, as well as inflationary growth. The
former is a problem with very high-frequency data, such as five-minute re-
turns. The latter is a problem with low-frequency data, such as 60 years of
monthly returns. However, for R/S analysis, the short-memory process is
much more of a problem than the inflationary growth problem, as we will see.

We begin with a series of logarithmic returns:

= - i)

where = logarithmic return at time
= price at time

(7.1)

We then regress S1 as the dependent variable against 5(1-I) as the indepen-
dent variable, and obtain the intercept, a, and the slope, b. The AR(l) residual
of subtracts out the dependence of on S(I_I):

X1 = 5, — (a + b*S,_1)

where X, = the AR(l) residual of S at time

(7.2)

The AR( 1) residual method does not eliminate all linear dependence. How-
ever, Brock, Dechert, and Sheinkman (1987) felt that it eliminated enough

dependence to reduce the effect to insignificant levels, even if the AR process
is level 2 or 3.

R/S analysis is then performed, starting with step 2 of the step-by-step
guide provided in Chapter 4. We begin with step 2 because step 1 has already

been outlined above.
Even in this early phase, there are important differences between this

methodology and the one used in Peters (199lb, 1992). The differences hark
back to Peters (1989). We now use only time increments that include both the
beginning and ending points; that is, we use even increments of time. Previ-
ously, all time increments, n, were used. If there were fewer than n data points
left at the end, they were not used. This had little impact on RIS values for
small values of n, because there are many RIS samples, and the number of
"leftover points" is small. For example, a time series of T = 500 observations
has 12 R/S values for n 40, with 20 unused observations, or 4 percent of the
sample. The average of the 12 samples would be a good estimate of the true
value of R/S50, and the impact of the unused 20 observations would be mini-
mal. However, for n = 200, there would be only two values, and 100 unused
observations, or 20 percent of the sample. The R/S20Q value will be unstable for
500 observations; that is, the value of RIS can be influenced by the starting
point. This makes a small number of R1S200 values for a time series of 500 ob-
servations misleading. Using values of n that use both beginning and ending
points (step 2 in Chapter 4) significantly reduces this bias.

Even as this method is eliminating a bias, it is presenting another problem.
Because we are using even increments of time, we need a value of T that offers
the most divisors, in order to have a reasonable number of RIS values. Therefore,
odd values of T, such as 499, should not be used. It would be better to use 450
data points, which has 9 divisors, rather than 499, which has two, even though
499 has more data points. Having more RIS values is certainly more desirable
than having more data points, when we are interested in the scaling of R/S.

DATA

We begin in Chapter 8 with a series of cases taken from a file of daily prices of
the Dow Jones Industrials. This price file, which covers the period from January
1888 to December 1990, or 102 years of daily data, contains 26,520 data points.
As we have discussed above, a large number of data points is not all that is re-
quired. A long time interval is also needed. This file appears to fulfill both re-
quirements. We will be calculating returns for different time horizons, to see
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110 Case Study Methodology Stability Analysis -- 111

whether the R/S behavior varies depending on the time increment used. This
amounts to sampling the time series at different intervals. With such a long se-
ries, we can investigate whether "oversampling" the system can result in biases.

We can expect a number of things to happen as we change the sampling
interval:

1. The Hurst exponent can be expected to increase as we increase the sam-
pling interval. At shorter intervals, or higher frequencies, there is bound
to be more noise in the data. Less frequent sampling should minimize the
impact of noise and eliminate the impact of any fractional noise that may
exist at the higher frequency. As we saw in the Weirstrass function, the
addition of higher-frequency cycles makes the time series more jagged,
and so decreases the Hurst exponent (or increases the fractal dimension).
Less frequent sampling "skips" over the higher frequencies.

2. Any "cycles" that exist at the longer intervals should remain. If a cycle
appears at 1,000 one-day intervals, it should still be apparent at 100
ten-day intervals.

3. The first two points will not hold if the process is a Gaussian random
walk. White noise appears the same at all frequencies (like the "hiss"
we hear on recording tapes, which sounds the same at all speeds). And,
there are no cycles. If a break in the RIS graph appears at the daily
interval but not at the ten-day interval, the break in the daily graph was
an artifact, not a true cycle.

STABILITY ANALYSIS

With a long time series, we will be able to study the stability of the R/S anal-
ysis. Greene and Fielitz (1977, 1979) suggested that R/S analysis should ide-
ally be run over all starting points. This would mean that an R/S value can be
the average of overlapping time periods. There is no reason to believe that this
approach is valid, although, at first glance, it would appear to help when there
is a short data set. However, using overlapping periods means that the estimate
of is not a result of independent sampling from the time series without
replacement. Instead, the sampling is done with replacement. All of the confi-
dence tests presented in previous chapters require independent samples (with-
out replacement). Every time we calculate an RIS value for n values, we are
taking a sample. If these samples are independent, we can average them and
estimate the significance of the average R/S for n values, using the

I—

methods previously outlined. If we use overlapping intervals for the average,
we no longer have tools to judge the significance of the R/S estimate.

A more acceptable approach would redo the RIS analysis with a different
starting date. The resulting and Hurst exponent estimates would be com-
pared to the previous run to see whether the results are significantly different.
The statistics previously defined can be used to judge significance. A long time
series, like the Dow Jones Industrials data, will allow us to run RIS analysis for
intervals that begin as long as ten years apart. Using this methodology, we can
test whether the market's underlying statistical characteristics have signifi-
cantly changed, and test once and for all whether the market does undergo the
type of "structural change" long used as an excuse by econometricians.

"Tick data" for the S&P 500, from January 2, 1989, through December 31,
1992, or four years' worth of data, are analyzed in Chapter 9. This information
is of most interest to traders and can yield tens of thousands of data points.
However, the important problems of oversampling and short memory must be
considered. This series of high-frequency data offers an opportunity to see
how serious those problems are when analyzing "trading" data.

Chapter 10 examines volatility, both realized and implied. Unlike other se-
ries, volatility is antipersistent. We will examine the two measures of volatility
and compare them.

Inflation and gold are the subjects of Chapter 11. Unlike the tick data, these
time series show possible problems with undersampling.

Chapter 12 examines currencies, which are known as strongly trending
markets. We will find that they are somewhat different from the other invest-
ment vehicles we have studied.

Part Three is concerned primarily with performing R/S analysis and with the
pitfalls of doing so; it does not address the cause of long memory, just its mea-
surement. The possible causes are the subject of Parts Four and Five. There are
many potential sources for long memory, and the latter parts of the book present
arguments for all of them, in the context of the Fractal Market Hypothesis.
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Twenty-Day Returns 113

8
Dow Jones Industrials,
1888—1990: An Ideal
Data Set

NUMBER OF OBSERVATIONS VERSUS LENGTH OF TIME

In this chapter, we will do an extensive analysis of the Dow Jones Industrial
Average (DJIA). This widely followed index has been published daily in The
Wall Street Journal since 1888. The file we will work from contains daily dos-
ing prices for the Dow Jones Industrials (which we will call "the Dow," for
convenience) from January 2, 1888, through December 31, 1991, or 104 years
of dala. We used this file in Chapter 2 when examining the term structure of
volatility. This data file is the most complete file that we will study. It
large number of observations and covers a long time period. The tick trading
data for the S&P 500, used in Chapter 9, will include many more observations,
but having more observations is not necessarily better.

Suppose we have a system, like the sunspot cycle, that lasts for 11 years.
Having a year's worth of one-minute observations, or 518,400 observations,
will not help us find the 11-year cycle. However, having 188 years of monthly
numbers, or 2,256 observations, was enough for the 11-year cycle to be clearly
seen in Chapter 6.

In the Dow data file, we have both length and number of observations, we
can learn much from this time series. All holidays are removed from the time
series. Therefore, five-day returns are composed of five trading days. They

112

will not necessarily be a Monday-to-Friday calendar week. In this chapter, be-
cause we will not be using calendar increments larger than one day, there will
be no "weekly," "monthly," or "quarterly" data. Instead, we will have five-day
returns, 20-day returns, and 60-day returns.

TWENTY-DAY RETURNS

Figure 8.1 shows the log R/S plot for 20-day return data for T = 1,320 obser-
vations. The 20-day returns are approximately one calendar month in length.
Also plotted is (calculated using equation (5.6)) as a comparison
against the null hypothesis that the system is an independent process. There is

clearly a systematic deviation from the expected values. However, a break in

the R/S graph appears to be at 52 observations (log(52)) 1.8). To estimate
precisely where this break occurs, we calculate the V statistic using equation

Dow

n =

2

1.5

'S

0.5

I 0
0.5 1 1.5 2 2.5 3

Log(Number of Observations)

FIGURE 8.1 R/S analysis, Dow Jones Industrials: 20-day returns.
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(6.3), and plot it versus log(n) in Figure 8.2. Remember, the V statistic is the ____________________________________________________________
ratio of to If the series exhibits persistence (H > 0.50), then the ___________________
ratio will be increasing. When the slope crosses over to a random walk
(H = 0.50) or to antipersistence (H <0.50), the ratio will go sideways or will
decline, respectively. In Figure 8.2, the V statistic clearly stops growing at
n = 52 observations, or 1,040 trading days. Table 8.1 shows both the val-
ues and the A peak occurs at n = 52. Therefore, we will run our regression
to estimate H for values, 10  n  50. Table 8.2 shows the results.

The regression yielded H = 0.72 and E(H) = 0.62. The variance of E(H),
as shown in equation (5.7), is lIT or 1/1,323, for Gaussian random variables.
The standard deviation of E(H) is 0.028. The H value for Dow 20-day returns
is 3.6 standard deviations above its expected value, a highly significant result.

The regression results for n > 50 are also shown in Table 8.2. H = 0.49,
showing that the "break" in the R/S graph may signal a periodic or nonperi-
odic component in the time series, with frequency of approximately 50 20-day
periods. Spectral analysis through a plot of frequency versus power in Figure
8.3 shows a featureless spectrum. No periodic components exist. Therefore,
the 50-period, or 1,000-day cycle appears to be nonperiodic.

Table 8.1 Dow Jones Industrials, 20-Day Returns

n Log(n)
R!S,

Dow Jones E(R/S)
V Statistic

Dow Jones E(R/S)

4 0.6021 0.1589 0.1607 0.7209 0.7239
5 0.6990 0.2331 0.2392 0.7648 0.7757

10 1.0000 0.4564 0.4582 0.9045 0.9083
13 1.1139 0.5288 0.5341 0.9371 0.9486
20 1.3010 0.6627 0.6528 1.0283 1.0053
25 1.3979 0.7239 0.7120 1.0592 1.0305
26 1.4150 0.7477 0.7223 1.0971 1.0347
50 1.6990 0.9227 0.8885 1.1837 1.0939
52 1.7160 0.9668 0.8982 1.2847 1.0969
65 1.8129 1.0218 0.9530 1.3043 1.1130

100 2.0000 1.0922 1.0568 1.2366 1.1396
130 2.1139 1.1585 1.1189 1.2634 1.1533
260 2.4150 1.2956 1.2802 1.2250 1.1822
325 2.5119 1.3652 1.3313 1.2862 1.1896
650 2.8129 1.5037 1.4880 1.2509 1.2067

n = 52—->

U
1'

E(R/S)

1.4

1.3

1.2

1.1

0.9

0.8

0.7

0.6
0.5 1 1.5 2 2.5

Log(Number of Observations)
3

FIGURE 8.2 V statistic, Dow Jones Industrials: 20-day returns.

Table 8.2 Regression Results: Dow Jones Industrials, 20-Day Returns

Dow Jones Dow Jones
Industrials, E(R/S) Industrials,
10<n<52 10<n<52 52<n<650

Regression output:
Constant —0.2606 —0.1344 0.1252
Standard error of

Y (estimated) 0.0096 0.0088 0.0098
R squared 0.9991 0.9990 0.9979
Number of

observations 10.0000 10.0000 7.0000
Degrees of

freedom 8.0000 8.0000 5.0000
Hurst exponent 0.7077 0.6072 0.4893
Standard error

of coefficient 0.0076 0.0072 0.0101
Significance 3.6262
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FIGURE 8.3 Spectral analysis, Dow Jones Industrials, 20-day returns.

From the above analysis, 20-day changes in the price of the Dow are char-
acterized as a persistent Hurst process, with H = 0.72. This is significantly
different from the result for a random walk. Because the series consists of
AR(l) residuals, we know that a true long-memory process is at work. The
characteristics of this series have little in common with other stochastic pro-
cesses, examined in Chapter 4. They are particularly separate from ARCH
and GARCH series (see Chapter 4), which have so often been used as models
of market processes. However, the persistent scaling does have a time limit. It
occurs only for periods shorter than 1,000 trading days. Therefore, the pro-
cess is not an infinite memory process, but is instead a long, but finite mem-
ory with a nonperiodic cycle of approximately four years. The four-year
cycle may be tied to the economic cycle. It also seems related to the term
structure of volatility studied in Chapter 2. Volatility also stopped scaling af-
ter four years.

However, if this four-year cycle is a true nonperiodic cycle and not simply
a stochastic boundary due to data size, it should be independent of the time

period. That is, five-day returns should also have a nonperiodic cycle of 1,000
trading days, or 200 five-day periods.

FIVE-DAY RETURNS

With five-day returns, we have maintained our 104-year time series, but now
we have 5,280 observations for examination. Many people feel that there are
shorter cycles than the four-year cycle. Perhaps RIS analysis can uncover these
values.

Figure 8.4 shows the R/S graph for five-day returns. Once again, we see a
systematic deviation from the E(R/S) line. There is also a break in the log/log
plot, this time at n 208 observations. Again, this is approximately four
years, showing that the break in the 20-day R/S plot was not a stochastic
boundary. Figure 8.5 shows the V-statistic plot. Once again, the peak is clearly
seen at approximately four years.

I I I

2

1.5

0.5

0

0.5 1 1.5 2 2.5 3

Log(Number of Observations)
3.5 4

FIGURE 8.4 R/S analysis, Dow Jones Industrials, five-day returns.
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FIGURE 8.5 V statistic, Dow Jones Industrials, five-day returns.

Table 8.3 summarizes the values used in these plots. There is no conclusive
evidence of a cycle shorter than four years. Values of H were again estimated
from the R/S plot and the E(R/S). The results of the regression are shown in
Table 8.4. Regressions were run for 10 n   208. Five-day returns a
lower value of H than the 20-day returns. This reflects the increased level
of detail, and "noise" in the data. Because the time series is more jagged, the
Hurst exponent is lower. Five-day returns have H = 0.61, and E(H) 0.58.
This difference does not appear large, but the variance of E(H) is now 1/5,240,
or a standard deviation of 0.0 14. Thus, five-day Dow returns have a Hurst ex-
ponent that is 2.44 standard deviations away from the mean. Again, the five-
day returns have a highly significant value of H.

Most encouraging is that, even though the time increment has changed, the
four-year cycle again appears. This provides additional evidence that the cycle
is not a statistical artifact or an illusion.

Daily Returns

Table 8.3 Dow Jones Industrials, Five-Day Returns

R/S, V Statistic
DowDow Jones
Industrialsn Log(n) Industrials E(R/S)

10 1.0000 0.4563 0.4582 0.9043
13 1.1139 0.5340 0.5341

0.970616 1.2041 0.5891 0.5921
20 1.3010 0.6476 0.6528 0.9934
25 1.3979 0.7086 0.7120 1.0224
26 1.4150 0.7274 0.7223
40 1.6021 0.8272 0.8327
50 1.6990 0.8812 0.8885 1.0758
52 1.7160 0.8921 0.8982
65 1.8129 0.9457 0.9530
80 1.9031 1.0128 1.0033 1.1515

100 2.0000 1.0705 1.0568 1.1764
104 2.0170 1.0805 1.0661 1.1804
130 2.1139 1.1404 1.1189 1.2117

1.2693200 2.3010 1.2541
208 2.3181 1.2819 1.2287 1.3270
260 2.4150 1.3391 1.2802 1.3540
325 2.5119 1.3727 1.3313 1.3084
400 2.6021 1.4206 1.3779 1.3169
520 2.7160 1.4770 1.4376 1.3151
650 2.8129 1.5458 1.4880 1.3783

1,040 3.0170 1.6014 1.5937 1.2384
1,300 3.1139 1.7076 1.6435

1.27482,600 3.4150 1.8129

However, we have failed to find any nonperiodic cycles with frequencies of
less than four years. Once again, we will increase our level of detail and ana-
lyze daily data.

DAILY RETURNS

With daily returns, we find once again that the Hurst exponent has declined.
However, E(H) has also declined, as has the variance of E(H). The daily data
have 24,900 observations, and the standard deviation of E(H) is now 0.006.
Figure 8.6 shows the results of the R/S analysis.
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______________________________________________________________________ For daily data, we again see a persistent deviation in observed R/S values
from the expected R/S values under the null hypothesis of independence. We
also see a break in the R/S plot at about 1,000 days. The V-statistic plot in

__________________________________________________________________ Figure 8.6 shows the peak to be 1,250 days, or roughly four years. This corre-
sponds almost exactly to the cycle of 1,040 days found with the five-day and
20-day returns. Looking at the V-statistic plot, it appears that the slope is
higher for the smaller values of n (n < 50), becomes parallel for a period, and
then begins growing again at approximately 350 days. We can see whether this
is indeed the case by examining the difference between the R/S plots for daily
Dow returns and the Gaussian null.

Figure 8.7 confirms that the slope does increase at a faster rate for n 40.
The difference becomes flat for values between 40 and 250, meaning that the
local slope in this region looks the same as a random walk. The slope increases

_______________________________________________________________ dramatically between 250 and 1,250 days, after which it again goes flat. Table
8.5 shows these values. A similar graph, with multiple cycles and frequencies,
was seen for the Weirstrass function in Chapter 5. We can now run regressions
to assess the significance of these visual clues.

Table 8.4 Regression Results

Dow Jones
Industrials,

1O<n<208
E(R/S),

10<n<208
Regression output:

Constant —0.1537 —0.1045
Standard error

of Y (estimated) 0.0076 0.0081
R squared 0.9993 0.9989
Number of observations 1 7.0000 16.0000
Degrees of freedom 15.0000 14.0000
Hurst exponent 0.6137 0.5799
Standard error

of coefficient 0.0043 0.0050
Significance 2.4390

2.5

Dow
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Log(Number of Days)
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FIGURE 8.7 V statistic, Dow Jones Industrials, one-day returns.

E(R/S)

FIGURE 8.6 R/S analysis, Dow Jones Industrials, one-day returns.
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First, we calculate H for the longer 1,250-day cycle. Table 8.6 shows the
results. The daily Dow has H = 0.58 and E(H) = 0.553. Again, this does not
look significant, but the standard deviation of E(H) is 0.0060 for 24,900 obser-
vations. The Hurst exponent for the daily Dow is 4.13 standard deviations away
from its expected value. Again, this is a highly significant result.

Table 8.6 also shows regression results for the subperiods. For 10 n 40,
H = 0.65, which at first looks highly significant. However, the short end of the
log/log plot has a high slope as well, with E(H) = 0.62. However, this value of
H = 0.65 is still 3.65 standard deviations above the expected value, and is sig-
nificant at the 99 percent level.

The next subperiod is 40 ii 250, where the slope appeared to follow the
E(R/S) line. Sure enough, H = 0.558 in this region, where E(H) 0.55 1.
Therefore, H is only 1.04 standard deviations away from its expected value,
and is insignificant.

As n increases, the expected value of H (particularly the "local" value) ap-
proaches its asymptotic limit, 0.50. In the next subperiod, 250   n   1,250,

Table 8.5 Dow Jones mdustrials, One-Day Returns

R/S, V Statistic
Dow Jones Dow Jones

n Log(n) Industrials [(R/S) Industrials E(R/S)

10 1.0000 0.4626 0.4582 0.9174 0.9083

20 1.3010 0.6632 0.6528 1.0296 1.0053

25 1.3979 0.7249 0.7120 1.0614 1.0305

40 1.6021 0.8511 0.8327 1.1222 1.0757

50 1.6990 0.9043 0.8885 1.1345 1.0939

100 2.0000 1.0759 1.0568 1.1911 1.1396

125 2.0969 1.1308 1.1097 1.2088 1.1514

200 2.3010 1.2399 1.2196 1.2284 1.1724

250 2.3979 1.2941 1.2711 1.2450 1.1808

500 2.6990 1.4662 1.4287 1.3084 1.2000

625 2.7959 1.5239 1.4792 1.3366 1.2057
1,000 3.0000 1.6351 1.5849 1.3649 1.2159

1,250 3.0969 1.7119 1.6348 1.4570 1.2199

2,500 3.3979 1.8557 1.7888 1.4344 1.2298
3,125 3.4949 1.8845 1.8381 1.3710 1.2323

5,000 3.6990 1.9705 1.9418 1.3215 1.2367

6,250 3.7959 2.0254 1.9908 1.3409 1.2385

12,500 4.0969 2.1775 2.1429 1.3459 1.2428

E(H) = 0.52. For the daily Dow, H = 0.59, which is 10.65 standard deviations
away from the mean. This highly significant value is virtually the same as the
earlier subperiod.

In the final subperiod, 1,250 < n < 12,500, the local Hurst exponent drops
significantly again. In this range, H = 0.46, and E(H) = 0.51. This Hurst ex-
ponent is also significant, at the 95 percent level, because it is 7.77 standard
deviations below its mean. Therefore, after the four-year cycle, the process be-
comes antipersistent. This conforms to Fama and French's (1992) finding that
returns are "mean reverting" in the long term. We have already said that an-
tipersistent is not the same as mean reverting (there is no mean to revert to),
but, semantics aside, we are referring to a similar process.

We have found that the Dow has two nonperiodic cycles. The longest is a
1,250-day cycle, or about four years. The second is 40 days, or about two
months. This information can be used in any number of ways. The most obvi-
ous is as the basis of momentum analysis and other forms of technical analysis.
The second use is in choosing periods for model development, particularly for
backtesting.
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FIGURE 8.8 V statistic, Dow Jones Industrials, contiguous 8,300-day periods.
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Dow Jones
Industrials,

0<n<1,250
E(R!S),

0<n<1,250
Regression output:

Constant —0.09126 —0.0635
Standard error

of Y(estimated) 0.011428 0.013988
R squared 0.999228 0.998732
Number of observations i 1 3
Degrees of freedom ii 11
Hurst exponent 0.579 0.553331
Standard error

of coefficient 0.005 0.005945
Significance 4.133

Dow Jones
Industrials,
10<n<40

E(R/S),
10<n<40

Regression output:
Constant —0.18149 —0.1624
Standard error

of Y (estimated) 0.004195 0.00482
R squared 0.999553 0.999366
Number of observations 4 4
Degrees of freedom 2 2
Hurst exponent 0.647 0.623532
Standard error

of coefficient 0.01 0.011109
Significance 3.648

"
Dow Jones
Industrials,

40<n<250
E(R/S),

40<n<250
Regression output:

Constant —0.0414 —0.04773
Standard error

of Y (estimated) 0.002365 0.002 309
R squared 0.999858 0.999861
Number of observations 6 6
Degrees of freedom 4 4
Hurst exponent 0.558 0.550943
Standard error

of coefficient 0.003 0.003247
Significance i .043

I-

Dow Jones
Industrials,

250<n<1,250
E(R/S),

250<n<1,250
Regression output:

Constant —0.11788 0.024022
Standard error

of Y (estimated)
R squared

0.0083 76
0.997972 0.999988

Number of observations
Degrees of freedom
Hurst

5
3

0.588
3

0.520278exponent
Standard error

0.00103
Significance 10.65

Dow Jones
Industrial's,

1,250< n <12,500
E(R/S),

1,250< n <12,500

Regression output:
Constant 0.287021 0.062167
Standard error

of Y (estimated)
R squared

0.010672
0.996407

0.000617
0.99999

Number of observations
Degrees of freedom
Hurst

6
4

0.459

6
4

0.508035
Standard error

0.000796
Significance —7.77

STABILITY ANALYSIS

Some questions remain: How stable are these findings? Are they period-
specific? These questions are particularly important when dealing with eco-
nomic and market data. There is an underlying feeling that, as the structure of
the economy changes, its dynamics will change as well. For markets, this is an
extremely important consideration because the technology and the predomi-
nant type of investor are quite different now than they were 40 years ago. Be-
cause of these reservations, there is doubt that examining data that predate the
recent period will be useful. It would be like trying to forecast the current
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weather based on data collected during the Ice Age. But there are counterargu-
merits to this line of thought. In particular, the market reacts to information,
and the way it reacts is not very different from the way it reacted in the 1930s,
even though the type of information is different. Therefore the underlying dy-
namics and, in particular, the statistics of the market have not changed. This
would be especially true of fractal statistics.

Point Sensitivity

A question that often arises about R/S analysis concerns the rescaling of the
range by the local standard deviation. The variance of fractal processes is un-
defined; therefore, aren't we scaling by an unstable variable?

Luckily, the answer is No. Because R/S analysis uses the average of many
RIS values, it becomes more stable the more points we have, as long as the sam-
pling frequency is higher than the "noise level" of the data.

To test this point sensitivity, we reran the daily R/S analysis with three dif-
ferent starting points, each 1,000 days apart, using 24,000 days. The results are
in Table 8.7. There is little change in the value or significance of the Hurst
exponent, which indicates remarkable stability.

Time Sensitivity

An appropriate test would be to take two or more independent periods, analyze
them separately, and compare the results. With market data, we are limited by
the cycle limit. A rule of thumb implies that ten cycles of information should
be used for nonlinear analysis, as discussed in Peters (1991a, 1991b). We have
104 years of data, and an implied four-year cycle. For this analysis, we will
divide the period into three segments of 36 years, using daily returns, or 8,3b0
observations. While using only nine cycles rather than ten, we can hope that
the time periods will be sufficient.

Table 8.8 shows the results of the three equations. There is good news and
bad news. The good news is that the Hurst exponent shows remarkable stability.
H was 0.585 for the first period (roughly, 1880—1916), 0.565 for the second
period (roughly, 1917—1953), and 0.574 for the last period (roughly, 1954—
1990). The bad news is that, although E(H) still equals 0.555, the standard de-
viation has risen to the square root of 1/8,300, or 0.011. This means that the
first and last periods are still significant at the 5 percent level or greater, but
:he middle period is not. In addition, neither the 42-day nor the four-year cycle
'xisted for the second period, as shown in the V-statistic plot (Figure 8.8).

127

Table 8.7 Stability Analysis, Dow Jones Industrials

First 24,000 Second 24,000

Regression output:
Constant —0.08651 —0.08107

Standard error
of Y (estimated) 0.011205 0.012098

R squared 0.998942 0.998749
Number of observations 37 37

Degrees of freedom 35 35

Hurst Exponent 0.584898 0.580705
Standard error

of coefficient 0.003218 0.003474
Significance 4.543908 3.894397

Third 24,000 E(R/S)

Regression output:
Constant —0.07909 —0.06525

Standard error
ofy(estimated) 0.013315 0.011181

R squared 0.998472 0.998832
Number of observations 37 37

Degrees of freedom 35 35

Hurst exponent 0.578292 0.555567 0.006455
Standard error

of coefficient 0.003824 0.003211
Significance 3,520619

There is scant evidence for the 42-day cycle in period 3, but it is much stronger

in period 1.
Period 2 was the most tumultuous period of the 20th century. It included

World Wars I and II, the great boom of the 1920s, the depression of the 1930s,
and the Korean War. The level of persistence in the market, as measured by the
Hurst exponent, is stable, but cycle lengths are not. They can be influenced by
political events, wars, and price controls. Technicians, beware!

RAW DATA AND SERIAL CORRELATION

As we saw in Chapter 5, various short-memory processes can cause a bias

in R/S analysis. AR(l) processes, which are, technically, infinite memory
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Period 1 Period 2
Regression output:

Constant —0.106 —0.074
Standard error

of Y (estimated) 0.012 0.019
R squared 0.999 0.997
Number of observations 19.000 19.000
Degrees of freedom 1 7.000 17.000
Hurst exponent 0.585 0.565
Standard error

of coefficient 0.005 0.008
Significance 2.683 0.894

Period 3 E(R/S)

Regression output:
Constant —0.096 —0.077
Standard error

of V (estimated) 0.016 0.014
R squared 0.998 0.999Number of observations 19.000 10.000
Degrees of freedom 1 7.000 8.000
Hurst exponent 0.574 0.555
Standard error

of coefficient 0.006 0.007
Significance 1.699

processes as well, can give results that look significant. In this section, we will
compare the log first differences of the prices with the AR( I) residuals, to see
whether a significant serial correlation problem is present in the raw data.

Figure 8.9 shows the V-statistic plot for the raw data versus AR(l) residuals
for the 20-day return. Table 8.9 shows the R/S values for the two series, as well
as the Hurst exponent calculation. A small AR(l) bias in the raw data causes
the R/S values to be a little higher than when using residuals. The Hurst expo-
nent calculation is also slightly biased. However, the 20 sampling frequency
seems to reduce the impact of serial correlation, as we have always known.

Figure 8.10 shows a similar V-statistic plot for the daily returns. The impact
is more obvious here, but it is still uniform. All of the RIS values are biased
upward, so the scaling feature, the Hurst exponent, is little affected by the

Table 8.8 Time Sensitivity, Dow Jones Industrials
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FIGURE 8.9 V statistic, Dow Jones Industrials, 20-day returns.

Table 8.9 R/S Values, Dow Jones
Industrials, 20-Day Returns

0.5 1 1.5 2 2.5 3

Log(Number of Observations)

Dow AR(1) n

2.82 2.75 10
3.42 3.31 13
4.69 4.49 20
5.49 5.23 25
5.59 5.30 26
8.82 8.32 50
9.06 8.52 52

10.08 9.44 65
12.88 12.04 100
14.77 13.83 130
20.99 19.53 260
24.04 22.35 325
34.48 32.07 650
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FIGURE 8.10 V statistic, Dow Jones Industrials, one-day returns.

bias, although the bias is definitely present. Table 8.10 summarizes the values.
These results show that infrequent sampling does minimize the impact of a
short-term memory process on R/S analysis.

SUMMARY

We have seen strong evidence that the Dow Jones Industrials are characterized
by a persistent Hurst process for periods up to four years. The four-year cycle
was found independent of the time increment used for the RIS analysis. There
was weaker evidence of a 40-day cycle as well. The Hurst exponent was most sig-
nificant for 20-day returns and much less so, although not insignificant, for
daily returns. The "noise" in higher-frequency data makes the time series more
jagged and random-looking.

This time series is an example of the "ideal" time series for R/S analysis. It
covers a long time period and has many observations. This combination allows

Table 8.10 R/S Values Dow Jones
Industrials, One-Day Returns

RIS
n Dow Jones Industrials AR(1)

10 2.901206 2.939259
20 4.604629 4.701 588
25 5.307216 5.413394
40 7.097245 7.307622
50 8.02196 8.274441

100 11.91072 12.22428
125 13.51477 13.92784
200 17.37277 17.83037
250 19.68504 20.28953
500 29.25644 30.27235
625 33.41443 34.75578

1,000 43.16259 44.57676
1,250 51.51228 53.19354
2,500 71.7220f 74.38682
3,125 76.64355 79.7547
5,000 93.44286 97.25385
6,250 106.0108 110.5032

12,500 150.4796 156.4324

the problem of overfrequent sampling (and the serial correlation bias) to be
minimized. In the next chapter, that will not be the case.

In addition, we found that the Hurst exponent was remarkably stable and
lacks significant sensitivity to point or time changes in the Dow time series. The
question now is: Does the level of "noise" increase for even higher-frequency
data? In the next chapter, we will examine tick data for the S&P 500 and the
trade-off between a large number of high-frequency data points and a shortened
time span for total analysis.

Dow

AR(1)
E(R/S)

0.5 1 1.5 2 2.5 3 3.5
Log(Number of Days)
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9
S&P 500 Tick Data,
1989—1992: Problems
with Oversampling

In this chapter, we will analyze a large number of data points that cover a short
period of time. We will look at intraday prices for the S&P 500, covering a
four-year time span. For much of the general public, the march of stock prices
and unintelligible symbols passing in a continuous line at the bottom of a tele-
vision screen is quintessential Wall Street. In previous generations, the image
was a banker looking at a piece of ticker tape. In either case, investors "play"
the stock market by reading meaning into the rapid change of prices. No won-
der the general public confuses investing with gambling.

When data are referred to as high-frequency data, it means that they cover
very short time horizons and occur frequently. High-frequency data are known
to have significant statistical problems. Foremost among these problems is high
levels of serial correlation, which can distort both standard methods of analy-
sis and R/S analysis. Using AR(l) residuals compensates for much of this
problem, but it makes any analysis questionable, no matter what significance
tests are used.

The great advantage of high-frequency data is that there is so much of it. In
standard probability calculus, the more observations one has, the more signifi-
cance one finds. With tick data, we can have over 100,000 one-minute observa-
tions per year, or enough observations to make any statistician happy.

132

However, a large number of observations covering a short time period may
not be as useful as a few points covering a longer time period. Why? Suppose
that we wished to test whether the earth was round or flat. We decided to do so
by measuring the curvature of a distance of 500,000 feet, sampling once every
six inches for 1 million observations. If we were to do so, we would have to
smooth out the regular variations that occur over the earth's surface. Even so,
we would probably not get a reading that was significantly different from that
of a flat surface. Thus, we would conclude that the earth was flat, even though
we would have a large number of observations. The problem is that we are ex-
amining the problem from too close a vantage point.

Similarly, for a nonlinear dynamical system, the number of observations may
not be as important as the time period we study. For instance, take the well-
known Lorenz (1963) attractor, which was well described conceptually and
graphically in Gleick (1987). The Lorenz attractor is a dynamical system of three
interdependent nonlinear differential equations. When the parameters are set at
certain levels, the system becomes chaotic; its pattern becomes nonrepeating.
However, there is a global structure, which can be easily seen in Figure 9.1, where
two of the three values are graphed against one another. The result is a famous
"owl eyes" image. The nonperiodic cycle of this system is about 0.50 second. Be-
cause the system is continuous, one can generate as many points as are desired.
However, when analyzing a chaotic system, I billion points filling one orbit (or
0.50 second) will not be as useful as 1,000 points covering ten orbits, or five sec-
onds. Why? The existence of nonperiodic cycles can be inferred only if we aver-
age enough cycles together. Therefore, data sufficiency cannot be judged unless
we have an idea of the length of one cycle.

In Peters (1991), the S&P 500 was found to have a cycle of about four years.
In Chapter 8, we saw that the cycle of the Dow Jones Industrials is also approx-
imately four years. Therefore, our tick data time series may have over 400,000
one-minute observations, but it still covers only one orbit. What can we learn
from such a time series? What are the dangers and the advantages?

THE UNADJUSTED DATA

The unadjusted data are merely the log difference in price. We will examine
the difference at three frequencies: three-minute, five-minute, and 30-minute.

The period from 1989 to 1992 was an interesting time. The 1980s were taking
their last gasp. Despite the Fed's tightening of monetary policy and the rise of
inflation, 1989 began as a strong up-year. There was a high level of optimism
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FIGURE 9.1 The Lorenz attractor.

that the Fed could engineer a "soft landing" scenario: gradually raise interest
rates, ease inflation pressures, and leave the economy relatively unaffected. In
fact, there was speculation that the traditional business cycle had been replaced
by a series of rolling recessions, which made broad economic declines a thing of
the past. Leveraged buy-outs (LBOs) and takeovers reached new extremes with
the RJR/Nabisco deal. The early part of 1989 was dominated by the
buy-out of United Airlines, at a highly inflated value. There was sentiment that
any company could be taken over and that stocks should be valued at their
"liquidation value" rather than their book value. This concept came to a halt
in October 1992, with the "mini-crash" that accompanied the collapse of the
United Airlines deal.

The recession began in 1990. Iraqi invaded Kuwait at a time when the
United States was facing a serious economic slowdown. A rise in oil prices, in
August 1990, brought a significant decline in the stock market. The possibility
of a Gulf War brought a high level of uncertainty, causing high volatility in the
market. In October 1990, a bull market began and has continued through
the early part of 1993.

The Unadjusted Data 135

The swift and successful conclusion of the Gulf War made 1991 a very pos-
itive year for stocks. However, most of the gains were concentrated in the first
and fourth quarters, as the markets tried to decide whether the recession of
1990 was over yet or not.

The presidential election year, 1992, resulted in mediocre returns.
Figure 9.2(a) shows the R/S graph for unadjusted three-minute returns. The

log/log plot shows a significant departure from the Gaussian null hypothesis.
Figures 9.2(b) and 9.2(c) show similar graphs for five-minute and 30-minute
returns. Again, the significance is apparent. (Interestingly, the graphs look
similar.) Table 9.1 shows the results. As would be expected with so many ob-
servations, the results are highly significant. Figures 9.3(a)—(c), the V-statistic
graphs, are summarized in Table 9.1. Again, all of the values are highly signif-
icant. No cycles are visible, which we will comment on below.

In fact, the values are too good. With trends this strong, it's hard to believe
that anyone could not make money on them. When a natural system sampled at
high frequency shows high significance, seems reasonable to suspect that a
short-memory process may be distorting our results. In the next section, we
will see whether this is indeed the case.

0 1 2 3 4
Log(Nwnber of Observations)

5 6

3

2.5

2

1.5

0.5

0

FIGURE 9.2a R/S analysis, S&P 500 unadjusted three-minute returns: 1989—
1992.
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FIGURE 9.2b R/S analysis, S&P 500 unadjusted five-minute returns: 1989—1992.

FIGURE 9.2c RIS analysis, S&P 500 unadjusted 30-minute returns: 1989—1992.

136

Interval (Minutes) I-I E(H) Significance

3

5

0.603
0.590

0.538
0.540 12.505

30 0.653 0.563 10.260

THE AR(1) RESIDUALS

In this section, we will apply the methodology outlined in Chapter 7, and take
AR(1) residuals. In this way, we should be able to minimize any short-memory
effects. If short memory is not a major problem, then our results should not
change much, as we saw in Chapter 8.

Sadly, this is not the case. Figures 9.4(a)—(c) show the V-statistic graphs for
the same series, now using AR( 1) residuals. The Hurst exponents have all
dropped to levels that are not much different than a random walk. The results

0.5
0.5 1 1.5 2 2.5 3 3.5 4 4.5

Log(Number of Observations)

FIGURE 9.3a V statistic, S&P 500 unadjusted three-minute returns: 1989—1 992.

3 The AR(1) Residuals — 137
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V statistic, S&P 500 AR(1) three-minute returns: January 1989—
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FIGURE 9.3b V statistic, S&P 500 unadjusted five-minute returns: 1989—1 992.
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FIGURE 9.3c V statistic, S&P 500 unadjusted 30-minute returns: 1989—1 992.
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FIGURE 9.4a
December 1992.
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FIGURE 9.4b V statistic, S&P 500 AR(1) five-minute returns: January 1989—
December 1992.
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are summarized in Table 9.2. For instance, the Hurst exponent for three-
minute returns is 0.55 1, when the Gaussian null is 0.538. However, the number
of observations is so large (over 130,000) that this slight difference is still sig-
nificant at the 99.9 percent level. Therefore, we can conclude that the markets
are not random walks, even at the three-minute return frequency.

The difference is statistically different, but not practically different. Rç-
member, 2-H is the fractal dimension of the time series. The fractal dimension
measures how jagged the time series is. Therefore, a random time series at the
five-minute frequency would have an expected fractal dimension of 1.47, but
the actual time series has a dimension of 1.46. The significant but low number

Table 9.2 R/S Analysis, AR(1) S&P Tick Data

Interval (Minutes) H E(H) Significance

3 0.551 0.538 4.619
5 0.546 0.540 1.450

30 0.594 0.563 3.665

Imphcations 141

shows that there is so much noise at the five-minute frequency that we can only
barely measure the determinism beneath the noise. The actual time series is
dominated by a short-memory (probably an AR(1)) process, instead of a long-
memory fractal system. As such, it is highly unlikely that a high-frequency
trader can actually profit in the long term.

Interestingly, neither test shows evidence of intraday cycles; that is, there
are no high-frequency cycles superimposed over the longer cycles found in
Chapter 8. Based on the Weirstrass function analyzed in Chapter 6, we should
be able to see any such cycles when sampling at high frequency. The fact that
none is apparent leads us to conclude that there are no deterministic cycles at
high frequency.

IMPLICATIONS

Analyzing high- and low-frequency data in this chapter and in Chapter 8 has
given us some important insights into bothmarket mechanisms and the useful-
ness of R/S analysis.

First, we have seen how influential a short-memory process can be on RIS
analysis, and the importance of taking AR( 1) residuals when analyzing systems.
This is much more of a problem for high-frequency data than for low-frequency
data. Comparing the results of Chapter 8 with those in this chapter, we can see
that, by the time we get to a daily frequency, short-memory processes have less
of an impact. With monthly returns, there is virtually no impact, and we have
always known that oversampling the data can give statistically spurious results,
even for RJS analysis.

Second, we have gained important insight into the U.S. stock market—insight
that we may extend to other markets, although we leave the analysis to future
research. As has always been suspected, the markets are some form of autore-
gressive process when analyzed at high frequency. The long-memory effect visi-
ble at high frequency is so small that it is barely apparent. Thus, we can infer that
day traders have short memories and merely react to the last trade. In Chapter 8,
we saw that this autoregressive process is much less significant once we analyze
daily data. This gives us some evidence that conforms to the Fractal Market Hy-
pothesis: Information has a different impact at different frequencies, and differ-
ent investment horizons can have different structures. There is, indeed, local
randomness and global structure. At high frequencies, we can see only pure
stochastic processes that resemble white noise. As we step back and look at
lower frequencies, a global structure becomes apparent.

140 S&P 500 Tick Data, 1989-1992: Problems with Oversampling
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FIGURE 9.4c V statistic, S&P 500 AR(1) 30-minute returns: January 1989—
December 1992.
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We briefly discussed a similar process, called cell specialization, in Chap-
ter 1. As a fetus develops, cells migrate to various locations to become heart
cells, brain cells, and so on. Most cells make the journey safely, but some cells
die along the way. Thus, at the local cell level, the chances of a cell's surviving
are purely a matter of probability. However, the global structure that causes
the organization of cells into an organism is purely deterministic. Only when
we examine the organism's global structure does this determinism become

market, tick data are equivalent to the cell level. The data are so Volati I ity: A Study
finely grained that we can barely see any structure at all. Only when we step
back and look at longer time frames does the global structure, comparable to
the whole organism, become apparent. In this way, we can see how local ran-
domness and global determinism are incorporated into fractal time series.

Volatility is a much misunderstood concept. To the general public, it means
turbulence. To academics and followers of the EMH, volatility is the standard
deviation of stock price changes. It turns out that both concepts are equivalent,
in ways that the founders of MPT probably did not envision.

Originally, standard deviation was used because it measured the dispersion
of the percentage of change in prices (or returns) of the probability distribu-
tion. The probability distribution was estimated from unnormalized empirical
data. The larger the standard deviation, the higher the probability of a large
price change—and the riskier the stock. In addition, it was assumed (for rea-
sons discussed earlier) that the returns were sampled from a normal distribu-
tion. The probabilities could be estimated based on a Gaussian norm. It was
also assumed that the variance was finite; therefore, the standard deviation
would tend to a value that was the population standard deviation. The standard
deviation was, of course, higher if the time series of prices was more jagged, so
standard deviation became known as a measure of the volatility of the stock.
It made perfect sense that a stock prone to violent swings would be more
volatile and riskier than a less volatile stock. Figure 10.1 shows the annualized
standard deviation of 22-day returns for the S&P 500 from January 2, 1945, to
August 1, 1990.

Volatility became an important measure in its own right because of the op-
tion pricing formula of Black and Scholes (1973):

143
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FIGURE 10.1 S&P 500 annualized standard deviation: January 2, 1945—August 1,
1990. FIGURE 10.2 S&P 509, implied standard deviation: January 2, 1987—June 28,

1991.

144 Volatility: A Study in Antipersistence Volatility: A Study in Antipersistence 145

C = Ps*N(di) — S*e1*0_t*)*N(d2)

ln(Ps/S) + (r + 0.5*v2)*(t* — t)
d

— ln(P5/S) + (r — 0.5*v2)*(t* — t)
d2 (10.1)

where c fair value of the call option
PS = stock price
S = exercise price of the opt ion

N(d) = cumulative normal density function
r = risk-free interest rate

= current date
= maturity date of the option

v2 variance of stock return
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The option price estimated from this formula is sensitive to the variance
number used within the calculation. In addition, variance is the only variable
that is not known with certainty at the time of the trade. Option traders real-
ized this and found it easier to calculate the variance that equated the current
price of the option to the other values, instead of calculating the "fair price."
This implied volatility became a measure of current uncertainty in the market.
It was considered almost a forecast of actual volatility.

As option traders plumbed the depths of the Black—Scholes formula, they
began buying and selling volatility as if it were an asset. In many ways, the
option premium became a way to profit from periods of high (or low) uncer-
tainty. Viewed increasingly as a commodity, volatility began to accumulate
its own trading characteristics. In general, volatility was considered "mean
reverting." Rises in volatility were likely to followed by declines, as volatility
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reverted to the finite mean value implied from the normal distribution.
Volatility had its own trends. Ironically, implied volatility was also highly
volatile, a characteristic that caused many to question whether implied
volatility was related to the realized population standard deviation. Figure
10.2 shows annualized implied volatility (calculated daily) from January 2,
1987, to June 28, 1991.

To test these assumptions, we will test both realized and implied volatility
through R/S analysis. Are they trend reinforcing or mean reverting? We will
examine their common characteristics. In keeping with the general approach
of this book, we will study a broad index, the S&P 500, which has a long price
history as well as a liquid option. The study of individual stocks and other asset
types is left to the reader.

Volatility is an interesting subject for study using RIS analysis because we
make so many assumptions about what it is, with so few facts to back us up. In
fact, the study that follows should be disturbing to those who believe volatility
has trends as well as stationarity, or stability. The study challenges, once again,
our imposition of a Gaussian order on all processes.

REALIZED VOLATILITY

My earlier book gave a brief study of volatility. This section repeats those re-
sults, but with further explanation. The series is taken from a daily file of S&P
composite prices from January 1, 1928, through December 31, 1989. The
prices are converted into a series of log differences, or:

S1 =

where St log return at time
P1 price at time

The volatility is the standard deviation of contiguous 20-day increments of
These increments are nonoverlapping and independent:

— S)2
Vn = n—I

where variance over n days
S = average value of S

(10.3)

The log changes are calculated as in equation (10.2):

= ln(Vfl/V(fl_I))

where = change in volatility at time n

(10.4)

k/S analysis is then performed as outlined in Chapter 7. Figure 10.3 shows
the log/log plot. Table 10.1 summarizes the results.

Realized volatility has H = 0.31, which is antipersistent. Because

E(H) = 0.56, volatility has an H value that is 5.7 standard deviations below
its expected value. Up to this point, we had not seen an antipersistent time
series in finance. Antipersistence says that the system reverses itself more
often than a random one would. This fits well with the experience of traders
who find volatility mean reverting. However, the term mean reverting implies
that, in the system under study, both the mean and the variance are stable—
that is, volatility has an average value that it is tending toward, and it reverses

0.5 1 1.5 2 2.5
Log(Number of Observations)

3

FIGURE 10.3 RIS analysis, S&P 500 realized volatility.
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S&P 500 E(R/S)

Regression output:
Constant 0.225889 —0.07674
Standard error

of Y (estimated) 0.02 1 117 0.005508
R squared 0.979899 0.99958
Number of obseryations
Degrees of freedom

6
4

6
4

Hurst exponent 0.309957 0.564712
Standard error

of coefficient 0.022197 0.00579
Significance —5.69649

itself constantly, trying to reestablish an equilibrium value. We cannot make
that assumption here.

In fact, in Chapter 13, we will find that an antipersistent Hurst exponent is
related to the spectral density of turbulent flow, which is also antipersistent.
Turbulent systems are also described by the stable Levy distributions, which
have infinite mean and variance; that is, they have no average or dispersion lev-
els that can be measured. By implication, volatility will be unstable, like turbu-
lent flow.

This means that volatility will have no trends, but will frequently reverse
itself. This may be a notion that implies some profit opportunity, but it must be
remembered that the reversal is not even. A large increase in volatility has a
high probability of being followed by a decrease of unknown magnitude. That
is, the reversal is equally as likely to be smaller, as larger, than the
There is no guarantee that the eventual reversal will be big enough to offset
previous losses in a volatility play.

IMPLIED VOLATILITY

Realized volatility is a statistical artifact, calculated as a characteristic of an-
other process. Implied volatility falls out of a formula. Its tie to reality is a
measure of how much the formula is tied to reality. A study of implied volatil-
ity is, in many ways, a test of the assumptions in the Black—Scholes formula. If
volatility is really a finite process, then implied volatility, which is supposed to
be a measure of instantaneous volatility, should also be finite and stable. It will

be either a random walk or a persistent series that can be predicted as well as

stock returns.
Figure 10.4 shows the log/log plot from R/S analysis. Table 10.2 summa-

rizes the results.
Implied volatility is very similar to realized volatility. It has virtually the same

Hurst exponent, H 0.44, which is 3.95 standard deviations below E(H) = 0.56.

There is, in fact, little to distinguish a time series of implied volatility from a
time series of realized volatility. However, implied volatility does have a higher
value of H, suggesting that it is closer to white noise than is realized volatility.
From one aspect, this is encouraging to proponents of using the Black—Scholes
formula for calculating implied volatility. The implied volatility calculation does,
indeed, capture much of the relationship between volatility and option premium.
However, it also brings into question the original practice of pricing options by
assuming a stable, finite variance value when estimating a "fair" price based on
this formula.

Table 10.1 Realized Volatility
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FIGURE 10.4 R/S analysis, S&P 500 implied volatility.
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Table 10.2 Implied Volatility, 1,100 Observations

S&P 500 E(R/S)

Regression output:
Constant 0.05398 —0.07846
Standard error

of V (estimated) 0.017031 0.010699
R squared 0.994994 0.998767
Number of observations 12 12
Degrees of freedom 10 10
Hurst exponent 0.444502 0.563715
Standard error

of coefficient 0.00997 0.006264
Significance —3.95

Antipersistence has interesting statistical characteristics; we will explore
them further in Chapter 14. In addition, a relationship between persistent and
antipersistent time series is well-exemplified by the persistent nature of stock
price changes and the antipersistence of volatility. They appear to be mirror
images of one another. One is not present without the other. This intriguing
relationship will be covered when we discuss 1/f noises in Chapter 13.

SUMMARY

In this brief chapter, we have looked at two antipersistent series: realized and im-
plied volatility. They were found to have similar characteristics. Antipersistence
is characterized by more frequent reversals than in a random series. Therefore,
antipersistence generates 0 < H < 0.50. This results in 1.5 <D < 2.0, which
means an antipersistent time series is closer to the space-filling fractal dimension
of a plane (D 2.0) than it is to a random line (D = 1.50). However, this does not
mean that the process is mean reverting, just that it is reverting. Antipersistence
also implies the absence of a stable mean. There is nothing to revert to, and the
size of the reversions is itself random.

11
Problems with
Undersampling: Gold
and U.K. Inflation

In Chapter 9, we saw the potential problem with oversampling—the distorting
effects of testing data at too high a frequency. Among other statistical prob-
lems (serial correlation, for example), there lurks another danger: overconf i-
dence of the analyst, because of the large sample size. This chapter deals with
the reverse problem, undersampling. With undersampling, an analyst could ac-
cept a fractal time series as random, simply because there are not enough ob-

servations to make a clear determination.
There are two types of undersampling, and each has its own consequences.

In what we will call Type I undersampling, we obtain a Hurst exponent that is
different from a random walk, but we cannot be confident that the result is
significant because there are too few observations. Type II undersampling is a
"masking" of both persistence and cycle length because too few points are in

a cycle. The process crosses over into a random walk for a small value of n,

because n covers such a long length of time.
Each of these undersampling errors will be examined in turn, using the Dow

Jones Industrials data from Chapter 8. The Dow data, in complete form, have
already been shown to be significantly persistent, with a cycle length of ap-
proximately 1,000 trading days. Afterward, we will look at two studies that are
intriguing, but inconclusive because of undersampling.
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152 Problems with Undersampling: Gold and U.K. Inflation

TYPE I LJNDERSAMPLING: TOO LITTLE TIME

In Chapter 8, we saw that the Hurst exponent for a stable, persistent process
does not change much when tested over time. We looked at three nonoverlap-
ping 36-year periods, and found that their Hurst exponent changed little. If
there truly is a Hurst process in place, the expected value of the Hurst expo-
nent, using equation (5.6), also does not change significantly when the sample
size is increased. What does change is the variance of E(H). The variance de-
creases as the total number of observations, T, increases. In Chapter 9, we saw
how a low value of H could be statistically significant, if there are enough data
points.

The anaJyst, however, does have a dilemma. If the same time period is kept
but is sampled more frequently, then it is possible to oversample the data, as we
saw in Chapter 9. If the frequency becomes too high, then noise and serial corre-
lation can hide the signal. With market data, it is preferable to keep the sampling
frequency to daily or longer, to avoid the oversampling problem. Unfortunately,
the only alternative to high-frequency data is a longer time period. More time is
not always possible to obtain, but it is preferable.

Industrials E(R/S)

output:
Constant
Standard error

of Y (estimated)
R squared
Number of observations
Degrees of freedom

—0.15899

0.014157
0.99742 1

1 2

10

—0.11082

0.008253
0.998987

1 2
10

X coefficient(s) 0.626866 0.583597
Standard error

of coefficient 0.01008 0.005876

For instance, let us use 20 years of five-day Dow returns. This results in
approximately 1,040 points. In investment finance, this seems like an adequate
sample. The period under study covers January 1970 through December 1989.
Figure 11.1 and Table 11.1 summarize the results of RIS analysis.

The Hurst exponent over the 20-year period is similar that in Chapter 8 for
108 years: H = 0.63. The E(H) still equals 0.58, and the cycle length still
appears at approximately 200 weeks. However, the variance of E(H) is now

for a standard deviation of 0.031. Despite the fact that virtually all the
values are the same as those in Chapter 8, the estimate of the Hurst exponent
is now only 1.4 standard deviations from its expected value. Unfortunately,
this is not high enough for us to reject the null hypothesis. The system could
still be a random walk.

How many points do we need? If we increase the time period rather than the
frequency, we can estimate the data requirements easily. If the Hurst exponent is

stable, then the difference between E(H) and H will also be stable. In this case,
the difference is 0.04. Therefore, we need to know the value of T (the total num-
ber of observations) that will make 0.04 a two standard deviation value, or:

(11.1)

which simplifies to:

T = 4/(H — E(H))2 (11.2)

Type I Undersampling: Too Little Time --
153

Table 11.1 Dow Jones Industrials, Five-Day Returns,
January 1970—December 1989

0
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1.1

0.9

0.5 1 1.5 2 2.5 3
Log(Number of Observations)

0.8

FIGURE 11.1 V statistic, Dow lones Industrials, five-day returns: January 1970—December 1989.

PD
F com

pression, O
C

R
, w

eb-optim
ization w

ith C
VISIO

N
's PdfC

om
pressor

http://www.cvisiontech.com/pdf_compressor_31.html


152 Problems with Undersampling: Gold and U.K. Inflation

TYPE I UND(RSAMPLJNG: TOO LITTLE TIME

In Chapter 8, we saw that the Hurst exponent for a stable, persistent process
does not change much when tested over time. We looked at three nonoverlap-
ping 36-year periods, and found that their Hurst exponent changed little. If
there truly is a Hurst process in place, the expected value of the Hurst expo-
nent, using equation (5.6), also does not change significantly when the sample
size is increased. What does change is the variance of E(H). The variance de-
creases as the total number of observations T, increases. In Chapter 9, we saw
how a low value of H could be statistically significant, if there are enough data
points.

The analyst, however, does have a dilemma. If the same time period is kept
but is sampled more frequently, then it is possible to oversample the data, as we
saw in Chapter 9. If the frequency becomes too high, then noise and serial corre-
lation can hide the signal. With market data, it is preferable to keep the sampling
frequency to daily or longer, to avoid the oversampling problem. Unfortunately,
the only alternative to high-frequency data is a longer time period. More time is
not always possible to obtain, but it is preferable.

Dow Jones
Industrials E(R/S)

Regression output:
Constant —0.15899 —0.11082
Standard error

of V (estimated) 0.014157 0.008253
R squared 0.99742 1 0.998987
Number of observations 1 2 12

Degrees of freedom 10 10

X coefficient(s) 0.626866 0.583597
Standard error

of coefficient 0.01008 0.005876
Significance 1.395384

For instance, let us use 20 years of five-day Dow returns. This results in
approximately 1,040 points. In investment finance, this seems like an adequate
sample. The period under study covers January 1970 through December 1989.
Figure 11.1 and Table 11.1 summarize the results of RIS analysis.

The Hurst exponent over the 20-year period is similar that in Chapter 8 for
108 years: H = 0.63. The E(H) still equals 0.58, and the cycle length still
appears at approximately 200 weeks. However, the variance of E(H) is now
1/1040 for a standard deviation of 0.031. Despite the fact that virtually all the
values are the same as those in Chapter 8, the estimate of the Hurst exponent
is now only 1.4 standard deviations from its expected value. Unfortunately,
this is not high enough for us to reject the null hypothesis. The system could
still be a random walk.

How many points do we need7 If we increase the time period rather than the
frequency, we can estimate the data requirements easily. If the Hurst exponent is
stable, then the difference between E(H) and H will also be stable. In this case,
the difference is 0.04. Therefore, we need to know the value of T (the total num-
ber of observations) that will make 0.04 a two standard deviation value, or:

(H — E(H))/(l/' = 2 (11.1)

which simplifies to:

T=4/(H—E(H))2 (11.2)

Type I Undersampling: Too Little Time 153

Table 11.1 Dow JonesIndustrials, Five-Day Returns,
January 1970—December 1989

C)
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Log(Number of Observations)

0.8

FIGURE 11.1 V statistic, Dow Jones Industrials, five-day returns: January 1970—December 1 989.
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154 Problems with Unckrsampling: Gold and U.K. Inflation

In this example, I = 2,500 weeks, or approximately 48 years of five-day
data. To achieve a 99 percent confidence interval, the numerator on the right-
hand side of equation (11.2) should be replaced with 9. We would need 5.625
weeks to achieve significance at the 1 percent confidence level, if H remainedat 0.62 for the new interval. There is no guarantee that this will happen. H is
remarkably stable in many but not all cases.

This numerator change works reasonably well if we keep the same sampling
frequency but increase the time period. If we increase the sampling frequency
within the same time frame, this approach is not reliable. For instance, in
Chapter 8 we saw that increasing the frequency from 20-day to five-day to one-
day returns changed the value of H from 0.72 to 0.62 to 0.59 respectively. In-
crease in sampling frequency is usually accompanied by an increase in noise
and a decrease in the Hurst exponent. In this case, data sufficiency will in-
crease at an ever-increasing rate as sampling frequency is increased.

TYPE II UNDERSAMPLING: TOO LOW A FREQUENCY

Suppose we now sample the Dow every 90 days. For the full Dow data set, thisgives us 295 points covering 108 years. Figure 11.2 and Table 11.2 show the
results. The Hurst exponent for four-year cycles cannot be seen, because it now
occurs at n = 16. Because we typically begin at n = 10, we have no points for
the regression. The standard deviation of E(H) is a large 0.058. There is no
way to distinguish this system from a random one; the only alternative is to
increase the sampling frequency. If increasing the frequency does not give a
significant Hurst exponent, then we can conclude that the system is not persis-
tent. Otherwise, we cannot be sure one way or the other.

TWO INCONCLUSIVE STUDIES

I have two data sets that suffer from undersampling problems. I have not pur-
sued correcting these problems because the series studied are not important to
my style of investment management. However, because many readers are inter-
ested in these time series, I present the inconclusive studies here to entice some
reader into completing them.

Gold

I have 25 years of weekly gold prices from January 1968 to December 1992,
or 1,300 observations. Figure 11.3 and Table 11.3 show the results of R/S

Table 11.2 Dow lones Industrials, 90-Day Returns

Dow Jones
Industrials E(R/S)

Regression output:
Constant —0.15456 —0.17121
Standard error

of Y (estimated) 0.038359 0.0212S7
Rsquared 0.991328 0.997401
Number of observationS 5 5

Degrees of freedom 3 3

x coefficient(s) 0.607872 0.61 723
Standard error

of coefficient 0.032825 0.01 8191
Significance —0.16072

155Two Inconclusive Studies
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FIGURI 11.2 V statistic, Dow Jones Industrials, 90-day returns.
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Table 11.3 Gold

Gold E(R/S)

Regression output:
Constant —0.15855 —0.10186
Standard error

of Y (estimated) 0.028091 0.0 10688
R squared 0.992385 0.9987
Number of observations 8 8
Degrees of freedom 6 6
X coefficient(s) 0.624998 1.677234 0.577367
Standard error

of coefficient 0.022352 0.008504

Two Inconclusive Studies 157

analysis. The V-statistic plot in Figure 11.3 indicates apparent 40-week and
248-week cycles. The long cycle is similar to the U.S. stock market cycle of
four years. The shorter cycle is also intriguing. Unfortunately, the Hurst ex-
ponent is not significant. H = 0.62 and E(H) = 0.58. Thus, the Hurst expo-
nent is 1.67 standard deviations above its expected value. According to
equation (11.2), we need 4,444 weeks to achieve significance. Unfortunately,
because dollar did not come off the gold standard until 1968, we cannot in-
crease the time frame.

Our only alternative is to increase the frequency to daily pricing. This is
clearly a Type I undersarnpling problem.

The gold results look intriguing, but need further study.

U.K. Inflation

A reader of my earlier book sent me an article from a 1976 issue of The
Economist in which were listed annual estimates of U.K. inflation from 1662
to 1973—over 300 years. Although it is very long time series, its annual

1 1.5 2 2.5

Log(Number of Observations)

FIGURE 11.4 V statistic, U.K. annual inflation: 1662—1 973.

156 Problems with Undersampling: Gold and U.K. Inflation
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FIGURE 11.3 V statistic, weekly spot gold: January 1 968—December 1992.
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158 Problems with Undersamphng: Gold and U.K. Inflation

Table 11.4 UK Inflation

Regression output:
Constant
Standard error

of Y (estimated)
R squared
Number of observations
Degrees of freedom
X coefficient(s)
Standard error

of coefficient
Significance

frequency makes it a classic Type 11 undersampling problem. In the United
States, inflation appears to have a five-year cycle, as does the U.S. economy
(Peters (l991a)). If the United Kingdom has a similar cycle, it would be over-
looked because of infrequent sampling.

Figure 11.4 and Table 11.4 show the results of R/S analysis. This series is
virtually indistinguishable from a random one. It stands to reason that, like
U.S. inflation, U.K. inflation should have trends and cycles, but these data do
not support that notion.

SUMMARY

In this chapter, we examined two types of undersampling problems. In Type
undersampling, there is too little time to support the frequency sampled. The
preferred solution, if the first estimate of the Hurstexponent looks promising,
is to increase the time span and keep the sampling frequency constant. In this
way, an approximation to data sufficiency can be calculated.

In Type II undersampling the frequency of sampling is too low, and cycles
are missed. Given sufficient resources, such problems can usually be compen-
sated for. Sometimes, however, the nature of the data set is not amenable to
correction.

12
Currencies: A True
Hurst Process

As we have stated in previous chapters, currencies are often confused with secu-
rities. When traders buy and sell currencies, they do not realize an investment
income on the currencies themselves. Instead, currencies are bought and sold in
order to invest in short-term interest-rate securities in the selected country. Cur-
rency "value" is not necessarily related to activity in the country's underlying
economy. Currencies are tied to relative interest-rate movements in the two
countries. In addition, the markets themselves are manipulated by their respec-
tive governments for reasons that may not be considered "rational" in an effi-
cient market sense. For instance, if a country wants to stimulate exports, it will
allow, or even encourage, the value of its currency to drop. On the other hand, if
it wishes to encourage imports and reduce its trade surplus, it would like its cur-

rency to appreciate. Both objectives could be desirable, whether the country is in
recession or expansion.

There are two ways in which the central bank of a country can manipulate
its currency. First, it can raise or lower interest rates, making its government
securities more or less attractive to foreign investors. Because this alternative
can impact the overall economic growth of a country, it is generally considered
a last resort, even though it has the most long-lasting effects.

The second method is more direct and usually occurs when the currency
has reached a level considered acceptable by the central bank. Central banks
typically buy or sell in massive quantities, to manipulate the value of the
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Currencies: A True Hurst Process Yen/Dollar ____________________________________

currency. At certain times, the largest trader in the currency market can be
the central bank, which does not have a profit maximization objective in
mind.

Because of these two factors, currency markets are different from other
traded markets. For instance, they are not really a "capital market" because the
objective of trading currency is not to raise capital, but to create the ability to
trade in stocks and bonds, which are real markets for raising capital. Currencies
are "pure" trading markets, because they are truly a zero sum game. In the stock
market, asset values will rise and fall with the economy. Interest rates also rise
and fall, in an inverse relationship with the economy. Both relationships are re-
markably stable. However, currencies have no stable relationship with the econ-
omy. As a pure trading market, currencies are more inclined to follow fads and
fashions. In short, currencies follow crowd behavior in a way that is assumed for
stock and bond markets.

So far, we have examined markets that have some tie to economic activity.
Stocks, bonds, and (probably) gold have nonperiodic cycles that have an aver-
age length. This latter characteristic is closely related to nonlinear dynamical
systems and the Fractal Market Hypothesis. However, the pure Hurst process,
as discussed in Part Two, does not have an average cycle length. The "joker" is
a random event that can happen at any time. Because the drawing of random
numbers from the probability pack of cards occurs with replacement, the prob-
ability of the joker's occurring does not increase with time. The change in
"bias" truly does occur at random.

In the currency market, we see exactly these characteristics. In Chapter 2,
we saw that the term structure of volatility for the yen/dollar exchange rate
was different than for U.S. stocks and bonds. In Chapter 4, we saw evidence of
a persistent Hurst exponent for the yen/dollar exchange rate. In this chapter,
we will examine this and other exchange rates in more detail. The study will
still be limited.

Besides currencies, it is possible that other "trading markets" are also pure
Hurst processes, particularly in commodity markets such as pork bellies, which
are known to be dominated by speculators. Other researchers will, I hope, inves-
tigate these markets.

THE DATA

Currency markets have the potential for Type I undersampling problems. Like
gold, currency fluctuations in the United States did not occur in a free market

L

environment until a political event—in this case, another Nixon Administra-
tion event: the floating of the U.S. dollar and other currencies, as a result of
the Bretton Woods Agreement of 1972. In the period following World War II,
the U.S. dollar became the world currency. Foreign exchange rates were fixed
relative to the U.S. dollar by their respective governments. However, in the
late 1960s, the global economy had reached a different state, and the current
structure of floating rates manipulated by central banks developed. We there-
fore have less than 20 years' data. In the U.S. stock market, 20 years' daily
data are insufficient to achieve a statistically significant Hurst exponent. Un-
less daily currency exchange rates have a higher Hurst exponent than the U.S.
stock market, we may not achieve significance. Luckily, this does turn out to
be the case.

YEN/DOLLAR

We have already examined some aspects of the yen/dollar exchange rate in Chap-

ters 2 and 4. This exchange rate is, along with the mark/dollar exchange rate, an
extremely interesting one. For one thing, it is very heavily traded, and has been
since 1972. The postwar relationship between the United States and Japan, and
the subsequent development of the United States as the largest consumer of
Japanese exports, has caused the exchange rate between the two countries to be
one long slide against the dollar. As the trade deficit between the two countries
continues to widen, the value of the U.S. currency continues to decline. R/S anal-
ysis should give us insight into the structure of this actively traded and widely
watched market.

Table 12.1 summarizes the results, and Figure 12.1 shows the V-statistic
graph for this currency. The Hurst exponent is higher than the daily U.S. stock
value, with H = 0.64. This period has 5,200 observations, so the estimate is over
three standard deviations above its expected value. Therefore, it is highly persis-
tent compared with the stock market. However, no long-range cycle is apparent.
This is consistent with the term structure of volatility, which also has no appar-
ent long-range reduction in risk. Therefore, we can conclude that the yen/dollar
exchange rate is consistent with a fractional brownian motion, or Hurst process.
However, unlike the stock and bond market, there is no crossover to longer-term
"fundamental" valuation. Technical information continues to dominate all in-
vestment horizons. This would lead us to believe that this process is a true
"infinite memory," or Hurst process, as opposed to the long, but finite memory
process that characterizes the stock and bond markets.
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Currencies: A True Hurst Process

Regression output:
Constant
Standard error of Y (estimated)

—0.187

R squared
0.012

H
0.999

[(H)
0.642

Observations
0.553

Significance
4,400.000

5.848

Pound Yen/Pound

Regression output:
Constant —0.175
Standard error

—0.139

of Y (estimated) 0.018
R squared 0.998

0.027

Number of observations 24.000
0.995

Degrees of freedom 22.000
24.000

Hurst exponent 0.626
22.000

Standard error
0.606

of coefficient 0.006
Significance 4.797

0.009
3.440

Mark
Regression output:

Constant
Standard error of Y (estimated)

—0.170

R squared
0.01 2 *

Number of observations
0.999

Degrees of freedom
24.000

X coefficient(s)
22.000

Standard error of coefficient
0.624

Significance
0.004
4.650

POUND/DOLLAR

The pound/dollar exchange rate is so similar to the other two (see Figure 12.3)
that there is very little to comment on, except that, unlike the stocks studied in
my earlier book, all three currency exchange rates have values of H that are vir-
tually identical. This could prove to be very useful when we examine the Hurst
exponent of portfolios.

.1

162

Table 12.1 R/S Analysis

Pound/Dollar 163

Yen

E(R/S)

2.2

2

1.8

16

1.4

1.2

0.8
0.5

FIGURE 12.1 V statistic, daily yen, January 1972—December 1990.

MARK/DOLLAR

The mark/dollar exchange rate, like the yen/dollar, is tied to postwar expan-
sion—in this case, Germany, as the United States helped its old adversary re-
cover from the yoke of Nazism. Interestingly, R/S analysis of the mark/dollar
exchange rate is virtually identical to the yen/dollar analysis. H = 0.62, slightly
lower than the yen/dollar, but not significantly so. This gives us a significance of
more than four standard deviations (see Figure 12.2). Again, there is no break in
the log/log plot, implying that there is either no cycle or an extremely long cy-
cle. The latter is always a possibility, but seems unlikely.
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Yen/Pound 165

YEN/POUND

The yen/pound is slightly different from the other exchange rates. Japan and
the U.K. are not major trading partners; the currency trading that occurs be-
tween them is far less active. In addition, the forward market, where the ma-
jority of currency hedging occurs, is quoted in U.S. dollar exchange rates.
Thus, the yen/pound exchange rate is derived from the ratio of the yen/dollar
exchange rate and the pound/dollar exchange rate, rather than being quoted di-
rectly. As a result, the yen/pound exchange rate looks essentially random at
periods shorter than 100 days. The other exchange rates have similar character-
istics, but the yen/pound exchange rate is virtually identical to a random walk
at the higher frequencies. Figure 12.4 shows how tightly the V statistic follows
its expected value for less than 100 days.

Even though the yen/pound is not an exchange rate that garners much atten-
tion, it too has no apparent cycle length. The long memory is either extremely
long or infinite.

FJGURE 12.2 V statistic, daily mark, January 1972—December 1990.
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FIGURE 12.3 V statistic, daily pound, January l972—December 1990.

E(R/S)
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FIGURE 12.4 V statistic, daily yen/pound, January 1972—December 1990.
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166 Currencies: A True Hurst Process

SUMMARY

Currencies have interesting statistical and fundamental characteristics that dif-
ferentiate them from other processes. Fundamentally, currencies are not securi-
ties, although they are actively traded. The largest participants, the central PAR] FOIJRbanks, are not return maximizers, their objectives are not necessarily those of
rational investors. At the same time, there is little evidence of cycles in the cur-
rency markets, although they do have strong trends.

These characteristics, taken together, lead us to believe that currencies are
true Hurst processes. That is, they are characterized by infinite memory pro-
cesses. Long-term investors should be wary of approaching currencies as they
do other traded entities. In particular, they should not assume that a buy-and-
hold strategy will be profitable in the long term. Risk increases through time,
and does not decline with time. A long-term investor who must have currency
exposure should consider actively trading those holdings. They offer no advan-
tage in the long term.
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13
Fractional Noise and
R/S Analysis

In the previous chapters, we have seen evidence that markets are, at least in the
short term, persistent Hurst processes, and volatility, a statistical by-product,
is antipersistent. The Fractal Market Hypothesis offers an economic rationale
for the self-similar probability distributions observed, but it does not offer a
mathematical model to examine expected behavior. In this and the following
chapters, we will examine such models. They must be consistent with the Frac-
tal Market Hypothesis, as outlined in Chapter 3.

We have seen that short-term market returns generate self-similar fre-
quency distributions characterized by a high peak at the mean and fatter tails
than the normal distribution. This could be an ARCH or ARCH-related pro-
cess. As noted in Chapter 4, ARCH is generated by correlated conditional
variances. Returns are still independent, so some form of the EMH will still
hold. However, we also saw in Part Two that the markets are characterized by
Hurst exponents greater than 0.50, which implies long memory in the returns,
unlike the GARCH and ARCH processes that were examined in Chapter 4. In
addition, we found that variance is not a persistent process; instead, it is an-
tipersistent. Based on RIS analysis, neither ARCH nor its derivations con-
forms with the persistence or long-memory effects that characterize markets.
Therefore, we need an alternative statistical model that has fat-tailed distribu-
tions, exhibits persistence, and has unstable variances.

There is a class of noise processes that fits these criteria: 1/f or fractional
noises. Unlike ARCH, which relies on a complicated statistical manipulation,
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fractional noises are a generalization of brownian motion processes. They seem
to be everywhere. The ubiquitous nature of I/f noise has both puzzled and in-
trigued scientists for some time. 1/f noise is particularly common to phase transi-
tions, where intrinsic scales of length or time cease to exist; that is, correlations
become infinite. Because the Hurst process, in its pure form, is also character-
ized by infinite memory, it would seem reasonable to equate the two processes.
Mandelbrot and Wallis (l969a—1969c) did just that, but the scientific and mathe-
matical community has generally been unaware of R/S analysis and its relation-
ship to 1/f noise. A notable exception is Schroeder (1991). However, I/f noise has
been extensively researched, both theoretically and empirically. By reconciling
the Hurst infinite memory process and 1/f noise, we make available a wide array
of tools for market analysis. In this chapter, we will begin this process, but this is
only a start. I expect that research into fractional noise processes and markets
will be one of the most fruitful areas for creating useful technology. In addition,
there is the family of ARFIMA models, a generalized version of the ARIMA
models discussed in Chapter 5. When we allow the differencing interval to be
fractional, many characteristics of the Hurst long-memory process can be gener-
ated and mixed with short-term AR or MA processes. The chapter ends with an
examination of this interesting and useful area of study.

THE COLOR OF NOISE

When most people think of noise, they think of "white" or random noise. This
type of noise is the hiss that is audible on blank audio tapes. Because it has no
intrinsic scale, the hiss sounds the same no matter what the speed of the tape.
Its integrand is called "brown" noise, or brownian motion. Brown noise is sim-
ply the running sum of white noise. It sounds like something is there, but no
information really exists in brown noise.

These noises can be characterized by their power spectra, which follow sim-
ple inverse power laws. The power spectra are calculated through the Fourier
transform, developed in the early l800s by Jean-Baptiste Fourier, and are often
called spectral analysis. The Fourier transform translates a time series into a
function defined by its frequencies. It assumes that any time series can be repre-
sented by the sum of sine (or cosine) waves of different frequencies and infinite
durations. The coefficients of the Fourier function define a "spectrum" in the
same way that light has a spectrum, at many frequencies, or time increments. At
frequencies that have sharp peaks, there is a periodic component in the original

time series. Thus, spectral analysis assumes that (1) the time series under study
is periodic in nature, and (2) cycles are periodic in nature.

However, when fractional noise is present, the power spectra are featureless
and they scale according to inverse power laws. These inverse power laws are a
function of a frequency, f, and follow the form The power spectra follow
the inverse power law because of the self-similar nature of the system under
study. The frequencies scale, like all fractals, according to power laws. The
scaling factor, or spectral exponent, b, can range from 0 to 4. For white noise,
b 0; that is, the power spectrum of white noise is not related to frequency. At
all frequencies, white noise remains the same, which is why the hiss on the
tape sounds the same at all speeds (or frequencies). Fractal dimension calcula-
tion of white noise in phase space is similar. The white noise fills the embed-
ding dimension (which, in this case, is a frequency) that it is placed in. There
is no scaling law. When white noise is integrated, then b 2, the power spec-
tra for brown noise. Thus, brown noise has the form 1/f2. As in most random
processes, the scaling factor is a square.

There are other values for b as well. If 0 < b < 2, we have pink noise. Pink
noise is often referred to as 1/f noise, but that is a bit of a misnomer. Pink
noise seems to be widespread in nature and has become useful in modeling
turbulence, particularly when b assumes fractional values between 1 and 2.
Beyond brown noise, there is black noise, where b> 2. Black noise has been
used to model persistent systems, which are known to have abrupt collapses.
Thus, we now have a relationship between fractional noises and the Hurst
process:

b = 2*H + 1

where b = the spectral exponent
H = the Hurst exponent

(13.1)

Black noise is related to long-memory effects (H > 0.50, 2.00 < b 4.00);
pink noise is related to antipersistence (H <0.50, 1  b> 2). This relation-
ship between power spectra and the Hurst exponent was postulated by Mandel-
brot and Van Ness (1968), who also suggested that the derivative of fractional
brownian motion has a spectral exponent of 1 — 2*H.

Although these relationships were postulated by Mandeibrot and Van Ness
(1968) and were largely accepted, they were rigorously defined recently by
Flandrin (1989).
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PINK NOISE: 0 < H < 0.50

It has long been thought that 0 < H <0.50 is the "less interesting case," to
quote Mandelbrot (1982). However, this is not so. Because of equation (13.1)
and the results of Chapter 10, antipersistence can be very important. The rela-
tionship between volatility and turbulent flow will go far toward increasing our
understanding of markets. It will also reduce a number of misconceptions
about the relationship between physical systems and markets.

Schmitt, Lavallee, Schertzer, and Lovejoy (1992) and Kida(1991) have pub-
lished the connection between fractal (i.e., Levy) distributions and turbulent
flow. Equation (13.1) shows the connection between turbulent flow and the
Hurst exponent. Antipersistent values of H correspond to pink noise. Thus, un-
derstanding pink noise increases our understanding of the structure of antiper-
sistence and volatility.

Relaxation Processes

1/f noise is closely related to relaxation processes. In fact, 1/f noise has been
postulated by Mandelbrot (1982) to be the sum of a large number of parallel re-
laxation processes occurring over many different frequencies. These frequen-
cies are equally spaced logarithmically, which explains the inverse power law
behavior. We saw a similar structure in the Weirstrass function, in Chapter 6.
The Weirstrass function was the sum of an infinite number of sine curves occur-
ring over an infinite number of frequencies.

A relaxation process is a form of dynamic equilibrium. Imagine two species
in equilibrium, contained within a closed environment. An exogenous force ap-
pears that benefits one species over the other: one species will begin growing kfl
numbers as the other declines, until a new equilibrium is reached. The time it
takes for the new equilibrium to be reached is the system's correlation or relax-
ation time.

Gardner (1978) related a simple method proposed by Richard Voss for simu-
lating 1/f noise. Like Hurst's probability pack of cards, it offers a method for
understanding how parallel relaxation processes can occur in nature and in
markets.

Voss's method uses three dice. The first die is thrown and the number is
noted for each observation. The second die is thrown every second time, and
its number is added to the first die. The third die is included in the throw every
fourth time, and its value is added to the other two. This method simulates 1/f
noise over a small range of frequencies. The first die has a frequency of one,

the second a frequency of two, and the third a frequency of four. By adding
together the three throws, at different equally spaced intervals, we are simulat-
ing multiple relaxation times at different intervals, which are evenly spaced in

log2 space.
In markets, the two "species" could be two trends, one based on sentiment and

one on value. Some information, such as the level of long-term interest rates, may
not benefit a particular company if it has little or no long-term debt. But if the
market as a whole benefits, the improved sentiment may push a stock's price to a
new "fair-value" position. This new fair value is a combination of the prospects
of the company (which are tied to fundamental, balance sheet information), and
the relative position of interest rates to the stock market as a whole. The time it
takes for the stock market to fully value the shift in interest rates would be the
relaxation time for that factor. It is likely that different stocks would value
the information at different rates. Therefore, the market as a whole would have
many different "parallel" relaxation times in reaction to the same information.

Under the Fractal Market Hypothesis, it is more likely that different investors,
with different investment horizons, react to the information with multiple relax-
ation times; that is, the information affects different investors differently, de-
pending on their investment horizon. Therefore, volatility, which is the measure
of uncertainty in the marketplace, would undergo many parallel shifts with dif-
ferent correlation or relaxation times.

Schroeder(l991) proposed a formula for simulating 1/f noise, and it is more
reliable than the three-dice method of Voss. It involves a generator of relax-
ation processes. This formula is repeated for frequency levels evenly separated
in log space, and added together. The formula is simple and can be easily im-
plemented by computers, even in a spreadsheet. The formula is:

xn+I = p*Xfl + — p2*r

where x0 = 0
r = a uniform random number
p = a desired correlation time

p is related to the relaxation time, t, by the following relationship:

p = exp(— l/t)

(13.2)

(13.3)

where t is the relaxation time. Three values of t, evenly separated in log
space, are chosen, and three series, x, are generated. For instance, if the desired
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sequence is in log10 space, then t = 1, 10, and 100 are used. Values of p = 0.37,
0.90, and 0.99, respectively, would result. Schroeder says that three observa-
tions, evenly separated in log space, are all that is needed for a good approxima-
tion. In this case, the frequencies are separated by powers of 10. With dice, it
was powers of 2. However, it is important to note that this is an approximation. In
theory, I/f noise consists of an infinite number of such relaxation processes, oc-
curring in parallel at all different frequencies. The more "frequencies" we add
to the simulation, the better the results.

Equation (13.2) can be easily simulated in a spreadsheet, using the follow-
ing steps:

1. Place a column of 1,000 or so random numbers in column A.
2. In cell Bl, place a 0.
3. In cell B2, place the following equation:

0.37*Bl + @sqrt(1 — .37A2)*A2

4. Copy cell B2 down for 1,000 cells.
5. Repeat steps 1 through 4 in columns C and D, but replace 0.37 in step 3

with 0.90.
6. Repeat steps 1 through 4 in columns E and F, but replace 0.37 in step 3

with 0.99.
7. Add columns A, C, and F together in column G.

Column G contains the pink noise series. Graph the series and compare it
to a random one. Notice that there are many more large changes, both positive
and negative, as well as more frequent reversals.

Equation (13.2) looks very simple, but there is a complex interaction between
its parts. The first term on the right-hand side is a simple AR(l) process, like
those we examined in Chapter 4. Therefore, this equation contains an infinite
memory, as AR(l) processes do. However, we also saw in Chapter 4 that AR(l)
systems are persistent for short time intervals. As we shall see, this series is an-
tipersistent. Something in the second term must be causing the antipersistence.

The second term is a random shock. Its coefficient is inversely related to the
correlation coefficient in the first term. For instance, when p 0.37, the coeffi-
cient to the second term is 0.93; when p = 0.90, the coefficient to the second
term is 0.43. That is, the stronger the AR(l) process, the less strong the random
shock. However, the random shock enters the AR process in the next iteration,
and becomes part of the infinite memory process.

The random shock keeps the system from ever reaching equilibrium. If the
random element were not included, each x series would reach equilibrium by its
relaxation time, t. However, the random element keeps perturbing the system; it
is continually reversing itself and never settling down. This type of system can
be expected to have an unstable variance and mean. We will examine this more
fully in Chapter 14.

Figure 13.1 shows a log/log plot of power spectrum versus frequency for a
series of 1,000 observations created according to equation (13.2). The slope of
the line is —1.63, giving b = 1.63, or H = 0.31, according to equation (13.1).
Figure 13.2 shows R/S analysis of the same series. R/S analysis gives H = 0.30,
supporting equation (13.1). The values vary, again, because equation (13.1)
gives the asymptotic value of H. For small numbers of observations, R/S values
will be biased and will follow the expected values from equation (5.6). However,
both results are in close agreement. More importantly, both give antipersistent
values of H. They look very similar to the volatility studies of Chapter 9.
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FIGURE 13.1 Power spectra, 1/f noise: multiple relaxation algorithm.
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FIGURE 13.2 RIS analysis, antipersistence: relaxation process.

It is likely that the multiple parallel relaxation processes exist because of the
market structure postulated in the Fractal Market Hypothesis. Each investment
horizon (or frequency) has its own probability structure. This self-similar proba-
bility structure means that, in the short term, each investment horizon faces
same level of risk, after adjustment for scale. Therefore, each investment hori-
zon has the same unstable volatility structure. The sum of these unstable volatil-
ities is a 1/f noise with characteristic exponent b = 1.56, or H = 0.44. The
reason volatility is unstable must wait for Chapter 14 and fractal statistics.

Intermittency

Interestingly, a characteristic value of b 1.67, or H = 0.33, often shows up
in nature. Kolmogorov (1941) predicted that the change in velocity of a turbu-
lent fluid would have b = Recent studies of turbulence in the atmosphere by
Kida (1991) and Schmitt et al. (1992) have shown that the actual exponent of

Pink Noise: 0 < H <0.50 177

turbulence is very close to the predicted value. Persistent values of H tend to
be approximately 0.70; antipersistent values tend to be approximately 0.33.
This suggests that there might be a relationship between turbulence and mar-
ket volatility. Ironically, when most people equate turbulence with the stock
market, they are thinking of the change in prices. Instead, turbulent flow might
better model volatility, which can also be bought and sold through the options
markets.

Turbulence is considered a cascade phenomenon. It is characterized by en-
ergy being transferred from large-scale to small-scale structures. In turbulence,
a main force is injected into a fluid. This force causes numerous eddies, and
smaller eddies split off from the larger eddies. This self-similar cascading struc-
ture was one of the first images of a dynamical fractal. However, it seems un-
likely that this is the phenomenon that characterizes volatility, because it is an
inverse power law effect. The markets are more likely power law phenomena,
where large scales are the sum of the small scales (an amplification process).
This amplification process underlies the long-memory process. In volatility, this
may be the case:

1. We have seen the term structure of volatility in Chapter 2. In the stock,
bond, and currency markets, volatility increased at a faster rate than the
square root of time. This relationship of one investment horizon to an-
other, amplifying the effects of the smaller horizons, may be the dynam-
ical reason that volatility has a power law scaling characteristic. At any
one time, the fractal structure of the markets (that is, many investors,
who have different investment horizons, trading simultaneously) is a
snapshot of the amplification process. This would be much like the snap-
shots taken of turbulent flow.

2. The stock and bond markets do have a maximum scale, showing that the
memory effect dissipates as the energy in turbulent flow does. However,
currencies do not have this property, and the energy amplification, or
memory, continues forever. Volatility, which has a similar value of b to
turbulent flow, should be modeled as such.

The well-known Logistic Equation is the simplest method for simulating
the cascade model of turbulence. The Logistic Equation is characterized by a
period-doubling route from orderly to chaotic behavior. This equation is often
used as an example of how random-looking results (statistically speaking) can
be generated from a simple deterministic equation. What is not well-known is
that the Logistic Equation generates antipersistent results. This makes it an

176 Fractional Noise and R/S Analysis
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Figure 13.3(a) is the bifurcation diagram that appeared in my earlier book.
The x-axis shows increasing values of r, while the y-axis shows the output of the
equation x(t). Low values of r reach a single solution, but increasing the values
results in successive bifurcations. This period-doubling route to chaos has been
found to occur in turbulent flow. The period-doublings are related to the
"cascade" concept discussed above. However, in the chaotic region (r> 3.60),
there are also windows of stability. In particular, one large white band appears
at approximately r = 3.82. Figure 13.3(b) is a magnification of this region.

x

inappropriate model for the capital markets, although it may be a good model
for volatility.

The Logistic Equation was originally designed to model population dynam-
ics (as do relaxation processes) and ballistics. Assume we have a population
that has a growth (or "birth") rate, r. If we simply apply the growth rate to the
population, we will not have a very interesting or realistic model. The popula-
tion will simply grow without bound, linearly, through time. As we know,
when a population grows without bound, it will eventually reach a size at
which it outstrips its resources. As resources become scarcer, the population
will decline. Therefore, it is important to add a "death" rate. With this factor,
as the population gets bigger, the death rate increases. The Logistic Equation
contains this birth and death rate, and takes the following basic form:

X < 1 (13.4)

where t = a time index

The Logistic Equation is an iterated equation: its output becomes the input
the next time around. Therefore, each output is related to all of the previous
outputs, creating a type of infinite memory process. The equation has a wealth
of complex behavior, which is tied to the growth rate, r.

The Logistic Equation has been extensively discussed in the literature. I
devoted a chapter to it in my previous book, but my primary concern was mak-
ing the intuitive link between fractals and chaotic behavior. Here, I would like
to discuss the Logistic Equation as an example of an antipersistent process that
exhibits, under certain parameter values, the important characteristic of inter-
mittency, as market volatility and turbulent flow do. The Logistic EquatioQ is
probably not the model of volatility, but it has certain characteristics that we
will wish to see in such a model.

The process can swing from stable behavior to intermittent and then to
chaotic behavior by small changes in the value of r. To return to the population
dynamics analogy, at small values of r, the population eventually settles down
to an equilibrium level; that is, the population reaches a size where supply and
demand balance out. However, when r = 3.00, two solutions (often called
"period 2" or a "2-cycle") appear. This event is called a pitchfork bifurcation,
or period doubling. As r is increased, four solutions appear, then 16, and then
32. Finally, at approximately r 3.60, the output appears random. It has be-
come "chaotic." (A more complete description, including instructions for sim-
ulating the Logistic Equation in a common spreadsheet, is available in Peters
(1991 a).)

L
0.75

-r
0.87 0.89 0.90

a

FIGURE 13.3a The biiurcation diagram.

PD
F com

pression, O
C

R
, w

eb-optim
ization w

ith C
VISIO

N
's PdfC

om
pressor

http://www.cvisiontech.com/pdf_compressor_31.html


Pink Noise: 0< H <0.50 181

____.,_j

0.4

: 0.3

_____

0.2

0.1

0

FIGURE 13.3b Magnification of the chaotic region.

The critical value of r is actually 1 + At this point, a stable area of period
3 (three alternating solutions) develops. However, a little below this area the re-
suits alternate between a stable 3-cycle and a chaotic region. Figure 13.4 shows
the results of iterating equation (13.4) in a spreadsheet with r = I + — .0001,
after Schroeder (1991). The alternating areas illustrate intermittent behavior, or
alternating periods of stability and instability. Intermittency, or bursts of chaos,

FIGURE 13.4 Intermittency, logistic Equation: r = 3.8283 .

are highly symptomatic of the time behavior of realized and implied market
volatility.

Schroeder (1991) went into more detail about the geometrics of this event,
which is called a tangent bifurcation. Conceptually, the system becomes trapped
for a long period, alternating within a closely related set of three values. Then it
breaks out, becoming wild and chaotic before being trapped once more. The
"stable values" decay hyperbolically (examine the pitchforks in Figure 13.3(b))
before they become unstable. Many studies have noticed a similar behavior of
volatility "spikes" followed by a hyperbolic decay. The hyperbolic decay would
appear to be equivalent to the relaxation times discussed earlier.

Given this behavior, it was of interest to apply R/S analysis to the Logistic
Equation. Figure 13.5 shows the results. We applied R/S analysis to 3,000 val-
ues from the Logistic Equation, with r = 4.0 in the chaotic region. H is calcu-
lated to be 0.37, or 10.2 standard deviations below E(H). These values are very
similar to those found in Chapter 10 for market volatility.

180 Fractional Noise and R/S Analysis

r 'I

K

H0.8

0.7

jo.6

0.5

0.955 0.965a

PD
F com

pression, O
C

R
, w

eb-optim
ization w

ith C
VISIO

N
's PdfC

om
pressor

http://www.cvisiontech.com/pdf_compressor_31.html


182 Fractional Noise and R/S Analysis

FIGURE 13.5 R/S analysis, Logistic Equation: r = 4.0.
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We have seen two models of pink noise. The relationship between relaxation
processes and the Logistic Equation should be obvious. Both model population
dynamics as an iterated process. However, as similar as equations (13.2) and(13.4) are, they are also quite different. In the relaxation model, the decay isdue to a correlation time and a random event. In the Logistic Equation, thedecay is due to a nonlinear transformation of the population size itself. The
Logistic Equation is a much richer model from a dynamics point of view. How-
ever, the relaxation model, with its multiple relaxation times, has great appeal
as well, particularly in light of the Fractal Market Hypothesis and its view that
markets are made up of the superimposition of an infinite number of invest-
ment horizons.

There isa significant problem with both models as "real" models of volatility.
Neither process generates the high-peaked, fat-tailed frequency distributionthat is characteristic of systems with 0 < H <0.50, as we will see in Chapter
14. In addition, we remain unable to explain why intermittency and relaxation

Black Noise: 0.50 II 1.0 183

processes should be related to volatility, which is, after all, a by-product of mar-
ket price dynamics. There is a plausible link, but before we can discuss that, we
must take a look at black noise processes.

BLACK NOISE: 0.50 < H < 1.0

The Hurst process, essentially a black noise process, has already been discussed
extensively. Like pink noise, black noise processes seem to abound in nature.
Pink noises occur in relaxation processes, like turbulence. Black noise appears
in long-run cyclical records, like river levels, sunspot numbers, tree-ring thick-
nesses, and stock market price changes. The Hurst process is one possible expla-
nation for the appearance of black noise, but there are additional reasons for
persistence to exist in a time series. In Part Five, we will discuss the possibility
of "noisy chaos." In this section, we will examine fractional brownian motion.

The Joseph Effect

Fractional brownian motion (FBM) is a generalization of brownian motion,
which has long been used as a "default" defusion process, as we have discussed
many times before. Essentially, if the process under study is unknown and a
large number of degrees of freedom are involved, then brownian motion is as
good an explanation as any. Because it has been so widely studied and its prop-
erties are well understood, it also makes available a large number of mathemat-
ical tools for analysis. However, as we have seen, it is a myth that random
processes and brownian motion are widespread. Hurst found that most pro-
cesses are persistent, with long-memory effects. This violates the assumption
that makes a process random, thus reducing the reliability of most of those
tools. Part of the problem is the restrictive assumption required for brownian
motion—and the Gaussian statistics that underlie it. It becomes a special case,
not the general case. Perhaps the most widespread error in time series analysis
is the assumption that most series should be accepted as brownian motion until
proven otherwise. The reverse should be the case.

Brownian motion was originally studied as the erratic movement of a small
particle suspended in a fluid. Robert Brown (1828) realized that this erratic
movement was a property of the fluid itself. We now know that the erratic move-
ment is due to water molecules colliding with the particle. Bachelier (1900) rec-
ognized the relationship between a random walk and Gaussian statistics.

0.5 1 1.5 2 2.5 3 3.5
Log(Number of Observations)
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Einstein (1908) saw the relationship between brownian motion and a random
walk. In 1923, Weiner(1976) modeled brownian motion as a random walk, with
underlying Gaussian statistical structure. Feder (1988) explained the process in
the following manner.

Take X(t) to be the position of a random particle at time, t. Let { e } be a Gaus-
sian random process with zero mean and unit variance, consisting of a random
number labeled e. The change in the position of the random particle from time
to time t is given by:

X(t) — X(t0) e*it — t01", for t  

where H = 0.50 for brownian motion

(13.5)

As Feder (1988) said, "[O]ne finds the position X(t) given the position X(to)
by choosing a random number e from a Gaussian distribution, multiplying it
by the time increment it — toiH and adding the result to the given position X(to)."

For fractional brownian motion, we generalize H so that it can range from 0
to 1. If we now set BH(t) as the position of a particle in FBM, the variance of
the changes in position scale in time as follows:

V(t — to) it — 2H (13.6)

For H = 0.50, this reduces to the classical Gaussian case. The variance in-
creases linearly with time, or the standard deviation increases at the square
root of time. However, FBM has variances that scale at a faster rate than
brownian motion, when 0.5 < H < 1. According to (13.3), standard devia-
Lion should increase at a rate equal to H. Thus, a persistent, black noise pro-
cess will have variances that behave much like the scaling of capital
that we examined in Chapter 2. However, those processes did increase at a
slower value than H. The Dow Jones Industrials scaled at the .53 root of time,
while H = 0.58. Likewise, the standard deviation of the yen/dollar exchange
rate scaled at the 0.59 root of time, while H = 0.62. The concept behind
equation (13.6) is correct, but is in need of further refinement. We leave that
to future research. Meanwhile, we can say that there is a relationship be-
tween the scaling of variance and H. The exact nature of that relationship
remains unclear.

In addition, the correlation between increments, C(t), is defined as follows:

C(t) = — 1 (13.7)
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This equation expresses the correlation of changes in position of a process
over time t with all increments of time t that precede and follow it. Thus, in
market terms, it would be the correlation of all one-day returns with all future
and past one-day returns. It would also apply to the correlation of all five-day
returns with all past and future five-day returns. In fact, theoretically, it would
apply to all time increments. It is a measure of the strength of the long-memory
effect, and it covers all time scales.

When a process is in brownian motion, with H = 0.50, then C(t) is zero.
There is no long-memory effect. When 0 < H < 0.50, C(t) is negative. There
is a reversal effect, which takes place over multiple time scales. We saw a sim-
ilar effect for an antipersistent, pink noise process. However, when the process
is black noise, with 0.5 <H < 1.0, we have infinite long-run correlations; that
is, we have a long-memory effect that occurs over multiple time scales, or in
capital markets' investment horizons. We know that equation (13.5) is not
completely true, so we can expect that equation (13.6) is also in need of cor-
rection. Again, that is left to future research.

Thus, the equation defining FBM uses this infinite memory effect:

0

BH(t) = [1 / F(H + (It — ti H—0.50 — It' I H—O.iO)dB(t)

It ti H—O.5OdB(t')J
0

(13.8)

As before, when H = 0.50, equation (13.8) reduces to ordinary brownian
motion. If we examine (13.8) more closely, we see that a number of other inter-
esting properties appear for FBM. The first is that FBM is not a stationary
process, as has been often observed of the capital markets. However, the
changes in FBM are not only stationary, but self-similar. Equation (13.8) can
be simplified, for simulation purposes, into a form that is easier to understand:

111*1

BH(t) — BH(t — 1) [n_H / ['(H + 0.50)1*
L

1H—050 *

+ ((n + 1)H_Q.50 — *

r = a series of M Gaussian random variables

(13.9)

Equation (13.9) is a discrete form of equation (13.8). Essentially, it says the
same thing, replacing the integrals with summations. The equation is a moving
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186 Fractional and R/S Analysis

average over a finite range of random Gaussian values, M, weighted by a power
law dependent on H. The numerical values in Figure 6.6 were generated using
this algorithm. (A BASIC program for using this algorithm was provided in my
earlier book.)

In its basic form, the time series (or "time trace") of the black noise series
becomes smoother, the higher H or b is. In the simulation, the smoothness is a
product of the averaging process. In theory, it is caused by increased correla-
tions among the observations, The long-memory effect causes the appearance
of trends and cycles. Mandelbrot (1972) called this the Joseph effect after the
biblical story of seven fat years followed by seven lean years. The Joseph effect
is represented by the power law summation in equation (13.9).

The Noah Effect

As shown in Figure 6.6, equation (13.9) produces time traces with the appro-
priate value of H or the right amount of jaggedness; that is, it duplicates the
fractal dimension of the time trace, and the Joseph or long-memory effect.
Black noise has an additional characteristic: catastrophes. Equations (13.8)
and (13.9) do not induce catastrophes because they are fractional Gaussian
noises. They explain only one aspect of black noise: long memory.

Black noise is also characterized by discontinuities in the time trace: there
are abrupt discontinuous moves up and down. These discontinuous catastro-
phes cause the frequency distribution of black noise processes to have high
peaks at the mean, and fat tails. Mandelbrot (1972) called this characteristic
the Noah effect, after the biblical story of the deluge. Figure 13.6 shows the
frequency distribution of changes for the FBM used to produce Figures 6.6(a)
and (b). This series has H 0.72, according to R/S analysis, and its frequency
distribution is similar to normal Gaussian noise. We can see (1) that FBM slim-
ulation algorithms do not necessarily capture all the characteristics we are
looking for, and (2) the one great shortcoming of R/S analysis: RIS analysis
cannot distinguish between fractional Gaussian noises and fractional non-
Gaussian noises. Therefore, RIS analysis alone is not enough to conclude that
a system is black noise. We also need a high-peaked, fat-tailed frequency dis-
tribution. Even then, there is the third possibility of noisy chaos, which we will
examine more fully in Part Five.

The Noah effect, an important aspect of black noise, is often overlooked
because it adds another layer of complexity to the analysis. It occurs because
the large events are amplified in the system; that is, something happens that
causes an iterated feedback ioop, much like the Logistic Equation. However, in

FIGURE 13.6 Frequency distribution, fractional noise: H 0.72.

the Logistic Equation, the catastrophes occurred frequently, as they do for
pink noise processes. In black noise, they happen more infrequently; the sys-
tern remains persistent rather than becoming antipersisteflt.

Statistically, we seem to be unable to reproduce the Noah effect in simula-
tion. However, we can reproduce it in nonlinear dynamics, as we shall see.

THE MIRROR EFFECT

Pink noises and black noises are commonly found in nature, but is there a rela-
tionship between the two? Will finding one necessarily lead to the other? In
the spectrum of 1/f noises, this could well be the case.

Mandelbrot and van Ness (1968), as well as Schroeder (1991), have shown
that brown noise is the integrand of white noise; that is, brown noise is simply
the running sum of white noise. It also follows that the derivative or velocity of
brown noise is white noise. Therefore, in the 1/f spectrum, a white noise series
can easily be translated into brown noise through a type of "mirror" effect.

U
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Fractional Noise and R/S Analysis

In equation (13.1), the spectral exponent, b, was equivalent to 2*H + 1. We
also mentioned, for the derivative of FBM, the spectral exponent is 2*H — I.
Thus, a persistent series with 0.50< H < 1.00 will have a spectral exponent
greater than 2.0, signaling a black noise process. However, the derivative of the
black noise process will have b < 1.0, making it a pink noise process.

It is not surprising, therefore, that the volatility of stock market prices is an-tipersistent, Market returns are a black noise process, so their acceleration or
volatility should be a pink noise process, as we found. We have also confirmed
that it is a misconception to say that market returns are like "turbulence," which
is a well-known pink noise process. The incorrect term is similar to saying that
moving water is turbulent. The turbulence we measure is not the fluid itself, but
the velocity of the fluid. Likewise, the turbulence of the market is in the velocity
of the price changes, not the changes themselves.

As a further test of the relationship of pink and black noise, we can examine
the second difference—the changes in the changes—through R/S analysis. Ac-
cording to this relationship, if the first difference is a black noise, then the sec-
ond difference should be a pink noise. Figure 13.7 shows the log/log R/S plot for
five-day Dow Jones Industrials returns used in Chapter 8. Note that H = 0.28,
which is consistent with an antipersistent, pink noise process. I have found this
to be true for any process with H > 0.50.

FRACTIONAL DIFFERENCING: ARFIMA MODELS

In addition to the more exotic models of long memory that we have been dis-
cussing, there is also a generalized version of the ARIMA (autoregressive inte-
grated moving average) models we discussed in Chapter 5. ARIMA models are
homogeneous nonstationary systems that can be made stationary by succ'es-
sively differencing the observations. The more general ARIMA(p,d,q) model
could also include autoregressive and moving average components, either
mixed or separate, The differencing parameter, d, was always an integer value.
Hosking (1981) further generalized the original ARIMA(p,d,q) value for frac-
tional differencing, to yield an autoregressive fractionally integrated moving
average (ARFIMA) process; that is, d could be any real value, including frac-
tional values. ARFIMA models can generate persistent and antipersistent be-
havior in the manner of fractional noise. In fact, an ARFIMA(O,d,O) process is
the fractional brownjan motion of Mandelbrot and Wallis (1969a—l969d) Be-cause the more general ARFIMA(p,d,q) process can include short-memory
AR or MA processes over a long-memory process, it has potential in describing

Dow

H=O.28

I U
I I

3.5 4
0

0.5 1 1.5 2 2.5 3

Log(Number of Observations)

FIGURE 13.7 R/S analysis, Dow Jones Industrials, five-day returns: second
difference.

markets. In light of the Fractal Market Hypothesis, it has particular appeal,
because the very high-frequency terms can be autoregressive (as we found in
Chapter 9), when superimposed over a long-memory Hurst process. Thus,
ARFIMA models offer us an adaptation of a more conventional modeling tech-
nique that can be fully integrated into the Fractal Market Hypothesis. Most of
the following discussion is a paraphrase of Hosking (1981). Readers interested
in more detail are referred to that work.

Fractional differencing sounds strange. Conceptually, it is an attempt to
convert a continuous-process, fractional brownian motion into a discrete one
by breaking the differencing process into smaller components. Integer differ-
encing, which is only a gross approximation, often leads to incorrect conclu-
sions when such a simplistic model is imposed on a real process.

In addition, there is a direct relationship between the Hurst exponent and
the fractional differencing operator, d:

d=H—0.50 (13.10)
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191

Thus, 0 <d < 0.50 corresponds to a persistent black noise process, and 2. When d> 0.50, (x1}is invertible and has the infinite autoregressive—0.50 < d < 0 is equivalent to an antipersistent pink noise system. White representation:noise corresponds to d 0, and brown noise corresponds to d I or an
(13.14)ARIMA(0,l,0) process, as well known in the literature. Brown noise is the 'rr(B)x1 =

k=Otrail of a random walk, not the increments of a random walk, which are white
noise, where:

It is common to express autoregressive processes in terms of a backward
shift operator, B. For discrete time white noise, B(x1) = so that _d*(l — d) . . . (d — I — d) = (k — d —

(13.15)
= k! k!*(d — 1)!

_B)*x1a1

k —+ —where the a1 are lID random variables. Fractionally differenced white noise, (—d — 1)!
with parameter, d, is defined by the following binomial series:

3. The spectral density of {x1} is:
= (I — B)d = (d)

k=O k
B)k

s(w) = (2*sin . (13.16)
= 1 _d*B _d)*(2_d)*B3_. .

. (13.11)

Characteristics of ARFIMA(o,d,o) 4. The covariance function of (x1} is:
Hosking developed the characteristics of the ARFIMA equivalent of fractional (_1)k (2d)!

(13.17)noise processes, ARFIMA(0,d,0)_an ARFIMA process with no short-memory = E(xlxI_k) = (k — d)!*(_k — a)!effects from p and q. I will state the relevant characteristics here.
Let {x1j be an ARFIMA(0,d,0) process, where k is the time lag and a1 5. The correlation function of {x1) is:is a white noise process with mean zero and variance These are thecharacteristics: (d)!

________

* k2*di (13.18)
1. When d < 0.50, {x1} is a stationary process and has the infinite moving-

average representation:
as k approaches infinity.

x1 = = (13.12) 6. The inverse correlations of {x1} are:
where:

a,

__________

* k_2*d (13.19)Pinv,k (—d — 1)!d(l +d) . . . (k— 1 +d) (k+d— I)!
(13.13)k! k!(d — 1)! 7. The partial correlations of {x1} are:

. . .) (13.20)
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Commentary on the Characteristics
The most relevant characteristics to the Fractal Market Hypothesis deal with
the decay of the autoregressive process. For —0.5 <d <0.5, both Pk and
decay hyperbolically (that is, according to a power law) rather than exponen-tially, as they would through a standard AR process. Ford> 0, the correlationfunction, equation (13.18) is also characterized by power law decay. Equation(13.18) also implies that {x) is asymptotically self-similar, or it has a statisti-
cal fractal structure. For d > 0, the partial and inverse correlations also decay
hyperbolically, unlike a standard ARIMA(p,0,q) process. Finally, for long (orlow) frequencies, the spectrum implies a long-memory process. All of the
hyperbolic decay behavior in the correlations is also consistent with a long-
memory, stationary process for d > 0.

For —0.5 <d <0, the ARFIMA(0,d,0) process is antipersistent, as de-
scribed in Chapter 4. The correlations and partial correlations are all negative,except po = 1. They also decay, according to a power law, to zero. All of this is
consistent with the antipersistent process previously discussed.

ARFIMA(p.d.q)

This discussion has dealt with the ARFIMA(0,d,0) process, which, as we men-
tioned, is equivalent to fractional noise processes. It is also possible to general-ize this approach to an ARFIMA(p,d,q) process that includes short-memoryAR and MA processes. The result is short-frequency effects superimposed
over the low-frequency or long-memory process.

Hosking discussed the effect of these additional processes by way of exam-
ple. In particular, he said: "In practice ARIMA(p,d,q) processes are likely tobe of most interest for small values of p and q Examining the simplest
examples, AFRIMA(1,d,0) and ARFIMA(0,d,l) processes are good illustra-
tions of the mixed systems. These are the equivalent of short-memory AR(l)
and MA(0, 1) superimposed over a long-memory process.

An ARFIMA(I,d,0) process is defined by:

(I — at
(13.21)

where a is a white noise process. We must include the fractional differencing
process in equation (13.12), where = so we have x = (1 — p*B)*y,.
The ARIMA(1,d,0) variable, Yt, is a first-order autoregression with ARIMA
(0,d,0) disturbances; that is, it is an ARFIMA(l,d,0) process. y1 will have

Fractional Differencing: ARFIMA Models 193

short-term behavior that depends on the coefficient of
a normal AR(l) process. However, the long-term behavior of will be

similar to x1. It will exhibit persistence or antipersiSteflCe, depending on the
value of d. For stationarity and invertibility, we assume ldl < 0.50, and p1 < 1.

Of most value is the correlation function of the process, Using F(a,b;c;z)
as the hypergeometric function, as k —f cc:

(—d)' (1 + w) k2*d_t
k (d — 1)! (1 p)2 F(l,1 + d;l — d;p)

. -

Hosking (1981) provided the following example. Let d = 0.2 and p = 0.5.
Thus, 0.711 for both processes. (See Table 13.1.) By comparing the corre-
lation functions for the ARFIMA(1,d,0) and AR(l) processes (as discussed in
Chapter 5) for longer lags, we can see the differences after even a few periods.
Remember that an AR(l) process is also an infinite memory process.

Figure 13.8 graphs the results. The decay in correlation is, indeed, quite dif-
ferent over the long term but identical over the short term.

Hosking described an ARFIMA(0,d, I) process as "a first-order moving aver-
age of fractionally different white noise." The MA 0, is used such that
lOt < 1; again, Idi < 0.50, for stationarity and invertibility. The ARFIMA(0,d,l)
process is defined as:

Yt = (1 — O*B)*x (13.23)

The correlation function is as follows, as k —* cc:

(13.24)

where:

a (1325)
(1 +02_(2*O*d/(1 —d))

To compare the correlation structure of the ARFIMA(0,d, I) with the
ARFIMA(1,d,0), Hosking chose two series with d = 0.5, and lag parameters that
gave the same value of (See Figure 13.9.) specifically, the ARFLMA(l,d,0)

p = 0.366, and the ARFIMA(0,d,l) parameter, 0 = —.508, both give
0.60. (See Table 13.2.)
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k ARFIMA AR k ARFIMA AR
1 0.711 0.711 7 0.183 0.092
2 0.507 0.505 8 0.166 0.065
3 0.378 0.359 9 0.152 0.0464 0.296 0.255 10 0.141 0.033
5 0.243 0.181 15 0.109 0.001
6 O.208 0.129 20 0.091 0.000

The short-term correlation structure is different, with the MA process
dropping more sharply than the AR process. However, as the lag increases, the
correlations become more and more alike and the long-memory process domi-
nates. The studies of the U.S. stock market in Chapters 8 and 9 were very sim-
ilar. Chapter 8 used the Dow Jones Industrials and Chapter 9 used the S&P
500, but there is enough similar behavior in these broad market indices to come

0.8
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I::
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Table 13.2 Correlation Comparison o
ARFIMA (14,0) and ARFIMA (0,d,1)

k ARFIMA(1,d,0) ARFIMA(0,d,1)

1 0.600 0.600
2 0.384 0.267
3 0.273 0.202
4 0.213 0.168
5 0.178 0.146

10 0.111 0.096
20 0.073 0.063

100 0.028 0.024

194 Fractional Noise and k/S Analysis

Table 13.1 ARFIMA (1,d,0) Correlations, pk; d = 0.2,
4) = 0.5, and an AR(1) with 4) = 0.711

r
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FIGURE 13.9 ARFIMA(1,d,0) versus ARFIMA(0,d,1), correlations over log(k).
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FIGURE 13.8 ARFIMA(1,d,0) versus AR(1), correlations over lag, K.
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to a conclusion. In Chapter 9, we found the high-frequency "tick" data to be anAR process, with scant evidence of a long-memory process. However, in Chap-ter 8, we had found the reverse. There was little evidence of an AR process(except at the daily frequency), but much evidence of long memory. This wouldimply that the U.S. stock market is likely an ARFIMA(p,d,0) process, al-though more extensive study is needed.
Hosking gave the following procedure for identifying and estimating anARFIMA(p,d,q) model:

1. Estimate d in the AR!MA(0,d,0) model =
2. Define =
3. Using Box—Jenkings modeling procedure, identify and estimate the pand 8 parameters in the ARFIMA(p,0,q) model = O*B*at.4. Define x1 (O*B)1*(p*B*y1).
5. Estimate d in the ARFIMA(0,d,0) model at.
6. Check for the convergence of the d, p. and U parameters; if not conver-gent, go to step 2.

Hosking specifically suggested using R/S analysis to estimate d in steps Iand 5, using equation (13.10).
The ARFIMA model has many desirable characteristics for modeling pur-poses. It also falls within a more traditional statistical framework, which maymake it acceptable to a wide group of researchers. I expect that much future

work will be devoted to this area.

SUMMARY

In this chapter, we examined some complex but important relationships. Wefound that noise can be categorized according to color and that the color ofnoise can be directly related to the Hurst exponent, H, and the Hurst process.
Antipersistent time series, like market volatility, are pink noise and akin to tur-
bulence. Persistent series are black noise, characterized by infinite memoryand discontinuous abrupt changes. We also looked at the ARFIMA family ofmodels as a potential modeling tool. We examined the characteristics of thesenoises, but we have not yet looked at their statistics. Because statistics is theprimary tool of financial economics, it would appear to be useful to study frac-tal statistics. We turn to that next.

14
Fractal Statistics

We have stated, a number of times, that the normal distribution is not adequate
to describe market returns. Up to this point, we have not specifically stated
what should replace it. We will make a which many readers are not
going to like. First, we must reexamine the reasons for the widespread accep-
tance of the Gaussian Hypothesis (markets are random walks and are well de-
scribed by the normal distribution).

The normal distribution has a number of desirable characteristics. Its
properties have been extensively studied. Its measures of dispersion are well
understood. A large number of practical applications have been formulated
under the assumption that processes are random, and so are described in the
limit by the normal distribution. Many sampled groups are, indeed, random.
For a while, it seemed that the normal distribution could describe any situa-
tion where complexity reigned.

West (1990) quoted Sir Francis Galton, the 19th-century English mathe-
matician and eccentric:

I know of scarcely anything so apt to impress the imagination as the wonderful form
of cosmic order expressed by the "law of frequency of error." The law would have
been personified by the Greeks and deified if they had known of it. It reigns with
serenity and in complete self-effacement amidst the wildest confusion. The larger
the mob, and the greater the apparent anarchy, the more perfect is its sway. It is the
supreme law of Unreason. Whenever a large sample of chaotic elements are taken in
hand and marshaled in the order of their magnitude, an unsuspected and most beau-
tiful form of regularity proves to have been latent all along.

197
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Fractal Statistics

Galton was, evidently, a disciple of Plato and a true believer in the creationsof the Good. To Galton, and to most mathematicians, the normal distribution is
the ultimate imposition of order on disorder. Galton studied many groups andshowed them to be normally distributed, from the useful (life spans) to theridiculous (the frequency of yawns). Unfortunately, there are many processes
that are not normal. The "supreme law of Unreason" often does not hold sway,
even for systems that appear overwhelmingly complex.

The reasons for its failure rest on its assumptions. Gauss showed that the lim-
iting distribution of a set of independent, identically distributed (lID) randomvariables was the normal distribution. This is the famous Law ofLarge Numbers,or, more formally, the Central Limit Theorem. Itis because of Gauss's formula-
tion that we often refer to such processes as Gaussian. However, there are situa-tions in which the law of large numbers does not hold. In particular, there areinstances where amplification occurs at extreme values. This occurrence willoften cause a long-tailed distribution.

For instance, Pareto (1897), an economist, found that the distribution of in-comes for individuals was approximately log-normally distributed for 97 per-cent of the population. However, for the last 3 percent, it was found to increasesharply. It is unlikely that anyone will live five times longer than average, but itis not unusual for someone to be five times wealthier than average. Why isthere a difference between these two distributions? In the case of life spans,each individual is truly an independent sample, family members aside. It is notmuch different from the classic problem in Probability—pulling red or blackballs out of an urn. However, the more wealth one has, the more one can risk.
The wealthy can leverage their wealth in ways that the average, middle-income
individual cannot. Therefore, the wealthier one is, the greater his or her abilityto become wealthier.

This ability to leverage is not limited to wealth. Lotka (1926) found thatnior scientists were able to leverage their position, through graduate students
and increased name recognition, in order to publish more papers. Thus, the more
papers published, the more papers could be published, once the extreme tail ofthe distribution was reached.

These long-tailed distributions, particularly in the findings of Pareto, ledLevy (1937), a French mathematician, to formulate a generalized density
function, of which the normal as well as the Cauchy distributions were special
cases. Levy used a generalized version of the Central Limit Theorem. Thesedistributions fit a large class of natural phenomena, but they did not attract
much attention because of their unusual and seemingly intractable problems.Their unusual properties continue to make them unpopular; however, their

F(x/bi)*F(x1b2) = F(x/b)

f(b1*t)*f(b2*t) = f(b*t)

Characteristic Functions

= ln[f(t)] =
= i*ô*t — i*13*(t/I ti I,

= — I c*t I*(l + It

I
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other properties are so close to our findings on capital markets that we must
examine them. In addition, it has now been found that stable Levy distributions
are useful in describing the statistical properties of turbulent flow and I/f
noise—and, they are fractal.

FRACTAL (STABLE) DISTRIBUTIONS

Levy distributions are stable distributions. Levy said that a distribution func-
tion, F(x), was stable if, for all b1, b2 > 0, there also exists b > 0 such that:

(14.1)

This relationship exists for all distribution functions. F(x) is a general char-
acteristic of the class of stable distributions, rather than a property of any one

distribution.
The characteristic functions of F can be expressed in a similar manner:

(14.2)

Therefore, f(b1*t), f(b2*t), and f(b*t) all have the same shaped distribution,
despite their being products of one another. This accounts for their "stability."

The actual representation of the stable distributions is typically done in the

manner of Mandeibrot (1964), using the log of their characteristic functions:

(14.3)

The stable distributions have four parameters: a, c, and & Each has its

own function, although only two are crucial.
First, consider the relatively unimportant c and & is the loca-

tion parameter. Essentially, the distribution can have different means than 0 (the

standard normal mean), depending on & In most cases, the distribution under

study is normalized, and = 0; that is, the mean of the distribution is set to 0.
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Parameter c is the scale parameter. It is most important when comparing realdistributions. Again, within the normalizing concept, c is like the sample devia-tion; it is a measure of dispersion. When normalizing, it is common to subtractthe sample mean (to give a mean of 0) and divide by the standard deviation, sothat units are in terms of the sample standard deviation. The normalizing opera-tion is done to compare an empirical distribution to the standard normal distri-bution with mean = 0 and standard deviation of 1. c is used to set the units bywhich the distribution is expanded and compressed about & The default value ofc is 1. These two parameters' only purpose is setting the scale of the distribu-tion, regarding mean and dispersion. They are not really characteristic to anyone distribution, and so are less important. When c = I and 6 = 0, the distribu-tion is said to take a reduced form.
Parameters a and 13 determine the shape of the distribution and are ex-tremely important. These two parameters are dependent on the generating pro-cess; c and 6 are not. 13 is the skewness parameter. It takes values such that—1 s 13 + 1. When 13 = 0, the distribution is symmetrical around 6. Whenthe skewness parameter is less than 0, the distribution is negatively skewed;when it is greater than 0, the distribution is positively skewed.Parameter a, the characteristic exponent, determines the peakedness at 6and the fatness of the tails. The characteristic exponent can take the valueso < a 2. When a = 2.0, the distribution is normal, with variance equal to2*c2. However, when a <2.0, the second moment, or population variance, be-comes infinite or undefined. When 1 <a <2.0, the first moment or popula-tion mean exists; when a I, the population mean also becomes infinite.

Infinite Variance and Mean
To most individuals who are trained in standard Gaussian statistics, thean infinite mean or variance sounds absurd or even perverse. We can alwayscalculate the variance or mean of a sample. How can it be infinite? Once again,we are applying a special case, Gaussian statistics, to all cases. In the family ofstable distributions, the normal distribution is a special case that exists whena = 2.0. In that case, the population mean and variance do exist. Infinite vari-ance means that there is no "population variance" that the distribution tends toat the limit. When we take a sample variance, we do so, under the Gaussianassumption, as an estimate of the unknown population variance. Sharpe (1963)said that betas (in the Modern Portfolio Theory (MPT) sense) should be calcu-lated from five years' monthly data. Sharpe chose five years because it gives astatistically significant sample variance needed to estimate the population
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variance. Five years is statistically significant only if the underlying distribu-
tion is Gaussian. If it is not Gaussian and a < 2.0, the sample variance tells
nothing about the population variance, because there is no population vari-
ance. Sample variances would be expected to be unstable and not tend to any
value, even as the sample size increases. If a 1.0, the same goes for the
mean, which also does not exist in the limit.

Figures 14.1 and 14.2 show how infinite mean and variance affect stable
distributions using the sequential mean and standard deviation, after Fama
(1965b).

Figure 14.1 uses the 8,000 samples from the well-known Cauchy distribu-
tion, which has infinite mean and variance. The Cauchy distribution is de-
scribed in more detail below. The series used here has been "normalized" by
subtracting the mean and dividing by the sample standard deviation. Thus, all
units are expressed in standard deviations. For comparison, we use 8,000
Gaussian random variables that have been similarly normalized. It is important
to understand that the two steps that follow will always end at mean 0 and stan-
dard deviation of 1, because they have been normalized to those values. Con-
verging means that the time series rapidly goes to a stable value.

Figure 14.1(a) shows the sequential mean, which calculates the mean as ob-
servations are added one at a time. For a system with a finite mean, the sequen-
tial mean will eventually converge to the population mean, when enough data
are used. In this case, it will be 0. In Figure 14.1(a), the time series of Gaussian
random numbers converges to within .02 standard deviation of the mean by
about 500 observations. Although it wanders around the mean of 0, it does so
in a random, uniform fashion. By contrast, although the Cauchy series does not
wander far from 0, it does so in a systematic, discontinuous fashion; that is,
there are discrete jumps in the sequential mean, after which it begins to rise
systematically.

Figure 14.2(a) shows the sequential standard deviation for the same two se-
ries. The sequential standard deviation, like the sequential mean, is the calcu-
lation of the standard deviation as observations are added one at a time. In this
case, the difference is even more striking. The random series rapidly converges
to a standard deviation of 1. The Cauchy distribution, by contrast, never con-
verges. Instead, it is characterized by a number of large discontinuous jumps,
and by large deviations from the normalized value of I.

Figure 14.1(b) graphs the sequential mean of the five-day Dow Jones Indus-
trials data used in Chapter 8 and elsewhere in this book, but it has also been nor-
malized to a mean of 0 and a standard deviation of 1. After about 1,000 days,
the graph converges to a value within 0.01 standard deviation of 0. A Gaussian
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FIGURE 14.lb Convergence of sequential mean, Dow Jones Industrials, five-dayreturns: 1888—1990.

0

FIGURE 14.2a Convergence of sequential standard deviation, Cauchy function.

random time series shows similar behavior. The mean of the Dow returns ap-

pears to be stable, as one would expect from a stable fractal distribution. The
behavior is uniform and continuous. It does not show the discrete jumps found in
the Cauchy function, with its infinite mean.

Figure 14.2(b) shows a very different story. The sequential standard devia-
tion for the Dow data does not converge. It ends at I because the time series
was normalized to a standard deviation of 1, but it does not converge. On the
other hand, the Gaussian random time series appears to converge at about 100
observations, and the large changes in Dow standard deviation are jumps—the
changes are discontinuous. Even at the end of the graph, where we have over
5,200 observations, the discontinuities appear. The fluctuations seem to have
become less violent, but this is because a daily change in price contributes less to
the mean. Figure 14.3 is a "blow-up" of the end of Figure 14.2(b). We can see
that the discontinuities are continuing. This is the impact of "infinite variance."
The population variance does not exist, and using sampling variances as esti-
mates can be misleading. There is a striking similarity between the behavior of
the Cauchy sequential standard deviation and the Dow.

I
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These graphs support the notion that, in the long term, the Dow is charac-
terized by a stable mean and infinite memory, in the manner of stable Levy orfractal distributions.

I must add some qualifications at this point. When I state that the market is
characterized by infinite variance, I do not mean that the variance is truly in-finite. As with all fractal structures, there is eventually a time frame where
fractal scaling ceases to apply. In earlier chapters, 1 said that trees are fractal
structures. We know that tree branches do not become infinitely small. Like-
wise, for market returns, there could be a sample size where variance does,
indeed, become finite. However, we can see here that after over 100 years ofdaily data, the standard deviation has still not converged. Therefore, for all
practical purposes, market returns will behave as if they are infinite variance
distributions At least we can assume that, within our lifetime, they will behaveas if they have infinite variance.
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The Special Cases: Normal and Cauchy

Embedded within the characteristic function of the stable distributions are two
well-known distributions as special cases. Using the notation S(x; ix. 13, c, b) to
represent the parameters of a stable distribution, x, we will briefly examine
these distributions:

1. For S(x; 2, 0, c, S), equation (14.3) reduces to:

0(t) = — (if212)*t2 (14.4)

where ix2 = the variance of a normal distribution

This is the standard Gaussian case, with c = 2*ix2. If we also have
= 0, then it becomes the standard normal distribution with mean 0

and standard deviation of 1.
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2. For S(x; 1, 0, c, 6), equation (14.4) reduces to:
0(t) = — c*J

(14.5)

This is the log of the characteristic function for the Cauchy distribu-
tion, which is known to have infinite variance and mean. In this case, 6
becomes the median of the distribution, and c, the semi-interquartile
range.

These two well-known distributions, the Cauchy and normal, have many ap-
plications. They are also the only two members of the family of stable distribu-
tions for which the probability density functions can be explicitly derived. Inall other fractional cases, they must be estimated, typically through numerical
means. We will discuss one of these methods in a later section of this chapter.

Fat Tails and the Law of Pareto

When a <2 and 0, both tails follow the Law of Pareto. As we stated ear-
her, Pareto (1897) found that the log normal distribution did not describe the
frequency of income levels in the top 3 percent of the population. Instead, the
tails became increasingly long, such that:

P(U> u) = (u/U)a
(14.6)

Again, we have a scaling factor according to a power law. In this case, thepower law is due to the characteristic exponent, a, and the probability of find-
ing a value of U that is greater than an estimate u is dependent on alpha. To
return to Pareto's study, the probability of finding someone with five times theaverage income is directly connected to the value of a.

The behavior of the distribution for different values of when a < 2,
is important to option pricing, which will be covered in Chapter 15. Briefly,when takes the extreme values of + I or —1, the left (or right) tail vanishes
for the respective values of beta, and the remaining tail keeps its Pareto char-acteristics.

STABILITY UNDER ADDITION

For portfolio theory, the normal distribution had a very desirable characteris-
tic. The sum of series of lID variables was still lID and was governed by the

normal distribution. Stable distributions with the same value of alpha have the
same characteristic. The following explanation is adapted from Fan, Neogi,
and Yashima (1991).

Applying equation (14.2) to equation (14.3), we have:

= E(e*t*b*o) (14.7)

where xl, x2, and x are reduced stable independent random variables as de-
scribed above.

Then:

+b2*x?)) =

or, if" — d —" means "same distribution,"

bj*xj + b2*x2 d b*x

(14.8)

(14.9)

Applying this relation to the characteristic functions using equation (14.3),
we find the following relationship:

exp[—(bY + t + t

t t

We can now see that:

+ = ba

(14.10)

a (14.11)

Equation (14.11) reduces to the more well-known Gaussian, or normal case
when alpha equals 2.

Based on equation (14.11), we can see that if two distributions are stable,
with characteristic exponent a, their sum is also stable with characteristic ex-
ponent a. This has an application to portfolio theory. If the securities in the
portfolio are stable, with the same value of alpha, then the portfolio itself is
also stable, with that same value of alpha. Fama (1965b) and Samuelson
(1967) used this relationship to adapt the portfolio theory of Markowitz
(1952) for infinite variance distributions. Before we examine the practicality
of those adaptations, we must first review the characteristics of the stable,
fractal distributions.
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CHARACTERISTICS OF FRACTAL DISTRIBUTIONS

Stable Levy distributions have a number of desirable characteristics that makethem particularly consistent with observed market behavior. However, these
same characteristics make the usefulness of stable distributions questionable,
as we shall see.

Self-Similarity

Why do we now call these distributions fractal, in addition to stable,
was Levy's term? The scale parameter, c, is the answer. If the characteristic
exponent, a, and the skewness parameter, remain the same, changing csimply rescales the distribution, Once we adjust for scale, the
stay the same at all scales with equal values of a and Thus, a and 13 are notdependent on scale, although c and 6 are. This property makes stable distri-
butions self-similar under changes in scale. Once we adjust for the scaleparameter, c, the probabilities remain the same. The series—and, therefore,
the distributions—are infinitely divisible. This self-similar statistical struc-ture is the reason we now refer to stable Levy distributions as fractal distri-butions. The characteristic exponent a, which can take fractional valuesbetween 1 and 2, is the fractal dimension of the probability space. Like allfractal dimensions, it is the scaling property of the process.

We have already seen that fractal distributions are invariant under addition.This means that stable distributions are additive. Two stocks with the samevalue of a and 13 can be added together, and the resulting probability distri-bution will still have the same values of a and although c and 6 maychange. The normal distribution also shares this characteristic, so this aspectof MPT remains intact, as long as all the stocks have the same values of a
and 13. Unfortunately, my earlier book shows that different stocks can have
different Hurst exponents and different values of a. Currently, there is notheory on combining distributions with different alphas. The EMil, assum-ing normality for all distributions, assumed a = 2.0 for all stocks, which wenow know to be incorrect.

208
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r

Additive Properties

Measuring a

Discontinuities: Price Jumps

The fat tails in fractal distributions are caused by
a time series causes jumps in the process. They are similar to

the jumps in sequential variance for the Cauchy and the Dow. Thus, a large
change in a fractsj process comes from a small number of large changes,
rather than a large number of smáll changes, as implied in the Gaussian case.
These to be abrupt and discontinuous_another manifestation
of the Noah effect. Mandelbfot (1972, 1982) referred to it as the infinite vari-
ance syndrome.

These large discontinuous events are the reason we have infinite variance. It
is easy to see why they occur in markets. When the market or pan-
ics, fear breeds more fear, whether the fear is of capital loss or loss of opportu-
'nity. This amplifies the bearish/bullish sentiment and causes discontinuities in
the executed price, as well as in the bid/asked prices. According to the Fractal
Market these periods of instability occur when the market loses
its fractal structure: when long-term investors are no longer and

risk is concentrated in one, usually short, investment horizon. In measured
time, these large changes affect all investment horizons. Despite the fact that
long-term investors are not participating during the unstable period (because
they either have left the market or have become short-term investors), the re-
turn in that horizon is still impacted. The infinite variance syndrome affects
all investment horizons in measured time.

a

Fama (l965a) describes a number of different ways to measure a. lt now ap-
pears that R/S analysis and spectral analysis offer the most reliable method for
calculating a, but these alternative methods can be used as confirmation.

The original method recommended by MandeibrOt (1964) and Fama (l965b)
came from the relationship between the tails and the Law of Pareto, described in
equation (14.6). By dividing both sides of equation (14.6) by the right-hand term
and then taking we obtain:

log(P(Ui > u)) _a*(log(U) log(Ui)) (l4.7a)

log(P(U2 < u)) = _a*(log log(U2)) (14.7b)
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Equations (14.7a) and (14.7b) are for the positive and negative tails respec-
tively. These equations imply that the slope of a log/log plot should asymptoti-cally have a slope equal to — a. The accepted method for implementing thisanalysis is to perform a log/log plot of the frequency in the positive and nega-
tive tail versus the absolute value of the frequency. When the tail is reached,the slope should be approximately equal to a, depending on the size of the
sample. Figure 14.4 is taken from Mandelbrot (1964) and shows the theoreticallog/log plot for various values of a.

Figure 14.5 shows the log/log chart for the daily Dow file used throughoutthis book. The tail area for both the positive and negative tails has ample obser-vations for a good reading of a. The approximate value of 1.66 conforms toearlier studies by Fama (l965b).
The double-log graphical method works well in the presence of large data

sets, such as the daily Dow time series. However, for smaller data sets, it is lessreliable. This method was criticized by Cootner (1964), who stated that fattails alone are not conclusive evidence that the stable distribution is the one of
choice. That criticism is even more compelling today, with the advent of ARCHmodels and other fat-tailed distributions. Therefore, the graphical methodshould be used in conjunction with other tests.

K/S Analysis

Mandeibrot was not aware of rescaled range (R/S) analysis until the late
l960s. Even at that time, his work using R/S analysis was primarily confinedto its field of origin, hydrology. When Fama wrote his dissertation (l965a),he was not aware of R/S analysis either. However, he was familiar with rangeanalysis, as most economists were, and developed a relationship between thescaling of the range of a stable variable and a. In Chapter 5, we saw thatFeller's work (1951) primarily dealt with the scaling of the range, and its re-lationship to the Hurst exponent. Here, we will modify Fama's work, and

make an extension to the rescaled range and the Hurst exponent.
The sum of stable variables with characteristic exponent alpha results in anew variable with characteristic exponent alpha, although the scale will havechanged. In fact, the scale of the distribution of the sums is times the scaleof the individual sums, where n is the number of observations. If the scale in-

creases from daily to weekly, the scale increases by 51kv, where 5 is the numberof days per week.

FIGURE 14.4 Log/log plot for various values ol a. (From MandelbrOt (l%4). Re-
produced with permission of M.I.T. Press.)

S
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If we define the sum, as the sum of a stable variable in a particular inter-
val n, and R1 as the initial value, then the following relationship holds:

=
(14.8)

This equation is close to equation (4.7) for the rescaled range. It states that
the sum of n values scales as times the initial value. That is, the sum of
five-day returns with characteristic alpha is equivalent to the one-day return
times 5"°. By taking logs of both sides of equation (14.8) and solving for alpha,we get:

(14.9)log(R1)

You will remember from equation (4.x) that

H = log(R/S)
log(n)

If the log of the range, — R1, is approximately equal to the rescaled range
R/S, then we can postulate the following relationship:

(14.10)
H

The fractal dimension of the probability space is in this way related to the
fractal dimension of the time series. As is often the case, the two fractal di-
mensions will have similar values, although they measure different aspects of
the process. H measures the fractal dimension of the time trace by the fractal
dimension 2 — H, but it is also related to the statistical self-similarity of the
process through the form of equation (14.10). However, 1/H measures the frac-
tal dimension of the probability space.

Fama (l965a) mentioned most of the shortcomings of R/S analysis that we
have already discussed, particularly the fact that the range can be biased if a
short-memory process is involved. We have already dealt with biases. In gen-
eral, Fama found that range analysis gave stable values of alpha that conformed
with the results of the double-log graphical method. R/S analysis gives even
more stable values, because it makes the range dimensionless by expressing it
in terms of local standard deviation.

Spectral Analysis

We have already seen, in Chapter 13, the relationship between the Hurst expo-
nent, H, and the spectral exponent, (We will now refer to the spectral expo-
nent as 13,. to distinguish it from the exponent of skewness, 13.) Equation (14.10)
allows us to express a relationship with

(14.11)

In Chapter 13, we found 13, = 2.45 for the daily Dow data. This implies that
a = 1.73, which is also close to the value of 1.7 estimated by Fama (1965a).

212
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-2 -1.5 -I -0.5 0 0.5 1 1.5 2
Log(Pr(U>u))

Estimating alpha, graphical method: daily Dow Jones Industrials.
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MEASURING PROBABILITIES

As we have stated before, the major problem with the family of stable distribu-tions is that they do not lend themselves to closed-form solutions, except in thespecial cases of the normal and Cauchy distributions. Therefore, the probabil-ity density functions cannot be solved for explicitly. The probabilities can besolved for only numerically, which is a bit tedious. Luckily, a number of re-searchers have already accomplished solutions for some common values.
Holt and Crow (1973) solved for the probability density functions for a 0.25to 2.00 and = —1.00 to + 1.00, both in increments of 0.25. The methodology

they used interpolated between the known distributions, such as the Cauchy and
normal, and an integral representation from Zolotarev (1964/1966). Produced forthe former National Bureau of Standards, the tables remain the most completerepresentation of the probability density functions of stable distributions.

Some readers may find the probability density function useful; most aremore interested in the cumulative distributions, which can be compared di-
rectly to frequency distributions, as in Chapter 2. Fama and Roll (1968, 1971)produced cumulative distribution tables for a wide range of alphas. However,
they concentrated on symmetric stable distributions, thus constraining to 0.Markets have been shown numerous times to be skewed, but the impact of thisskewness on market risk is not obvious. We can assume that these symmetricvalues will suffice for most applications.

Appendix 3 reproduces the cumulative distributions of the Fama and Rollstudies. The appendix also briefly describes the estimation methodology.

INFINITE DIVISIBILITy AND IGARCH

The ARCH family of distributions has been mentioned numerous times in thisbook. The reason is obvious: ARCH is the only plausible alternative to the fam-ily of fractal distributions. Among the many reasons for its popularity, ARCH
appears to fit the empirical results. ARCH processes are characterized by prob-ability distributions that have high peaks and fat tails, as we have seen empiri-cally for numerous markets. Logically, it is appealing to believe that conditional
variance is important. As investors, we are aware of recent market volatility, soit is fitting that future volatility be a reaction to our recent experience.

However, there are shortcomings as well. ARCH processes are not long-
memory processes, as measured by R/S analysis. However, it is possible that

the two processes can coexist—in fact, it is highly likely that they measure dif-
ferent aspects of the same thing.

ARCH is a local process. It states that future volatility is measured by our
experience of past volatility. However, it only works for specific investment
horizons. One cannot, for instance, take the volatility of weekly returns and
predict future daily volatility. It is investment-horizon-specific, and analysis
only works within that local time frame.

Fractal processes, on the other hand, are global structures; they deal with
all investment horizons simultaneously. They measure unconditional variance
(not conditional, as ARCH does). In Chapter 1, we examined processes that
have local randomness and global structure. It is possible that GARCH, with its
finite conditional variance, is the local effect of fractal distributions, which
have infinite, unconditional variance. With the example of the pine tree, in
Chapter 1, the overall structure of the tree was apparent only when we looked
at the entire structure, examining all of its branches simultaneously. When ex-
amining each individual branch, we entered a realm of local randomness.
There may be a similarity in the relationship between the ARCH and its vari-
ants, and the fractal family of distributions.

As it turns out, some members of the ARCH family do fit this criterion. In
particular, the integrated variance, or IGARCH, models of Engle and Bollerslev
(1986) are characterized by infinite unconditional variance. The linear
GARCH(p,q) model of equation (5.12) contains an approximate unit root in the
autoregressive polynomial such that f1 + . . . + + g1 + . . . + = 1. As
stated by Bollerslev, Chou, and Kroner (1990): "As in the martingale model for
conditional means, current information remains important for forecasts of the
conditional variancefor all horizons. To illustrate, in the simple IGARCH(l,l)
model with f, + = 1, the minimum mean square error forecast for the condi-
tional variance s steps ahead is equal to o*(s — 1) + (italics added). As a
result of this infinite memory process, the unconditional memory for the
IGARCH(p,q) model does not exist. In addition, there is a strong relationship to
the ARIMA class of models, discussed in Chapter 5, which already have a frac-
tional form.

This relationship is merely postulated here without proof, but it is intrigu-
ing and it fits the fractal market hypothesis. In addition, it fits with the frac-
tal structure of other systems; with local randomness, characterized by
ARCH; and with the global structure of unconditional infinite variance
consistent with fractal distributions. We leave the formal proof to future
research.
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SUMMARY

Fractal Statistics

I

In this chapter, we have examined fractal statistics. Like other fractals, its
statistical equivalent does not lend itself to clean, closed-form solutions. How-
ever, fractal distributions have a number of desirable characteristics:

1. Stability under addition: the sum of two or more distributions that are
fractal with characteristic exponent a keeps the same shape and char-
acteristic exponent a.

2. Self-similarity: fractal distributions are infinitely divisible. When the
time scale changes, a remains the same.

3. They are characterized by high peaks at the mean and by fat tails, which
match the empirical characteristics of market distributions.

Along with these desirable characteristics, there are inherent problems with
the distributions:

1. Infinite variance: second moments do not exist. Variance is unreliable
as a measure of dispersion or risk.

2. Jumps: large price changes can be large and discontinuous.

These characteristics are undesirable only from a mathematical point of
view. As any investment practitioner will agree, these mathematical "problems"
are typical of the way markets actually behave. It appears that it would be wiser
to adjust our models to account for this bit of reality, rather than the other way
around. Plato may have said that this is not the real world, but he was not invest-
ing his money when he said so.

The next chapter will deal with two areas in which we must at least make an
adjustment to standard theory: portfolio selection and option pricing.

15
Applying Fractal Statistics

In the previous chapter, we saw a possible replacement for the normal distribu-
tion as the probability function to describe market returns. This replacement has
been called, alternatively, stable Levy distributions, stable Paretian distribu-
tions, or Pareto—Levy distributions. Now, we can add fractal distributions, a
name that better describes them. Because the traditional names honor the math-
ematicians who created them, we will use all these names interchangeably.

We have seen that these distributions have a singular characteristic that
makes them difficult to assimilate into standard Capital Market Theory (CMT).
These distributions have infinite or undefined variance. Because CMT depends
on variance as a measure of risk, it would appear to deal a major blow to the
usefulness of Modern Portfolio Theory (MPT) and its derivatives. However, in
the early days of MPT, there was not as high a consensus that market returns
were normally distributed. As a result, many of the brightest minds of the time
developed methods to adapt CMT for stable Levy distributions. Fama (1965b)
and Samuelson (1967) independently developed a technique for generalizing the
mean/variance optimization method of Markowitz (1952). The technique was
further described in Fama and Miller (1972) and Sharpe (1970), but, at that
time, it was decided by academia that there was not enough evidence to reject the
Gaussian (random walk) Hypothesis and substitute the stable Paretian Hypothe-
sis. At least, there was not enough evidence for the trouble that stable Paretian
distributions caused mathematically.

We have now seen substantial support for fractal distributions, so it would
seem appropriate to revive the earlier work of Fama and Samuelson, in the hope
that other researchers will develop the concepts further. In this chapter, we will
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218 Applying Fractal Statistics

do just that. In addition, we will examine work by McCulloch (1985), who devel-
oped an alternative to the Black—Scholes option pricing formula, using stable
Levy distributions. Given the widespread use of the Black—Scholes formula, it
would seem appropriate to examine a more general form of it.

The work that follows has its shortcomings. For instance, the Fama and
Samuelson adaptations assume that all securities have the same characteristic
exponent, a. The Gaussian Hypothesis assumed that all stocks had a = 2.0, so
assuming a universal value of 1.7 did not seem to be much ofa change. Despite
this limitation, the work is well worth reexamining, and, with apologies to the
original authors, I will do so in this chapter.

PORTFOLIO SELECTION

Markowitz (1952) made the great breakthrough in CMT. He showed how the
portfolio selection problem could be analyzed through mean—variance opti-
mization. For this, he was awarded the Nobel prize in economics. Markowitz
reformulated the problem into a preference for risk versus return. Return was
the expected return for stocks, but was the less controversial part of the theory.
For a portfolio, the expected return is merely the weighted average of the ex-
pected returns of the individual stocks in the portfolio. Individual stock risk
was the standard deviation of the stock return, or However, the risk of a
portfolio was more than just the risk of the individual stocks added together.
The covariance of the portfolio had to be taken into account:

+ +

where Pa.b the correlation between stock a and b

(15.1)

In order to calculate the risk of a portfolio, it became important to know that
the two stocks could be correlated. If there was positive correlation, then the
risk of two stocks added together would be greater than the risk of the two sepa-
rately. However, if there was negative correlation, then the risk of the two stocks
added together would be less than either one separately. They would diversify
one another. Equation (lS.1)calculates the risk of two stocks, a and b, but it can
be generalized to any number of stocks. In the original formulation, which is
widely used, the expected return and risk are calculated for each combination of
all the stocks in the portfolio. The portfolio with the highest expected return for
a given level of risk was called an efficient portfolio. The collection of all the

f
Portfolio Selection 219

efficient portfolios was called the efficient frontier. Optimizing mean return
versus variance gave rise to the term mean/variance efficiency, or optimization.
In this way, Markowitz quantified how portfolios could be rationally con-
structed and how diversification reduced risk. It was a marvelous achievement.

However, using fractal distributions, we have two problems: (1) variance
and (2) correlation coefficient. The obvious problem deals with variance. In
the mean/variance environment, variance is the measure of a stock's and
portfolio's risk. Fractal distributions do not have a variance to optimize.
However, there is the dispersion term, c, which can also be used to measure
risk. A more difficult problem deals with the correlation coefficient, p. In the
stable family, there is no comparable concept, except in the special case of the
normal distribution. At first glance, the lack of a correlation coefficient
would be a strike against the applicability of fractal distributions for markets.
Correlation coefficients are often used, particularly in formulating hedging
strategies. However, correlations are notoriously unstable, as many a hedger
has found.

The lack of correlation between securities under the fractal hypothesis
makes traditional mean/variance optimization impractical. Instead, the single-
index model of Sharpe (1964) can be adapted. The single-index model gave us
the first version of the famous relative risk measure, beta. However, we have al-

ready used the Greek letter 13 twice in this book. Therefore, we shall refer to this
beta as b. It is important to note that the beta of the single-index model is differ-
ent from the one developed by Sharpe at a later date for the CA PM. The single-
index model beta is merely a measure of the sensitivity of the stocks returns to
the index return. It is not an economic construct, like the CAPM beta.

The single-index model is expressed in the following manner:

= a1 + b*I + d,

where b, = the sensitivity of stock i to index I
a1 the nonindex stock return
d1 = error term, with mean 0

(15.2)

The parameters are generally found by regressing the stock return on the
index return. The slope is b, and the intercept is a. In the stable Paretian case,
the distribution of the index returns, I, and the stock returns, R, can be as-
sumed to be stable Paretian with the same characteristic exponent, a. The ds
are also members of the stable Paretian family, and are independent of the
stock and index returns.
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The risk of the portfolio, cr,, can be stated as follows:

= Xr*Cd +

where X, = weight of stock i
= dispersion parameter of the portfolio

Cd = dispersion parameter of d,
= dispersion parameter of the index, I
= = sensitivity of the portfolio returns to I

r
Applying Fractal Statistics Portfolio Selection

(15.3)

221

Again, for the normal distribution, a = 2.0, and = forj = p, d1,
and I. However, for the other members of the stable family, the calculations
can be quite complex. For instance, we have not yet discussed how to estimate
the measure of dispersion, c. We can use an alternative to the stable Paretian
parameter, c; that is, we can use the mean absolute deviation, or the first mo-
ment. Although second moments do not exist in the stable family, first mo-
ments are finite. Fama and Roll (1971) formulated a method forestimating c.
The mean absolute deviation is easier to calculate, but Fama and Roll found,
through Monte Carlo simulations, that the mean absolute deviation is a less
efficient estimate of c than their estimate. Table 3 in Appendix 3 is repro-
duced from their 1971 paper. It is important to note that all of Fama and
Roll's calculations (1969, 1971) were done for the reduced case, c = 1 and

= 0.
They estimated c from the sample fractiles shown as Table 3 in Appendix 3.

They found that the .72 fractile is appropriate because it varies little for differ-
ent levels of alpha. Therefore, using the .72 fractile will cause the
c to be little affected by the level of alpha. They found a "sensible estimator
of c" to be:

= — x28) (15.4)

where is the (f)(N + l)st order statistic from Table 3 in Appendix 3, used to
estimate the 0.28 and 0.72 fractiles. Fama and Roll (1971) found the estimate
of c in equation (15.4) to be the best unbiased estimate.

However, one consequence of equation (15.3) is that the diversification ef-
fect of the original market model is retained. The number of assets does not
reduce the market risk directly, but it does reduce the nonmarket risk, d, of the

i individual stocks. If we take the simple case where all X = 1/N, then the
error term in equation (15.3) becomes:

= (15.5)

As long as a > I, the residual risk, decreases as the number of assets, N,
increases. Interestingly, if alpha equals 1, there is no diversification effect; if
alpha is less than 1, increasing the portfolio size increases the nonmarket risk.

Fama and Miller (1972) used the following example. Suppose that cr= 1
and X = 1/N for all stocks, i, in the portfolio. In other words, all stocks are
equally weighted with risk of 1.0. Equation (15.5) then reduces to:

(15.6)

Table 15.! and Figure 15.1 show the diversification effect for various a and
N, using equation (15.6). The reader can also generate these numbers simply in
a spreadsheet. As predicted, for a < 1.0, diversification does reduce the non-
market risk of the portfolio. The rate of diversification decreases with decreas-
ing a until, with a = 1.0, diversification does nothing for a portfolio. The
Central Limit Theorem does not apply when a = 1, and works in reverse for
a>l.

In the context of fractal statistics, this makes perfect sense. Antipersistent
series have more jagged time series than do persistent or random ones. Adding
together antipersistent systems would only result in a noisier system.

On the other hand, market exposure is not a matter of diversification; it is
the weighted average of the b's of the individual securities in the portfolio.
Therefore, as in the traditional market model, diversification reduces nonmar-
ket risk, not market risk.

The adaptation of traditional CMT to stable distributions was ingenious, but
fell mostly on deaf ears. It was simply too complicated compared to the stan-
dard Gaussian case. At the time, there was not enough conclusive evidence to
show that the markets were not Gaussian.

Now, we have more convincing evidence. However, the adaptation has its
own problems. Foremost among them is the retention of the sensitivity factor,
b, from the traditional market model. This was usually established as a linear
relationship between individual securities and the market portfolio, I. This re-
lationship was retained because, at the time, Fama, Roll, and Samuelson were
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222 Applying Fractal Statistics Portfolio Selection 223

not aware of Hurst's work and the importance of persistence and antipersis-
tence. However, given a large enough portfolio, it can be expected that the di-
versification effect described above, relative to a market portfolio, will be
fairly stable. Thus, optimizing a portfolio relative to a market index would be
more stable than a straight mean/variance optimization.

A second problem lies in the value of a itself. The adaptation assumes that all
of the securities in the portfolio have the same value of a. This is necessary be-
cause the sum of stable Paretian variables with the same characteristic expo-
nent, a, will result in a new distribution that still has the same characteristic
exponent, a. This is the additive property discussed in Chapter 14. However, I
have shown that different stocks can have different Hurst exponents and, there-

__________________________________________________________________

fore, different values of a. (See Peters (l991a, 1992).) Unfortunately, there is no
theory for the effect of adding together distributions with different values of a.

It seems reasonable that this process should now be revisited and that fur-
ther work should be done to generalize the approach and minimize the effects
of these still troublesome problems.

Table 15.1 The Effects of Diversification: Nonmarket Risk 0.35

0.3

0.25

0

N

Alpha (a)

2.00 1.75 1.50 1.25 1.00 0.50
10 0.1000 0.1778 0.3162 0.5623 1.0000 3.1623
20 0.0500 0.1057 0.2236 0.4729 1.0000 4.4721
30 0.0333 0.0780 0.1826 0.4273 1.0000 5.4772
40 0.0250 0.0629 0.1581 0.3976 1.0000 6.3246
50 0.0200 0.0532 0.1414 0.3761 1.0000 7.0711
60 0.0167 0.0464 0.1291 0.3593 1.0000 7.7460
70 0.0143 0.0413 0.1195 0.3457 1.0000 8.3666
80 0.0125 0.0374 0.1118 0.3344 1.0000 8.9443
90 0.0111 0.0342 0.1054 0.3247 1.0000 9.4868

100 0.0100 0.0316 0.1000 0.3162 1.0000 10.0000
110 0.0091 0.0294 0.0953 0.3088 1.0000 10.4881
120 0.0083 0.0276 0.0913 0.3021 1.0000 10.9545
130 0.0077 0.0260 0.0877 0.2962 1.0000 11.4018
140 0.0071 0.0246 0.0845 0.2907 1.0000 11.8322
150 0.0067 0.0233 0.0816 0.2857 1.0000 12.2474
160 0.0063 0.0222 0.0791 0.2812 1.0000 12.6491
170 0.0059 0.0212 0.0767 0.2769 1.0000 13.0384
180 0.0056 0.0203 0.0745 0.2730 1.0000 13.4164
190 0.0053 0.0195 0.0725 0.2693 1.0000 13.7840
200 0.0050 0.0188 0.0707 0.2659 1.0000 14.1421
250 0.0040 0.0159 0.0632 0.2515 1.0000 15.8114
300 0.0033 0.0139 0.0577 0.2403 1.0000 17.3205
350 0.0029 0.0124 0.0535 0.2312 1.0000 18.7083
400 0.0025 0.0112 0.0500 0.2236 1.0000 20.0000
450 0.0022 0.0102 0.0471 0.2171 1.0000 21.2132
500 0.0020 0.0095 0.0447 0.2115 1.0000 22.3607
550 0.0018 0.0088 0.0426 0.2065 1.0000 23.4521
600 0.0017 0.0082 0.0408 0.2021 1.0000
650 0.0015 0.0078 0.0392 0.1980 1.0000 25.4951
700 0.0014 0.0073 0.0378 0.1944 1.0000 26.4575
750 0.0013 0.0070 0.0365 0.1911 1.0000 27.3861
800 0.0013 0.0066 0.0354 0.1880 1.0000 28.2843
850 0.0012 0.0064 0.0343 0.1852 1.0000 29.1548
900 0.0011 0.0061 0.0333 0.1826 1.0000 30.0000
950 0.0011 0.0058 0.0324 0.1801 1.0000 30.8221

1,000 0.0010 0.0056 0.0316 0.1778 1.0000 31.6228

0 100 200 300 400 500 600 700 800 900 1000 1100
Number of Assets

FIGURE 15.1 Diversification.
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224 Applying Fractal Statistics

OPTION VALUATION

In Chapter 10, we discussed the Black—Scholes (1973) formula. It is important
to remember that the basic formula is for "European" options—options that
can be exercised only at expiration. We discussed the use of equation (10.1) to
study volatility, but its original purpose was to calculate the fair price of an
option. The formula seems to work reasonably well when the option is at-the-
money, or close, but most options traders find the formula to be unreliable
when options are deep out-of-the-money. Options will always have a value,
even when the Black—Scholes formula says they should be worth virtually zero.
There are many explanations for this systematic departure from the formula.
The most reasonable one is the fatness of the negative tail in the observed fre-
quency distribution of stock returns. The market knows that the likelihood of
a large event is larger than the normal distribution tells us, and prices the op-tion accordingly.

An additional problem lies in the discontinuity of pricing itself. The normal
distribution is a continuous one. If stock returns are governed by the normal
distribution, then, when a stock price moves from 50 to 45, it is supposed to
pass through all of the prices in between to get there. However, experience
shows that all security prices are subject to discontinuities. A stock will often
jump over the intervening prices during extreme moves, as will currencies or
bonds. Merton (1976) proposed the class of Poisson-driven jump processes for
large movements against a background of Gaussian changes for small move-
ments. This process is infinitely divisible, as are stable distributions. However,
McCulloch (1985) has pointed out that the stable process "is preferable by the
criterion of Occam's razor, however, since it provides both large jumps and
continual movement. At the same time, it is more parsimonious with parame-
ters than Merton's specification. A stable process actually entails an infinite
number of Poisson-driven jump processes, whose relative frequencies are gov-erned by the characteristic exponent a."

There is an additional qualification. The calculation of option values for
stable distributions is quite complex and requires extensive tables that were in-
appropriate in length for this book. (They are available from McCulloch.)
Therefore, the discussion of McCulloch's work here is a paraphrase, to give
some basic information to readers interested in the calculation of "fair values"
using stable distributions. Given that the statistical distribution under condi-
tional volatility may be defined by GARCH distributions, there are probably
simpler methods. Readers are forewarned that the discussion here will not be
complete, and they may wish to pursue study and research upon completion.

Option Valuation 225

Those uninterested in the particulars given here are encouraged to skip ahead
to Chapter 16.

McCulloch's Approach

McCulloch (1985) developed an option-pricing formula to account for stable
distributions. He did so by using a particular property of stable distributions.
Remember, the skewness variable, can range from — I to + I. When it is
equal toO, then the distribution is symmetric. All of Fama and Roll's work was
done assuming the symmetric case. However, when = +l(—l), the lower
(upper) tail loses its Paretian characteristic and declines faster than the normal
distribution. The opposite tail becomes even longer and fatter, so that the dis-
tribution resembles a "log normal" distribution—unimodel (single-humped),
with a long positive (negative) tail and a short, finite negative (positive) tail.
Zolotarev (1983) showed that, when a stable random variable, x, has parame-
ters (a, —1, c, the characteristic funclion for a 1 is:

log(E(ex)) (15.7)

McCulloch used this equation to develop a formula for valuing European op-
tions with "log stable uncertainty." This section is a summary of McCulloch's
work. It fits in well with the Fractal Market Hypothesis, and shows a practical
application of fractal statistics. McCulloch deserves much credit for formulat-
ing this work before there was accepted evidence that markets were described by
fractal distributions.

Spot and Forward Prices

We begin by defining spot and forward prices in terms of stable distributions.
The derivative security, A2, will be worth X at a future time, 1, in terms of a
spot security A1. U1 and U2 represent the marginal utility, or value, of A1 and
A2, respectively, for the investor. If log(U1) and log(U2) are both stable with a
common characteristic exponent, then:

log(X) = log(U2/U1) (15.8)

is also stable, with the same characteristic exponent, as discussed in Chapter 14.

I

PD
F com

pression, O
C

R
, w

eb-optim
ization w

ith C
VISIO

N
's PdfC

om
pressor

http://www.cvisiontech.com/pdf_compressor_31.html


226 Applying Fractal Statistics Option Valuation -- -
227

6 = 62, a 1

C = ci'+

= Cr—

11 +cl=l—I *c\2 /

Likewise, subtracting equation (15.15) from equation (15.14) and solving
for c2, we have:

(15.17)

Now we can use equation (15.7), which simplified the characteristic function
for stable variables that are maximally and negatively skewed, such as U1 and U2:

E( log(U2)) = + (15.18)

E( log(U1)) = e5 + (15.19)

Using these relationships in equation (15.9), we can now state the value of
the forward price, F, in terms of the stable parameters of X:

F = e

= + (15.20)

The final transformation comes from the relationships in equations (15.13)
through (15.15).

The forward price, F, is expressed in terms of the characteristic distribution
of X. This forward rate equation is now used as the expected forward security
price in pricing options.

In keeping with tradition, we shall call the price of a European call option C,
at time 0. The option can be unconditionally exercised at time T, for one unit
(or share) of an asset we shall call A2. A1 is the currency we use to pay for the
option. The risk-free rate of interest on A1 is r1, which also matures at time T.
Therefore, C units of A1 is equivalent to C*en*T units at time T. The exercise
price is X0. If X > X0 at time T, then the owner will pay X0 units of A1 to re-
ceive one share of A2, less the C*enl*T paid for the option. This includes the
price of the option, C, plus the time value of that money at expiration.

McCulloch set up a formula that equates the expected advantage of buying
or selling the option to 0. This is an indifference equation:

= *cc2

We must now examine the forward price, F, that makes an investor indifferent
to investing in either the derivative security, A2, or the underlying security, A1:

(15.9)

McCulloch pointed out that, if log(1J1) and Iog(U2) are stable with alpha
less than 2.0, then both logarithms must also have the skewness parameter, 13,
equal to — 1; that is, they must be maximally negatively skewed. This applies to
the utility functions, but X itself does not need to be so constrained. Beta can
equal anything between —I and +1.

We now take two factors, u1 and u2, which are independent and asset-specific.
u1 has a negative impact on log(U1); u2 has a negative impact on log(U2). There is
a third factor, u3, which has a negative impact on both log(U1) and log(U2). u1 is
stable, with parameters (a, + 1,c1,61). u2 is stable as well, with parameters
(a, + l,c2,62). u3 is independent of u1 and u2. However, it is also stable, with
parameters (a, + l,c3,63). All three factors are maximally and positively
skewed, as shown by their skewness parameters of + 1. The three factors con-
tribute to log(U1) and log(U2) in the following manner:

log(U1) = —u1 — u3 (15.10)
log(U2)= —u2—u3 (15.11)
log(X) = u1 — (15.12)

Log(X) is defined by parameters (a,13,c,8). In this formulation, a,13,c, and F
are assumed to be known—a large assumption. The other parameters are un-
known. However, using the additive property in equation (14.11), we can infer
the following relationships:

(15.13)

(15.14)

- (15.15)

Adding equation (15.14) and equation (15.15) and solving for c1, we have:

Pricing Options

(15.16) 0 = I (U2 X0*U1)dP(U1,U2) C*enl*T * / U1dP(U1,U2) (15.21)x>; al -x
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228 Applying Fractal Statistics

McCulloch then used equation (15.9) and solved for C:

C * j U2dP(U1,U2) ____ * f (15.22)E(U2) x>x0 E(U1) x>x0

P(U1,U2) represents the joint probability distribution of U1 and U2.

The final step is to describe C in terms of the family of stable distributions.
McCulloch did so by defining two functions, s(z) and S(z), as being standard
maximally and positively skewed; that is, 13 equals + 1, so that the density and
distribution functions are defined as (a,l,I,O). Then McCulloch showed that
equation (15.22) can be converted into equation (15.23). The proof is beyond
the scope of this book. The final form of C is as follows:

C =

where:

(15.23)

/ c2*z log(— +
feQZ*s(z)*[l

C'

( c,*z + iog(f) —

12 1
c2

)dz (15.25)

Equations (15.16) and (15.17) show how to determine c1 and c2. The re-
mainder of the formula shows that the price of the Option is a function of
three values and the three stable parameters; that is, the price depends on (1)
the forward price (F), (2) the strike price (X0), and (3) the current risk-free
rate (r,). In addition, it depends on the a, 13, and c values of the distribution
of X. is contained in F, and the "common component of uncertainty," u3,
drops out.

The Black—Scholes formula was complicated, but it could be understood in
terms of a simple arbitrage argument. The McCulloch formula has a similar
arbitrage argument, but the formula itself appears even more complicated than
its predecessor. It also seems less precise. The Black—Scholes formula stated
the call price based on the relationship between the stock price and the exer-
cise price; the McCulloch formula does so between the forward price and the

Option Valuation 229

exercise price. McCuiloch was aware of this problem, and stated: "If the for-
ward rate, F, is unobserved for any reason, we may use the spot price, S. to
construct a proxy for it if we know the default-free interest rate r2 on A2 de-
nominated loans, since arbitrage requires:

F = (15.26)

The normal distribution is no longer used. Stable distributions s and S are
used instead. Variance, likewise, is replaced by c.

The formula for the price of a put option is similar to the Black—Scholes

derivation:

P = C + (X0 — F)*e_YT (15.27)

This, again, is a European put option, which gives the holder the right, not
the obligation, to sell I unit of A2 at the striking price, X0.

Pseudo-Hedge Ratio

McCulloch stated a hedge ratio, but gave it important qualifications. Primar-
ily, fractal systems, as we have extensively discussed, are subject to disconti-
nuities in the time trace. This makes the arbitrage logic of Black and Scholes
(1973) useless under the most severe situations (the large events that cause the
fat tails), when the hedger needs it the most. This failure in the Black—Scholes
approach caused the strategy called "Portfolio Insurance" to offer only partial
protection during the crash of 1987.

McCulloch did offer a pseudo-hedge ratio. Essentially, the risk exposure
of writing a call option can be partially hedged by taking a long forward po-
sition on the underlying asset. The units needed are derived in the following
equation:

9(C*en'T) —— (15.28)

However, because there is no cure for the discontinuities in the time trace of
market returns, a "perfect" hedge is not possible in a fractal environment. This
will always be an imperfect hedge.
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230 Applying Fractal Statistics

Numerical Option Values

McCulloch calculated a number of option values as examples. He used the fol-
lowing argument to calculate option values from the standard tables, such as
those found in Appendix 3.

Suppose we are interested in a call on I unit of A2 at the exercise
price of X0, as we have stated this problem throughout the chapter. We de-
fine C(Xo,F,cx,13,c,ri,T) as the call price. This can be written in the following
manner:

= (15.29)

where:

= 1 ,a43,c,0, i) (15.30)

A similar transformation can be done for the put price P, and P. In addition,
using equation (15.27), we can compute P. from C:

= + — 1 (15.31)

A call on 1 share of A2 at a price of X0 is equivalent to a put on Xo
shares of A1, at a strike price of l/X0. The value of the latter option in units
of A2 is:

—

because the forward price is 1/F units of A2.

The log(l/x) —log(x), and also has parameters a, —f3,c. This can be re-
formulated as:

C(Xo,F,a,13,c,ri,T) = — (15.32)
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Using equation (15.26), this can be restated as:

+ 1 — (15.33)

Therefore, options prices for a combination of the different factors can be
calculated from tables of

1.

in Tables 15.2 and 15.3, we reproduce two of McCulloch's tables. Values are
shown for 100 options priced at C'(Xo/F,a,13,c). The tables show the value in
amounts of A1 for 100 shares or units of A2. If the option is on IBM (A2),
payable in dollars (A1), the table shows the value, in dollars, for an option of
$100 worth of IBM.

In Table 15.2, c = 0.1, and X0/F 1.0. Because Xo is the strike price and F
is the forward price, the option is at-the-money. a and are allowed to vary.
Decreasing a causes a rise in the option price because stable distributions have
a higher peak at the mean, and so are more likely to be at-the-money than a
normal distribution. When a = 2.0, beta has no impact. However, for other
values of beta, the price goes up with skewness.

In Table 15.3, also reproduced from McCulloch (1985), alpha and beta are
held constant at 1.5 and 0.0 respectively; c and X1Jf are varied instead. As
would be expected, increasing c (which is equivalent to increasing volatility in
the Black—Scholes formula) results in increasing option values. The same is
true of being increasingly in-the-money.

Alpha

Beta (13)

—1.0 —0.5 0.0 0.5

2.0 5.637 5.637
5.993

5.637
5.981

5.637
5.993

5.637
6.0291.8

6.523 6.469 6.523 6.6701.6
7.300 7.157 7.300 7.6481.4 7.648

9.115 8.455 8.137 8.455 9.1151.2
11.319 10.200 9.558 10.200 11.3191.0

12.893 11.666 12.893 14.6850.8

T

9

Table 15.2 Fractal Option Prices: c = 0.1, X0/F = 1.0
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232 Applying Fractal Statistics

Table Fractal Option Prices: a = 1.5, = 0.0

c

XO/F
0.5 1.0 1.1 2.0

0.01 50.007 0.787 0.079 0.014
0.03 50.038 2.240 0.458 0.074
0.10 50.240 6.784 3.466 0.481
0.30 51.704 17.694 14.064 3.408
1.00 64.131 45.642 43.065 28.262

PART FIVE
NOISY CHAOS

A Final Word

I said, at the beginning of this section, that fractal option pricing is quite in-
volved and requires much study. It is not clear that the complicated methodology
used here is necessary, but it is certainly worth examining again. With the enor-
mous amounts of money channeling into the option markets, there is bound to be
profit in knowing the shape of the underlying distribution. If nothing else, it
should give pause to those who use a traditional hedging ratio and expect it to
give them a "perfect hedge." We have seen, in this chapter, that such an animal
may not exist.

SUMMARY

This chapter examined earlier work that used stable distributions in two tradi-
tional areas of quantitative financial economics. The first area was portfolio
selection. Fama and Samuelson independently developed a variant on Sharpe's
market model, which allowed for efficient portfolio selection in a fractal
ronment. There are limitations to that work: the characteristic exponent, a,
had to be the same for all securities in the portfolio. Stocks seem to have dif-
ferent values of the Hurst exponent, and so, different values ofa. Further work
in this area would be very useful.

The second area we examined was McCulloch's derivation of an option
pricing model for stable distributions. This model appears to be correct, but it
is exceptionally complicated, as most things are in the real world, It is left to
the reader to decide whether this level of complexity will be profitable for fur-
ther study.
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R/S Analysis

In Part Four, we examined fractional brownian motion (FBM) as a possible
model for market returns. FBM has a number of important characteristics
that conform to the Fractal Market Hypothesis. Among these are a statistical
self-similarity over time, and persistence, which creates trends and cycles.
The statistical self-similarity conforms to the observed frequency distribu-
tion of returns examined in Chapter 2. We saw them to be similar in shape at
different time scales. Persistence is consistent with the notion that informa-
tion is absorbed unevenly, at different investment horizons. Finally, the fact
that market returns appear to be a black noise, while volatility is a pink noise,
is consistent with the theoretical relationship between those two colored
noises.

FBM is not consistent with one aspect of markets like stocks and bonds.
There is no reward for long-term investing. We saw, in Chapter 2, that stocks
and bonds are characterized by increasing return/risk ratios after four years.
FBMs, on the other hand, do not have bounded risk characteristics; that is, the
term structure of volatility, in theory, does not stop growing.

In addition, there is no link to the economy or other deterministic mecha-
nisms. Statistical theory is more concerned with describing the risks than
analyzing the mechanisms. Figure 16.1 shows the S&P 500 versus various
economic indicators, for the period from January 1957 through April 1993.
Visually, we can see a link, and it is reasonable to think that there should be
one, in the long term.

235
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VERTICAL LINES REPRESENT
BULL MARKET PEAKS

FIGURE 16.1 Stock market and peak rates of economic growth. (Used with per-
mission of Boston Capital Markets Group.)

Information and Investors 237

The link to the economy is still tied to investor expectations, but these ex-
pectations are more related to fundamental factors than to crowd behavior.
Thus, we should expect that, as investment horizons lengthen, fundamental
and economic information should have a greater influence than technical fac-
tors. The investor interpretation of economic information will, of necessity,
be nonlinear.

INFORMATION AND INVESTORS

There have been many different models of information absorption by investors.
The simplest versions assume instantaneous, homogeneous interpretation of
information at all investment horizons. This results in a "fair" price at all
times, and is the bedrock of the Efficient Market Hypothesis (EMH). To ex-
plain discontinuities in the pricing structure, and the fat tails, Miller (1991)
and Shiller (1989) have proposed that information arrives in a "lumpy," dis-
continuous manner. Investors still react to information homogeneously, but the
arrival of information is discontinuous. This theory preserves the assumption
of independence, so important to the EMH, but recognizes that the shape of the
frequency distribution of returns and the discontinuities in the pricing struc-
ture are too severe to be dismissed as outliers. Yet, both theories ignore one
fact: People do not make decisions this way.

As we discussed in Chapter 4, a particular piece of information is not neces-
sarily important to investors at each investment horizon. When an important
piece of information has obvious implications, then the market can, and often
does, make a quick judgment. A recent example was the announcement by Philip
Morris to cut the price of its Marlboro cigarettes. Most analysts knew immedi-
ately what the effect on earnings would be. The stock opened at a price commis-
erate with that level ($50 a share), and stayed within that level afterward.

Other information is not as easily valued, particularly if the data are noisy.
The noise can be due either to volatility in the particular indicator for struc-
tural reasons, or to measurement problems. Both contribute to the inability of
the marketplace to uniformly value the information.

There is another possibility: The new information may contribute to increased
levels of uncertainty, rather than increased levels of knowledge. In general,
economists consider new information a positive development. New information
increases knowledge of current conditions and facilitates judgment about the fu-
ture. Our increased knowledge results in fairer security prices. However, there is
also information that raises uncertainty, negating what we thought we already

236 Noisy Chaos and k/S Analysis
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239238 Noisy Chaos and R/S Analysis Chaos _________________________________

knew. The Arbitrage Pricing Theory refers to this as unexpected changes in a
variable, but the impact of these unexpected changes is not taken into account.
For instance, suppose there is an unexpected rise in inflation. If the rise is large
enough, then uncertainty about the status of inflation increases. Is it rising again,
or not? Suppose money supply growth has been dropping at this point. The unex-
pected rise in inflation may actually have the effect of negating the value of the
previous information, which was considered valuable. This rise in uncertainty
with the arrival of new information may actually result in increased uncertainty
about the level of the "fair" price, rather than the automatic incorporation of
price. We may get increased volatility, or merely a noisy jitter. This kind of noise
probably occurs most often at high frequencies, where the market is trying to fig-
ure out the value of information concurrently with its arrival.

The problem of noise is not simple. Measurement error is not the only
source of noise. It can be a part of the system itself. Both types of noise are
possible.

Measurement noise (also referred to as observational noise) is by far the most
common problem with economic data. Measuring economic activity is an impre-
cise science made more so by data collection problems. As a result, we often do
not know when a recession has ended or begun for months, or sometimes years,
after the fact. In December 1992, the U.S. Department of Commerce announced
that the last recession had ended in April 1991, some 18 months before. Most
numbers are frequently revised, adding to the uncertainty of the value of the
data. This measurement noise is comparable to the observational noise discussed
in Chapter 4.

The second type of noise occurs when the indicator itself is volatile. One of
the most widely followed economic indicators is commodity prices, which
are followed to discern price inflation trends. Commodity prices
are subject to their own market swings. The Consumer Price Index (CPI) is
often analyzed with the "volatile food and energy" component removed. The
resulting less volatile inflation figure is called the "core rate." Even so, a
change in the CPI can be interpreted many different ways. Markets seem to
react to recent trends in the CPI, and similar volatile indicators, rather than the
published monthly change, unless it is perceived that the trend has changed.
The trend is not perceived to have changed unless it had already done so some
time ago. For instance, if we have been in a long period of low inflation, an
unexpected rise in the rate of inflation will usually be rationalized away as a
special event, and not a change in trend. However, if inflation continues rising,
and a change in trend is perceived, then the markets will react to all the infla-
tion changes they had ignored up to that point. This is a nonlinear reaction. The

volatility in the CPI is symptomatic of another type of noise, usually referred
to as system noise, or dynamical noise.

At longer frequencies, the market reacts to economic and fundamental in-
formation in a nonlinear fashion. In addition, it is not unreasonable to assume
that the markets and the economy should be linked. This implies that a nonlin-
ear dynamical system would be an appropriate way to model the interaction,
satisfying the aspect of the Fractal Market Hypothesis left unresolved by frac-
tional brownian motion. Nonlinear dynamical systems lend themselves to non-
periodic cycles and to bounded sets, called attractors. The systems themselves
fall under the classification of chaotic systems. However, in order to be called
chaotic, very specific requirements must be met.

CHAOS

Chaotic systems are typically nonlinear feedback systems. They are subject to
erratic behavior, amplification of events, and discontinuities. There are two ba-
sic requirements for a system to be considered chaotic: (1) the existence of a
fractal dimension, and (2) a characteristic called sensitive dependence on initial
conditions. A more complete discussion of these characteristics appeared in my
earlier book, but a basic review is in order because fractional noise and noisy
chaos are difficult to distinguish from one another, especially when examining
empirical data. However, as we shall see, RIS analysis is a very robust way of
distinguishing between them. in addition, finding chaos in experimental data
has been very frustrating. Most methods are not robust with respect to noise. By
contrast, R/S analysis is not only robust with respect to noise, it thrives on it.
RIS analysis would be a useful addition to the toolbox of not only the market
analyst, but the scientist studying chaotic phenomena.

Phase Space

A chaotic system is analyzed in a place called phase space, which consists of one
dimension for each factor that defines the system. A pendulum is a simple exam-
ple of a dynamical system with two factors that define its motion: (1) velocity
and (2) position. Plotting either velocity or position versus time would result in
a simple sine wave, or harmonic oscillator, because the position and velocity rise
and fall as the pendulum goes back and forth, rising and falling. However, when
we plot velocity versus position, we remove time as a dimension. If there is no
friction, the pendulum will swing back and forth forever, and its phase plot will
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be a closed circle. However, if there is friction, or damping, then each time the
pendulum swings back and forth, it goes a little slower, and its amplitude de-
creases until it eventually stops. The corresponding phase plot will spiral into the
origin, where velocity and position become zero.

The phase space of the pendulum tells us all we need to know about the dy-
namics of the system, but the pendulum is not a very interesting system. If we
take a more complicated process and study its phase space, we will discover a
number of interesting characteristics.

We have already examined one such phase space, the Lorenz attractor
(Chapter 6). Here, the phase plot never repeats itself, although it is bounded by
the "owl eyes" shape. It is "attracted" to that shape, which is often called its
"attractor." If we examine the lines within the attractor, we find a self-similar
structure of lines, caused by repeated folding of the attractor. The noninter-
secting structure of lines means that the process will never completely fill its
space. Its dimension is, thus, fractional. The fractal dimension of the Lorenz
attractor is approximately 2.08. This means that its structure is slightly more
than a two-dimensional plane, but less than a three-dimensional solid. It is,
therefore, also a creation of the Demiurge.

In addition, the attractor itself is bounded to a particular region of space,
because chaotic systems are characterized by growth and a decay factor. Each
trip around the attractor is called an orbit. Two orbits that are close together
initially will rapidly diverge, even if they are extremely close at the outset. But
they will not fly away from one another indefinitely. Eventually, as each orbit
reaches the outer bound of the attractor, it returns toward the center. The di-
vergent points will come close together again, although many orbits may be
needed to do so. This is the property of sensitive dependence on initial condi-
tions. Because we can never measure current conditions to an infinite amounts
of precision, we cannot predict where the process will go in the long term. The
rate of divergence, or the loss in predictive power, can be characterized by
measuring the divergence of nearby orbits in phase space. A rate of divergence
(called a "Lyapunov exponent") is measured for each dimension in phase
space. One positive rate means that there are divergent orbits. Combined with
a fractal dimension, it means that the system is chaotic. In addition, there must
be a negative exponent to measure the folding process, or the return to the at-
tractor. The formula for Lyapunov exponents is as follows:

L lim[( lit) * log2(pI(t)/p(O))J

where L, = the Lyapunov exponent for dimension i
p(t) position in the ith dimension, at time

(16.1)

Equation (16.1) measures how the volume of a sphere grows over time, t, by
measuring the divergence of two points, p(t) and p(O), in dimension i. The dis-
tance is similar to a multidimensional range. By examining equation (16.1), we
can see certain similarities to R/S analysis and to the fractal dimension calcu-
lation. All are concerned with scaling. However, chaotic attractors have orbits
that decay exponentially rather than through power laws.

APPLYING K/S ANALYSIS

When we studied the attractor of Mackey and Glass (1988) briefly in Chapter
6, we were concerned with finding cycles. In this chapter, we will extend that
study and will see how R/S analysis can distinguish between noisy chaos and

fractional noise.

The Noise Index

In Chapter 6, we did not disclose the value of the Hurst exponent. For Figure 6.8,
H = 0.92. As would be expected, the continuous, smooth nature of the chaotic
flow makes for a very high Hurst exponent. It is not equal to because of the
folding mechanism or the reversals that often occur in the time trace of this
equation. In Figure 6.11, we added one standard deviation of white, uniform
noise to the system. This brought the Hurst exponent down to 0.72 and illus-
trated the first application of R/S analysis to noisy chaos: Use the Hurst expo-
nent as an index of noise.

Suppose you are a technical analyst who wishes to test a particular type of
monthly momentum indicator, and you plan to use the Mackey—Glass equation
to test the indicator. You know that the Hurst exponent for monthly data has a
value of 0.72. To make the simulation realistic, one standard deviation of noise
should be added to the data. In this manner, you can see whether your techni-
cal indicator is robust with respect to noise.

Now suppose you are a scientist examining chaotic behavior. You have a par-
ticular test that can distinguish chaos from random behavior. To make the test
practical, you must show that it is robust with respect to noise. Because most
observed time series have values of H close to 0.70 (as Hurst found; see Table
5.1), you will need enough noise to make your test series have H = 0.70. Or,
you could gradually add noise and observe the level of H at which your test
becomes uncertain.

Figure 16.2 shows values of H as increasing noise is added to the Mackey—
Glass equation. The Hurst exponent rapidly drops to 0.70 and then gradually
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FIGURE 16.2 Mackey—Glass equation, Hurst exponent sensitivity to noise.

falls toward 0.60. However, after adding two standard deviations of noise, H is
still approximately 0.60. This means that the frequent values of H = 0.70, which
so intrigued Hurst (1951), may have been due to the fact that adding noise to a
nonlinear dynamical system quickly makes the value of H drop to 0.70. On the
other hand, readings of H below 0.65, which are found in markets, are probably
not caused by merely adding measurement or additive noise to a chaotic attrac-
tor, but may instead be caused by fractional noise. This possibility further sup-
ports the idea that markets are fractional noise in the short term, but noisy chaos
in the long term.

System Noise

Besides the additive noise we have been examining, there is another type of noise
called "system noise." System noise occurs when the output of an iterative sys-
tern becomes corrupted with noise, but the system cannot distinguish the noisy
signal from the pure one, and uses the noisy signal as input for the next iteration.

Applying R/S Analysis 243

This is quite different from observational noise, which occurs because the ob-
server is having difficulty measuring the process. The process continues, oblivi-
ous to our problem. However, with system noise, the noise invades the system
itself. Because of the problem of sensitive dependence on initial conditions, sys-
tem noise increases the problem of prediction.

In markets, system noise, not observational noise, is more likely to be a prob-
lem. Face it: We have no problem knowing the value of the last trade, but we do
not know whether it was a fair price or not. Perhaps the seller was desperate and
needed to sell at any price to make margin requirements. We react to this "noisy"
output, not knowing its true value. If system noise is involved, then prediction
becomes more difficult and tests should be adjusted accordingly.

The impact of system noise on the Hurst exponent is similar to additive
noise, and is shown as Figure 16.3.

0 50 100 150 200
System Noise as a Percent of Sigma
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FIGURE 16.3 Mackey—Glass equation, Hurst exponent sensitivity to noise.
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1.4 2. The system is a noisy chaotic system, and the finite memory length
measures the folding of the attractor. The diverging of nearby orbits in1.3
phase space means that they become uncorrelated after an orbital pe-

1.2 nod (Wolf, Swift, Sweeney, & Vastano, 1985). Therefore, the memory
process ceases after an orbital cycle. In essence, the finite memory1.1
length becomes the length of time it takes the system to forget its ini-
tial conditions.

0.9
From a graphical standpoint, once the system passes through an orbit, it tray-

0.8 els over the length of the attractor. Once it covers the length of the attractor, the
range cannot grow larger because the attractor is a bounded set. A fractional0.7
noise process is not a bounded set, and so the range will not stop growing. This

0.6 physical characteristic of attractors also fits in with the characteristics of the
rescaled range.0.5

Both explanations are plausible, particularly when we are using short data
0.4 sets. How do we decide which is

0.3
3

1.5

FIGURE 16.4 R/S analysis, Mackey—Glass equation with system noise. 1.4

1.3

Cycles
1.2

We have already discussed in Chapter 6 how R/S analysis can distinguish a 1.1cycle even in the presence of one standard deviation of observational noise.
Figure 16.4 shows R/S analysis of the Mackey—Glass equation with one stan- 1dard deviation of system noise incorporated. The Hurst exponent is virtually
identical (H = 0.72), and the 50 observations cycle is still discernible. 0.9

The V statistic is shown in Figure 16.5, where, again, the cycle is easily
discernible. 0.8

What does it mean when the slope of the log/log plot crosses over to a ran-
dom walk? There are two possible explanations: o.i

I 0.61. The process can be fractional brownian motion with a long but finite
memory. There is no causal explanation for the finite memory, but it may
be a function of the number of observations. Scaling often stops because
enough observations do not exist for large values of FIGURE 16.5 V statistic, Mackey—Glass equation with system noise.

0.5 1 1.5 2 2.5
Log(Nwnber of Observations)
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DISTINGUISHING NOISY CHAOS FROM
FRACTIONAL NOISE

The most direct approach is to imitate the analysis of the Dow Jones Industri-
als in Chapter 8. If the break in the log/log plot is truly a cycle, and not a
statistical artifact, it should be independent of the time increment used in the
R/S analysis. For the Dow data, the cycle was always 1,040 trading days.
When we went from five-day to 20-day increments, the cycle went from 208
five-day periods to 52 20-day periods. If the cycle is not dependent on sample
size, then we can be fairly certain that we are examining noisy chaos and not
fractional noise. In the case of the Dow data, reducing the size of the data set
by 75 percent (as far as number of observations are concerned) did not affect
the memory length. This is strong evidence that we are measuring a fold in
phase space, not a statistical artifact.

If we are faced with a small data set to begin with, then we have a problem. We
can use the cycle length estimate as another piece of confirming evidence, but, by
itself, it is not decisive. For instance, suppose we use R/S analysis on a data set of
500 observations. We find a significant Hurst exponent (0.50 < H < 1.0) and a
cycle length of 50 observations. This implies that we have ten cycles of observa-
tions, with 50 observations per cycle. According to Wolf et al. (1985), this is an
adequate amount of data to estimate the largest Lyapunov exponent. Using the
method outlined by Wolf et al. and Peters (l991a), we calculate an estimate of
the largest Lyapunov exponent. If that exponent is positive, we have a good basis
for concluding that the process is chaotic, If the inverse of the largest Lyapunov
exponent is approximately equal to the cycle length (as suggested by Chen
(1987)), then we can be more certain.

Those of you familiar with my earlier studies of the S&P 500 (Peters.
(199la, l991b)), will recognize that this was my criterion for concluding that
the S&P 500 is, in the long term, chaotic, as suggested in the Fractal Market
Hypothesis. The results are controversial, but I believe that the conclusions,
which are drawn from independent tests, are valid.

The BDS Test

Three economists, Brock, Dechert, and Scheinkman (1987), developed an ad-
ditional test—the "BDS test"—which is widely used by scientists. The BDS
statistic, a variant on the correlation dimension, measures the statis-
tical significance of the correlation dimension calculations. It is a powerful

Distinguishing Noisy Chaos Ironi Fractional Noise 247

test for distinguishing random systems from deterministic chaos or from non-
linear stochastic systems. However, it cannot distinguish between a nonlinear
deterministic system and a nonlinear stochastic system. Essentially, it finds
nonlinear dependence. Used in conjunction with other tests for chaos and with
R/S analysis, it can be very useful.

According to the BDS test, the correlation integrals should be normally dis-
tributed if the system under study is independent, much like the distribution of
H we discussed in Chapter 5.

The correlation integral is the probability that any two points are within a
certain length, e, apart in phase space. As we increase e, the probability scales
according to the fractal dimension of the phase space. The correlation integrals
are calculated according to the following equation:

Cm(e) Z(e — lx — XiI), i * j (16.2)

where Z(x) = 1 if e — lxi — Xj > 0; 0 otherwise
T = the number of observations
e = distance

Cm = correlation integral for dimension m

The function, Z, counts the number of points within a distance, e, of one
another. According to theory, the Cm should increase at the rate e°, with D the
correlation dimension of the phase space, which is closely related to the fractal
dimension. Calculating the correlation requires us to know what the phase
space looks like. In real life, not only do we not know the factors involved in
the system, we do not even know how many there are! Usually, we have only
one observable, like stock price changes. Luckily, a theorem by Takens (1981)
says that we can reconstruct the phase space by lagging the one time series we
have for each dimension we think exists. If the number of "embedding dimen-
sions" is larger than the fractal dimension, then the correlation dimension sta-
bilizes to one value. My earlier book outlines the procedures for doing this
calculation with experimental data taken from Wolf et a!. (1985).

The BDS statistic is based on the statistical properties of the correlation
integral. Much of the following discussion is taken from Hsieh (1989), where a
more mathematical treatment of the BDS statistic can be found.

The correlation integral, from equation (16.2), calculates the probability
that two points that are part of two different trajectories in phase space are e
units apart. Assume that the X1 in the time series X (with T observations) are

fl
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independent. We lag this series into "N histories"; that is, we use the Takens
time delay method to create a phase space of dimension N from the time series,X. We then calculate the correlation integral, CN(e,T), using equation (16.2).Brock et a!. showed that, as T approaches infinity:

CN(e,T) C1(e)N with 100% probability (16.3)

This is the typical scaling feature of random processes. The correlation in-tegral simply fills the space of whatever dimension it is placed in. Brock et a!.showed that CN(e,T) — is normally distributed with a mean of0. The BDS statistic, w, that follows is also normally distributed:

wN(e,T) = CN(e,T) —

where sN(e,T) = the standard deviation of the correlation integrals

(16.4)

Thus, the BDS statistic, w, has a standard normal probability distribution.When it is greater than 2.0, we can reject, with 95 percent confidence, the nullhypothesis that the system under study is random. When it is greater than 3.0,we can reject with 99 percent confidence. However, the BDS test will find lin-ear as well as nonlinear dependence in the data. Therefore, it is necessary totake AR(1) residuals for this test, as we did for R/S analysis. In addition, likeR/S analysis, the dependence can be stochastic (such as the Hurst process, orCARd), or it can be deterministic (such as chaos).
I obtained a program of the BDS statistic from Dechert and used it for the

following tests. To do the tests, one must choose a value of e, the radius, and,
m, the embedding dimension. As in the correlation dimension calculationsscribed in my earlier book, there is a range of e values where probabilities canbe calculated. This range depends on the number of observations, T. If e is toosmall, there will not be enough points to capture the statistical structure; if e istoo large, there will be too many points. Following the example of LeBaron(1990) and Hsieh (1989), we will use e = 0.50 standard deviation of the datasets. By setting the value of e to the size of the data, we can, perhaps, overcomethese problems.

We must choose an embedding dimension that will make the resulting phase
space reconstruction neither too sparse nor too crowded. If m is too small, thepoints will be tightly packed together. If m is too large, the points will be toodistant. For the purposes of this example, we will use m = 6. Hsieh (1989)

I
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tested many embedding dimensions on currencies, and m = 6 gave results
comparable to the other higher (and lower) embedding dimensions.

The examples given here are not new. LeBaron (1990) did a study of stock
prices, as did Brock (1988). Hsieh (1989) did extensive tests of currencies and
performed a comprehensive set of Monte Carlo experiments, which we will de-
scribe below.

I have examined the Mackey—Glass equation without noise, with one stan-
dard deviation of observational noise, and with one standard deviation of sys-
tem noise. I have also tested the fractional noise with H = 0.72, which we have
used earlier, as well as the simulated GARCH series used in Chapter 5. In
keeping with earlier statements about linear dependence, I have used AR(1)
residuals again for all tests in this chapter. Table 16.1 shows the results.

The noise-free Mackey—Glass equation shows a highly significant BDS statis-
tic of 112, as would be expected. In addition, the noise-contaminated Mackey—
Glass systems have significant BDS statistics, although at lower levels. The
simulated GARCH series also shows a significant BDS statistic of 6.23, as does
the fractional noise series at 13.85. In these simulated series, the BDS statistic is
shown to be sensitive to nonlinear dependence in both deterministic and stochas-
tic form. It is robust with respect to noise, when used in analyzing a deterministic
system.

Table 16.2 shows the results of the Dow 20-day and five-day series used in
Chapter 8, as well as the daily yen. Again, all are significant—and surprisingly
large. However, the Japanese daily yen statistic of 116.05 is consistent with
Hsieh's (1989) value of 110.04 for the same values of Rand m. LeBaron (1990),
using weekly S&P 500 data from 1928 to 1939, found w 23.89 for m = 6.

Table 16.1 BDS Statist

BDS

Ic: Simulated Processes

Embedding Number of
Process

Mackey—Glass
No noise
Observational noise
System noise

Fractional noise (H 0.72)
GARCH

Statistic

56.88
1 3.07
—3.12
13.85
6.23

Epsilon

0.12
0.06
0.08
0.07
0.01

Dimension

6
6
6
6
6

1,000
1,000
1,000
1,400
7,500
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Market
BDS

Statistic Epsilon
Embedding
Dimension

Number of
Observations

Dow—five-day 28.72 0.01 6 5,293
Dow—20-day 14.34 0.03 6 1,301
Yen/Dollar—daily 116.05 0.03 6 4,459

This is very close to our finding of w = 28.72 for five-day Dow returns (1888 to
1990), even though our data cover a much longer time frame. LeBaron found that
the value of w varied greatly over ten-year periods. Given the four-year stock
market cycle found through R/S analysis, this variability over short time frames
is not unusual. After all, ten years is only 2.50 orbits.

Hsieh (1989) and LeBaron (1990) performed Monte Carlo simulations of
the BDS statistic and found it to be robust with respect to the Gaussian null
hypothesis. Thus, like R/S analysis, it can easily find dependence. Once
linear dependence is filtered out, the BDS statistic is a significant test for
nonlinearity. Unfortunately, it cannot distinguish between fractional noise
and deterministic chaos, but, used in conjunction with other tests, it is a
powerful tool.

Combining Tests

In the absence of a long data set (both in time and number of observations), it
is best to turn to multiple independent tests that should confirm one another.
R/S analysis offers yet another tool for doing so. It is extremely robust with
respect to noise, and should be considered as an additional test (along with the
BDS statistic) on all data sets that are suspected of being chaotic.

Implications for the FMH

For the Fractal Market Hypothesis, the break in the R/S graph for the Dow
data confirms that the market is chaotic in the long term and follows the eco-
nomic cycle. Currencies, however, do not register average nonperiodic cycles,
despite the fact that the daily Hurst exponent for most currencies is more sig-
nificant than the daily Dow or T-Bond yields. This would further confirm that
currencies are fractional noise processes, even in the long term.

Summary

SUMMARY

We have seen that RIS analysis is an additional tool for examining noisy

chaotic time series. We have also seen that it is extremely robust with respect

to noise, and that the Hurst exponent can be used as a noise index when prepar-

ing simulated data. These qualities make R/S analysis a useful process for

studying chaotic systems.
We are finally brought to the relationship between fractal statistics and noisy

chaos. Can noisy chaos be the cause of the fat-tailed, high-peaked distributions

that are so common in the financial markets, as well as in other natural time

series? In Chapter 17, we will find out.

250 Noisy Chaos and R/S Analysis

Table 16.2 BDS Statistic: Market Time Series
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Fractal Statistics, Noisy
Chaos, and the FMH

In Chapter 16, we saw that capital market and economic time series share cer-
tain similarities with noisy "chaotic" systems. In particular, their Hurst expo-
nents are consistent with values of H calculated from the spectral exponent, 13.We also found that R/S analysis could estimate the average length of a nonperi-
odic cycle by a "break" in the log/log plot. This cycle length was similar to
cycles found by R/S analysis for the capital markets and for economic timeseries. Popular stochastic processes, such as GARCH, which are also used as
possible models, do not have these characteristics.

Based on the results in previous chapters, noisy chaos seems like a reason-
able explanation for capital market movements. Except for currencies, noisy
chaos is consistent with the long-run, fundamental behavior of markets, and
fractional brownian motion is more consistent with the short-run, trading char-
acteristics. Both behaviors are consistent with the Fractal Market Hypothesis
as outlined in Chapter 3.

A final question concerns the relationship between noisy chaos and stable,
or fractal, distributions. Can the high-peaked, fat-tailed distributions observed
empirically, as well as intermittent dynamical behavior, also be tied to noisychaos? In this chapter, we will examine this question. Noisy chaos can be of-
fered as a possible explanation, but we will find that there is much that is unex-plained, as well.

In the closing section of this chapter, I attempt to reconcile the different
elements of time series analysis that appear to give significant results: ARCH,
252

Frequency 253

fractional noise, and noisy chaos will be united into one framework. The appli-
cability of each process depends on individual investment horizons. We must
first examine the relationship between fractal statistics and noisy chaos.

FREQUENCY DISTRIBUTIONS

The frequency distribution of changes is an obvious place to start. It is well
known that the changes in a system characterized by deterministic chaos have
a frequency distribution with a long positive tail. Figure 17.1 shows the fre-
quency distribution Mackey—Glass equation, using the changes in the graph
shown as Figure 6.7. The changes have been "normalized" to a mean of 0 and
a standard deviation of 1. The result is a "log normal" looking distribution;
that is, it is single-humped, with a long positive tail and a finite negative tail.

Adding noise to these systems changes their frequency distributions dramati-
cally. Figures 17.2(a) and l7.2(b) show the Mackey—Glass equation with
vational and system noise respectively. Enough noise has been added to generate
a Hurst exponent of 0.70, as shown in Chapter 16. The frequency distribution is

6 8

FIGURE 17.1 Mackey—Glass equation: no noise.
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Frequency Distributions 255

now the familiar high-peaked, fattailed distribution. Figures 17.3(a)—17.3(c)
show the differences between the distributions and the normal distribution. The
systems with noise resemble the Dow graphs of Figures 2.4(a)—2.4(e), but the
no-noise graph looks quite different. Why?

Adding normally distributed Gaussian noise has the impact of lowering the
Hurst exponent, as we have examined previously. In addition, it shifts the mean
toward the center (bringing the mean and median closer together), extends the
negative tail, and adds more (negative) values. The positive tail is reduced by
the mean shift and by the addition of smaller values. However, the original dis-
tribution had a high peak and a long positive tail. Where did the long negative
tail come from?

In the Mackey—Glass equation shown in Figure 6.7, 1 took equation (6.4)
and added 10 to the resulting values. This transformation was necessary be-
cause equation (6.4) produces negative values, and one cannot take the log of a
negative number. Adding 10 had the result of moving all of the values up into
positive territory. The noise added was white Gaussian noise. As a result, the
noise had a bigger impact on the changes at the troughs in the system, than on
those at the peaks. Hence, the longer negative tail.

FIGURE 1 7.2b Mackey—Glass equation: system noise. FIGURE 1 7.3a Mackey—Glass equation: no noise—normal.

I
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FIGURE 17.2a Mackey—Glass equation: observational noise.
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I
I

4

FIGURE 17.3b Mackey—Glass equation: observational noise—normal.

FIGURE 17.3c

Standard Deviations

5

Mackey_Glass equation: system noise__normal

Volatility Term Structure 257

With system noise, the change is different. The negative tail is quite long—
almost as long as the positive tail. The similarity of the system noise frequency
distributions to the capital market distributions we saw in Chapter 2 is strik-
ing. In fact, this is the first simulated series, other than ARCH and its deriva-
tives, that has this characteristic.

VOLATILITY TERM STRUCTURE

In Chapter 2, we looked at the volatility term structure of the stock, bond,
and currency markets. The term structure of volatility is the standard devia-
tion of returns over different time horizons. If market returns are determined
by the normal distribution, then volatility should increase with the square
root of time. That is, five-day returns should have a standard deviation equiv-
alent to the standard deviation of daily returns times the square root of five.
However, we found that stocks, bonds, and currencies all have volatility term
structures that increase at a faster rate than the square root of time, which is
consistent with the properties of infinite variance distributions and frac-
tional brownian motion (FBM). For a pure FBM process, such scaling should
increase forever. We found that currencies appeared to have no limit to their
scaling, but U.S. stocks and bonds were bounded at about four years; that is,
10-year returns had virtually the same standard deviation as four-year re-
turns. No explanation was given for this bounded behavior, but the four-year
limit is remarkably similar to the four-year cycle found by R/S analysis.
Could there be a connection?

Conceptually, yes, there is a connection. In a chaotic system, the attractor is
a bounded set. After the system travels over one cycle, changes will stop grow-
ing. Therefore, it would not be surprising to find that chaotic systems also have
bounded volatility term structures. In fact, bounded volatility term structures
may be another way to test for the presence of nonperiodic cycles.

Figure 17.4(a) shows the volatility term structure of the Mackey—Glass
equation with a 50-iteration lag. The scaling stops just prior to 50 iterations.
Figure 17.4(b) shows the volatility term structure for the Mackey—Glass equa-
tion with observational and system noise added. These are the same noise-
added time series used throughout the book. They both have H 0.70, versus
H = 0.92 for the no-noise version. The series with noise added are even more
convincing than the Mackey—Glass attractor without noise. The peak in both
plots occurs, without question, at n = 50 iterations, the average nonperiodic
cycle of the system.
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I have done similar analysis for-the Lorenz and Rosseler attractors. I encour-
age readers to try the analysis for themselves, using the final program supplied
in Appendix 2 or a program of their own manufacture. The volatility term struc-
ture of these chaotic systems bears a striking resemblance to similar plots of the
stock and bond markets, supplied in Chapter 2. Currencies do not have this
bounded characteristic—a further evidence that currencies are not "chaotic"
but are, instead, a fractional noise process. This does not mean that currencies
do not have runs; they clearly do, but there is no average length to these runs. For
currencies, the joker truly appears at random; for U.S. stocks and bonds, the
joker has an average appearance frequency of four years.

SEQUENTIAL STANDARD DEVIATION AND MEAN

In Chapter 14, we examined the sequential standard deviation and mean of the
U.S. stock market, and compared it to a time series drawn from the Cauchy dis-
tribution. We did so to see the effects of infinite variance and mean on a time
series. The sequential standard deviation is the standard deviation of the time
series as we add one observation at a time. If the series were from a Gaussian
random walk, the more observations we have, the more the sequential standard
deviation would tend to the population standard deviation. Likewise, if the mean
is stable and finite, the sample mean will eventually converge to the population
mean. For the Dow Jones Industrials file, we found scant evidence of conver-
gence after about 100 years of data. This would mean that, in shorter periods,
the process is much more similar to an infinite variance than to a finite variance
distribution. The sequential mean converged more rapidly, and looked more sta-
ble. A fractal distribution would, of course, be well-described by an infinite or
unstable variance, and a finite and stable mean. After studying the Dow, we
seemed to find the desired characteristics.

It would now be interesting to study the sequential statistics of chaotic sys-
tems. Do they also have infinite variance and finite mean? They exhibit fat-tailed
distributions when noise is added, but that alone is not enough to account for the
market analysis we have already done.

Without noise, it appears that the Mackey—Glass equation is persistent with
unstable mean and variance. With noise, both observational and system, the sys-
tem is closer to matket series, but not identical. In this study, as in Chapter 15,
all series have been normalized to a mean of 0 and a standard deviation of 1. The
final value in each series will always have a mean of 0.

Figure 17.5(a) shows the sequential standard deviation of 1,000 iterations
of the Mackey—Glass equation without noise. The system is unstable, with

258 Fractal Statistics, Noisy Chaos, and the FMH Sequential Standard Deviation and Mean
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FIGURE 17.4a Mackey—Glass equation: volatility term structure.
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FIGURE 1 7.4b Mackey—Glass equation with noise: volatility term structure.
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FIGURE 17.5a Mackey—Glass equation: sequential standard deviation.

discrete jumps in standard deviation followed by steady declines—very similar
to the Cauchy and Dow series studied in Chapter 15. Figures 17.5(b) and17.5(c) show similar analyses for observational and system noise respectively.
The addition of noise makes the jumps smaller, but they remain, nonetheless,in both cases. From these graphs, we can conclude that the Mackey—Glass
equation does not have stable variance.

Figure 17.6(a) shows the sequential mean for the observational noise
and the no-noise series. The addition of noise has the impact of drawing the
sequential mean closer to 0. Neither series appears nearly as stable as the Dow
and random series seen in Chapter 14, although the observational noise seriesis similar, being only 0.02 standard deviation away from the mean. Figure17.6(b) graphs the sequential mean for the Mackey—Glass equation with sys-tem noise. Again, there appears to be a stable population mean, although there
is a systematic deviation. We can tentatively conclude that the Mackey—Glass
equation does not have a stable mean, but observational noise can give the ap-pearance of a somewhat stable mean.

When I performed this analysis for the Lorenz and Rosseler attractors, theresults were comparable. Although empirically derived, chaotic attractors ap-
pear to be similar to market time series, in that they have unstable variances.
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FIGURE 17.5b Mackey—Glass equation with observational noise: sequential
standard deviation.
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FIGURE 17.5c Mackey—Glass equation with system noise: sequential standard
deviation.
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like market time series, chaotic attractors also have unstable means; however,
with noise, the systems do resemble market time series. It is possible that long-
term market time series are similar to chaotic ones.

MEASURING a

The second characteristic for capital market series is a Hurst exponent of be-
tween 0.50 and 1.00. As would be expected, a pure chaotic flow, like the
Lorenz attractor or Mackey—Glass equation, would have Hurst exponents close
to but less than 1, due to the nonperiodic cycle component. What is the impact
of noise on the Hurst exponent of a system?

The Graphical Method

Using the graphical method of Chapter 15, we can estimate a to be approxi-
mately 1.57 for the system with observational noise, as shown in Figure 17.7.

This gives an approximate value of H = 0.64. Both positive and negative tails
are shown.

-3 -2 -t 0
Log(Pr(U>u))

FIGURE 1 7.bb Mackey—Glass equation with system noise: sequential
FIGURE 17.7 Mackey—Glass equation with system noise: estimating alpha, graphical

mean, method.
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When we ran the R/S analysis on this system it gave H = 0.72, a substantially
higher value than the graphical method. Both values differ significantly from a
Gaussian norm and they are significantly different from one another. A major
discrepancy exists here.

THE LIKELIHOOD OF NOISY CHAOS

The hypothesis of noisy chaos, for our observations, is based on the idea that,
because we have so much trouble measuring the system, up to two standard
deviations of noise is still not enough to generate Hurst exponents like the ones
we saw in Chapter 9. I find that unlikely (although others may not). We have
already seen one system with a Hurst exponent that drops rapidly to O.70—the
Weirstrass function, stated in equation (6.2). The Weirstrass function was
the superimposition of multiple systems working over multiple frequencies
that scale in a self-affine manner. Working within the Fractal Market Hypoth-
esis, it is possible that each investment horizon has its own dynamical system,
which is superimposed and added to a longer-term nonlinear dynamical sys-
tem. Such a system would have dynamics that exist at each investment horizon.
Because the frequency distribution at each horizon is similar, we can postulate
that the same dynamics are at work, even if the parameters that are important
at each horizon vary. This superimposition of many persistent processes at dif-
ferent frequencies is the mirror image of the relaxation processes, which were
suggested as the structure of pink noise, It is possible that black noise is also
the result of an infinite number of persistent processes at different frequencies,
added together in a manner similar to the Weirstrass function. This would be
entirely consistent with the Fractal Market Hypothesis.

Finally, we can see why Hurst (and we) have seen so many processes that have
Hurst exponents of approximately 0.70. A dynamical system with noise added
will drop rapidly to 0.70 in the presence of both observational and system noise.
Because some combination of both types of noise is probably in measurements of
all real systems, Hurst exponents of approximately 0.70 would be common.
Hurst's own data show that to be the case, so we can postulate that noisy chaos is
a common phenomenon, Less common would be Hurst exponents less than 0.70.
However, at daily frequencies, H values of 0.60 and less are quite common, sug-
gesting the need for an alternative explanation for the "noise."

ORBITAL CYCLES

A final characteristic, which we have already examined, is cycle lengths. In
previous chapters, we have examined how the Hurst exponent uncovers peri-
odic and nonperiodic cycles. The time has come to examine this particular
characteristic as it relates to dynamical systems.

First, we will examine the well-known Lorenz attractor:

= _if*)( +

= + Y (17.1)

= x*Y

b = 8/3, and r = 28

These parameters are widely used to model the chaotic realm. The cycle
of the Lorenz attractor cannot be solved explicitly; however, it has been esti-
mated to be approximately 0.50 second by a method called Poincaré section.
Although Poincaré section is useful for simulated data, it is less reliable
when dealing with experimental data. In this analysis, we used 100 seconds
of the X coordinate, sampled every 0.10 second. Figure 17.8(a) shows the
log/log plot, and Figure 17.8(b) shows the V-statistic plot. The bend in the
log/log plot and the peak in the V statistic are consistent with the orbital cy-
cle of 0.50 to 0.70 second. This estimate is consistent with the estimate from
the Poincaré section. However, as we saw in Chapter 6, it is very robust with
respect to noise.

In Chapter 6, we saw that varying the cycle length for the Mackey—Glass
equation resulted in a break in the graph at approximately that point. Figure
17.9 shows the V-statistic plot for various levels of observational noise. Again,
R/S analysis is shown to be very robust with respect to noise.

Once again, it is striking how similar these graphs are to those obtained for
the capital markets. In Chapter 6, we stated that changing the sampling inter-
val, and repeating the RIS analysis process, should result in a cycle consistent
with the earlier high-frequency analysis. In Figure 17.10(a), we sample the
100-lag Mackey—Glass data used above at every three intervals. The projected
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FIGURE 1 7.8a Lorenz attractor: R/S analysis.
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FIGURE 17.9 Mackey—Glass equation with observational noise: V statistic.
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FIGURE 1 7.8b Lorenz attractor: V statistic.
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FIGURE 17.lOa Mackey—Glass equation, sampled every three intervals: V statistic.
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268 Fractal Statistics, Noisy Chaos, and the FMH

result should be a cycle of about 33 observations, and the actual result is highly
consistent. Figure 17.10(b) repeats the analysis with one standard deviation ofnoise added. The results are the same.

SELF-SIMILARITY

Noisy chaos has one final characteristic that is consistent with market data: Its
frequency distributions are self-similar. After an adjustment for scale, they aremuch the same shape. Figure 17.11 shows the Mackey—Glass data with no
noise, used for Figure 17.1. However, in this case, sampling has been done ev-
ery three observations, as in the data used for Figure 17.10(a). The shape isstill similar to the "log-normal" looking shape that we saw earlier. Figure
17.12 shows the Mackey—Glass equation with observational noise added, used
for Figure 17.2. Again, it is sampled at every third observation, and the fre-
quency distribution is virtually identical to the longer time series. We can see
that noisy chaos has many of the attributes that we find desirable. In fact, it is
likely that fractional noise and noisy chaos are actually the same thing in real

269Self-Similarity
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systems. However, the deterministic element is apparent only at very long fre-quencies. At shorter intervals, the stochastic element dominates. In the nextsection I will attempt to reconcile these two seemingly competing Concepts, aswell as the Concept of the ARCH family of distributions into one collective

A PROPOSAL: UNITING GARCH, FBM, AND CHAOS

The solution has not been derived mathematically, but we can see what isneeded. In the short term, we need persistent Hurst exponents and self-similar
frequency distributions. In the long term, we need persistent Hurst exponents,long finite memories, and nonperiodic cycles. It is important to remember thatshort cycles do not appear stable from the research we have done. Only the longcycle is consistent and stable over all of the time periods studied.

With those results in mind, I would like to propose the following for thestock and bond markets. In the short term, markets are dominated by trading
processes, which are fractional noise processes. They are, locally, members ofthe ARCH family of processes, and they are characterized by conditional vari-ances; that is, each investment horizon is characterized by its Own measurableARCH process with finite, conditional variance This finite conditional vari-ance can be used to assess risk for that investment horizon only. Globally,the process is a stable Levy (fractal) distribution with infinite variance. As the
investment horizon increases, it approaches infinite variance behavior.

In the very long term (periods longer than four years for the U.S. stock andbond markets), the markets are characterized by deterministic nonlinear sys-tems or deterministic chaos. Nonperiodic cycles arise from the interdepen
dence of the various capital markets among themselves, as well as from the
economy. Markets that are dominated primarily by traders, with no link tofluctuations in the underlying economy, will not be characterized by determin-istic chaos, even in the long term. Instead, they will be dominated by localARCH effects, and global stable Levy characteristics

With this approach, we can reconcile the various approaches that have beenindependently found to produce significant results: ARCH, stable Levy (frac-tal), and long-term deterministic chaos. The contribution of each process de-pends on the investment horizon. Short-term trading is dominated by localARCH and global fractal. Long-term trading is tied to fundamental informa-tion and deterministic nonlinearities Thus, the information set used for mod-eling and setting strategy is largely dependent on the investment horizon.

18
Understanding Markets

This book has had two purposes. First, I planned it as a guide to applying R/S
analysis to capital market, economic, and other time series data. R/S analysis
has been in existence for over 40 years. Despite its robustness and general appli-
cability, it has remained largely unknown. It deserves a place in any analyst's
toolbox, along with the other tools that have been developed in traditional as
well as chaos analysis.

My second purpose centered around outlining a general hypothesis for
synthesizing different models into a coherent whole. This hypothesis was to be
consistent with the empirical facts, utilizing a minimal amount of underlying as-
sumptions. I called my model the Fractal Market Hypothesis (FMH). I consider
this conjecture to be the first cut at unraveling the global structure of markets.
The FMH will undoubtedly be modified and refined over time, if it stands up to
scrutiny by the investment community. I used a number of different methods for
testing the FMH; a prominent tool was R/S analysis, used in combination with
other techniques.

A convincing picture began to emerge. Together, R/S analysis and the Fractal
Market Hypothesis came under the general heading of Fractal Market Analysis.
Fractal Market Analysis used the self-similar probability distributions, called
stable Levy distributions, in conjunction with R/S analysis, to study and classify
the long-term behavior of markets.

We have learned much, but there is much that remains to be explored. I am
convinced that the markets have a fractal structure. As with any other fractal,
temporal or spatial, the closer we examine the structure, the more detail we see.
As we begin to explain certain mysteries, new unknowns become apparent. We
have a classical case of the more we know, the more we know we don't know.
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INFORMATION AND INVESTMENT HORIZONS

We discussed the impact of information on investor behavior. In traditional the-
ory, information is treated as a generic item. More or less, it is anything that canaffect the perceived value of a security. The investor is also generic. Basically,
an investor is anyone who wants to buy, sell, or hold a security because of the
available information. The investor is also considered rational—someone whoalways wants to maximize return and knows how to value current information.
The aggregate market is the equivalent of this archetypal rational investor, so themarket can value information instantly. This generic approach, where informa-tion and investors are general cases, also impliesthat all types of information
impact all investors equally. That is where it fails.

The market is made up of many individuals with many different investmenthorizons. The behavior of a day trader is quite different from that of a pension
fund. In the former case, the investment horizon is measured in minutes; in thelatter case, in years.

Information has a different impact on different investment horizons. Day
traders' primary activity is trading. Trading is typically concerned withcrowd behavior and with reading short-term trends. A day trader will bemore concerned with technical information, which is why many technicians
say that "the market has its own language." Technicians are also more likelyto say that fundamental information means little. Most technicians have short
investment horizons, and, within their time frame, fundamental informationis of little value. In that regard, they are right. Technical trends are of themost value to short horizons.

Most fundamental analysts and economists who also work in the marketshave long investment horizons. They tend to deal more with the economic cy-cle. Fundamental analysts will tend to think that technical trends areand are not of use to long-term investors. Only by assessing value can true in-vestment returns be made.
In this framework, both technicians and fundamentalists are right for their

particular investment horizons, because the impact of information is largelydependent on each individual's investment horizon.

STABILITY

The stability of the market is largely a matter of liquidity. Liquidity is available
when the market is composed of many investors with many different investment

Risk 273

horizons. In that way, if a piece of information comes through that causes a
severe drop in price at the short investment horizon, the longer-term investors
will step in to buy, because they do not value the information as highly. How-
ever, when the market loses this structure, and all investors have the same in-
vestment horizon, then the market becomes unstable, because there is no
liquidity. Liquidity is not the same as trading volume. Instead, it is the balanc-
ing of supply and demand. The loss of long-term investors causes the entire
market to trade based on the same information set, which is primarily techni-
cal, or a crowd behavior phenomenon. the market horizon becomes
short-term when the long-term outlook becomes highly uncertain—that is,
when an event (often political) occurs that makes the current long-term infor-
mation set unreliable or perceived to be useless. Long-term investors either
stop participating or they become short-term investors and begin trading on
technical information as well.

Market stability relies on diversification of the investment horizons of the
participants. A stable market is one in which many investors with different in-
vestment horizons are trading 5irnultaneouSty. The market is stable because the
different horizons value the information flow differently, and can provide liq-
uidity if there is a crash or stampede at one of the other investment horizons.

RISK

Each investment horizon is like the branching generation of a tree. The diame-
ter of any one branch is a random function with a finite variance. However,
each branch, when taken in the context of the total tree, is part of a global
structure with unknown variance, because the dimension of each tree is differ-
ent. It depends on many variables, such as its species and size.

Each investment horizon is also a random function with a finite variance,
depending on the previous variance. Because the risk at each investment hori-
zon should be equal, the shape of the frequency distribution of returns is equal,
once an adjustment is made for scale. However, the overall, global statistical
structure of the market has infinite variance; the long-term variance does not
converge to a stable value.

The global statistical structure is fractal because it has a self-similar struc-
ture, and its characteristic exponent, a (which is also the fractal dimension) is
fractional, ranging from 0 to 2. A random walk, which is characterized by the
normal distribution, is self-similar. However, it is not fractal; its fractal dimen-
sion is an integer: a = 2.0.
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The shape of these fractal distributions is high-peaked and fat-tailed, when
compared to the normal distribution. The fat tails occur because a large event oc-
curs through an amplification process. This same process causes the infinite
variance. The tails never converge to the asymptote of y = 0.0, even at infinity. In
addition, when the large events occur, they tend to be abrupt and discontinuous.
Thus, fractal distributions have yet another fractal characteristic: discontinuity.
The tendency toward "catastrophes" has been called, by Mandelbrot (1972), the
Noah effect, or, more technically, the infinite variance syndrome. In the markets,
the fat tails are caused by crashes and stampedes, which tend to be abrupt and
discontinuous, as predicted by the model.

LONG MEMORY

In the ideal world of traditional time series analysis, all systems are random
walks or can be transformed into them. The "supreme law of Unreason" can then
be applied, and the answers can be found. Imposing order on disorder in this
manner, natural systems could be reduced to a few solvable equations and onebasic frequency distribution—the normal distribution.

Real life is not that simple. The children of the Demiurge are complex and
cannot be classified by a few simple characteristics. We found that, in capital
markets, most series are characterized by long-memory effects, or biases; to-
day's market activity biases the future for a very long time. This Joseph effect
can cause serious problems for traditional time series analysis; for instance, the
Joseph effect is very difficult, if not impossible, to filter out. AR(l) residuals,
the most common method for eliminating serial correlation, cannot remove long-
memory effects. The long memory causes the appearance of trends and

cycles may be spurious, because they are merely a function of the long-
memory effect and of the occasional shift in the bias of the market.

Through RIS analysis, this long-memory effect has been shown to exist and
to be a black noise process. The color of the noise that causes the Joseph effect
is important below, when we discuss volatility.

CYCLES

There has long been a suspicion that the markets have cycles, but no convincing
evidence has been found. The techniques used were searching for regular, peri-
odic cycles—the kind of cycles created by the Good. The Demiurge created
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nonperiodic cycles—cycles that have an average period, but not an exact one.
Using R/S analysis, we were able to show that nonperiodic cycles are likely for
the markets. These nonperiodic cycles last for years, so it is likely that they are
a consequence of long-term economic information. We found that similar non-
periodic cycles exist for nonlinear dynamical systems, or deterministic chaos.

We did not find strong evidence for short-term nonperiodic cycles. Most
shorter cycles that are popular with technicians are probably due to the Joseph
effect. The cycles have no average length, and the bias that causes them can
change at any time—most likely, in an abrupt and discontinuous fashion.

Among the more interesting findings is that currencies do not have a long-
term cycle. This implies that they are a fractional noise process in both the short
and the long term. Stocks and bonds, on the other hand, are fractional noise in
the short term (hence the self-similar frequency distributions) but chaotic in the
long term.

VOLATILITY

Volatility was shown to be antipersistent—a frequently reversing, pink noise
process. However, it is not mean reverting. Mean reverting implies that volatility
has a stable population mean, which it tends toward in the long run. We saw evi-
dence that this was not the case. This evidence fit in with theory, because the
derivative of a black noise process is pink noise. Market returns are black noise,

so it is not surprising that volatility (which is the second moment of stock prices)
is a pink noise.

A pink noise process is characterized by probability functions that have not
only infinite variance but infinite mean as well; that is, there is no population
mean to revert to. In the context of market returns being a black noise, this makes
perfect sense. If market returns have infinite variance, then the mean of the vari-
ance of stock prices should be, itself, infinite. It is all part of one large structure,
and this structure has profound implications for option traders and others who
buy and sell volatility.

TOWARD A MORE COMPLETE MARKET THEORY

Much of the discussion in this book has been an attempt to reconcile the rational
approach of traditional quantitative management with the practical experience of
actually dealing with markets. For some time, we have not been able to reconcile

Understanding Markets Toward a More Complete Market Theory
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the two. Practicing money managers who have a quantitative background areforced to graft practical experience onto theory. When practice does not conformto theory, we have merely accepted that, at that point, theory breaks down. Ourview has been similar to physicists' acceptance of "singularities," events where
theory breaks down. The Big Bang is one such singularity. At the exact moment
of the Big Bang, physical laws break down and cannot explain the event. We have
been forced to think of market crashes as singularities in capital market theory.They are periods when no extension of the Efficient Market Hypothesis (EMH)can hold.

Chaos theory and fractal statistics offer us a model that can explain such
singularities. Even if events such as crashes prove to be unpredictable, they are
not unexpected. They do not become "outliers" in the theory. Instead, they area part of the system. In many ways, they are the price we pay for being capital-
ists. In my earlier book, I noted that markets need to be far from equilibrium ifthey are to stay alive. What I was attempting to say is that a capitalist system(either a capital market or a full economy) must dynamically evolve. Random
events must occur in order to foster its innovation. If we knew exactly what wasto come, we would stop experimenting. We would stop learning. We would stopinnovating. Therefore, we must have cycles, and cycles imply that there willalways be an up period and a down period.

It has become common for researchers to search for anomalies, or pocketsof inefficiency, where profits can be made at little risk. It has been rightlypointed out that a large market will arbitrage away such anomalies once they be-
come general knowledge. The FMH is not like that. It does not find a pocket ofinefficiency in which a few can profit. Instead, it says that, because informationis processed differently at the various frequencies, there will be trends and cy-cles at all investment horizons. Some will be stochastic, some will be nonlinear
deterministic. In both cases, the exact structure of the trends is time-varied. It ispredictable, but it will never be perfectly predictable, and that is what keeps the
markets stable. Chaos theory and fractal statistics offer us a new way to under-
stand how markets and economies function. There are no guarantees that theywill make it easier for us to make money. We will, however, be better able to de-velop strategies and assess the risks of playing the game.

T

I

Appendix 1

The Chaos Game

This appendix provides a BASIC progratu that generates the Sierpinski trian-
gle using the chaos game algorithm described in Chapter 1. In my earlier book,
I provided a number of BASIC programs, but later received complaints that the
programs would not run. The problem is that there are many different forms of
BASiC for PCs. This version is called BASICA, and used to be provided by
Microsoft with their DOS software. I still use this language for illustrative pur-
poses. If you have access to a different version of BASIC, this program will
have to be adapted.

Luckily, it is extremely short. This is all the more remarkable, considering
how complex the resulting image is, and shows convincingly how randomness
and determinism can coexist. The screen used here is a 640 X 200 pixel for-
mat. The program initially asks for x and y coordinates for starting the pro-
gram. You can enter virtually any number you like. The algorithm quickly
converges to the Sierpinski triangle. Because the program does not plot the
first 50 points (they are considered "transients"), the image will be generated
anyway. Change the initial coordinates, and you will see that the same image
always results, despite the random order in which the points are plotted. In
many ways, this program is more impressive on a slower PC, where you can see
the image gradually fill in.

The coordinates for the three angles of the triangle in (x, y) notation are (320,
1), (1, 200), and (640, 200). After reading the initial point, the program gener-
ates a random number, r, between 0 and 1. We use this random number instead of
the dice described in Chapter 1. If r is less than 0.34, it goes halfway from its
current position to (320, 1), which is the apex of the triangle. If 0.33 < r <0.67,
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Appendix 1

it goes halfway to (1, 200), the left lower angle. If 0.68 <r < 1.00, then it goes
halfway to (640, 200), the lower right angle. In each case, it plots the point, gen-
erates another random number, and then starts over again. The program is writ-
ten for 50,000 iterations. The user can use more or less. However, I have found
that more than 50,000 fills up the triangle due to lack of resolution, and less than
50,000 leaves a somewhat incomplete image.

10 Screen 2 @640X200 pixel screen@
2OCls: Key off
30 Print "Input
40Print "IflPUtx.": Iflputx
SO Print "Iflputy:": Inputy
60 cis

70 For i1 to 50000 @nunlber of plotted points9
80 r=rnd(i) random number990 If r<0.34 thenx=x(x+320)/2 else if r<0.67 then

(x+1) /2 else x = (x+640) /2
100 If r<0 .34 then y (y+l) /2 else y (y+200) /2110 if i<50 goto 130 9skip Plotting first 50 points@
120 pset (x,y) @plot point@
130 next i
140 end

T

Appendix 2

GAUSS Programs

In Chaos and Order in the Capital Markets, I supplied a number of BASIC pro-
grams so readers could experiment with calculating correlation dimensions
and Lyapunov exponents. I was surprised to discover that some readers as-
sumed that I did most of my research in BASIC, and, for some reason, that low-
ered my credibility. While I do not think there is anything wrong with using
BASIC, I do use other languages for more complicated data manipulation. My
current choice is a language called GAUSS, produced by Aptech Systems in
Seattle, Washington. GAUSS is a high-dimensional programming language,
which I find highly efficient for handling large data files. In Chaos . . . , I

did not supply a program for calculating the rescaled range, because I did not
feel that a BASIC version would be very efficient and I was unsure how widely
GAUSS would be used among the intended audience for that book. This book
is more technical by design, and it seems appropriate to supply my GAUSS

programs here.
The programs are in their most basic format. Users will need to customize

them for their own applications. This appendix supplies programs for calculat-
ing R/S, E(R/S), the sequential standard deviation and mean, and the term
structure of volatility. Itypically take the output of these programs and import it
into a spreadsheet for graphics and direct manipulation. I prefer spreadsheets
for the instantaneous feedback I get from manipulation. Again, how the user de-
cides to manipulate the output is purely a matter of personal preference.
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CALCULATING THE RESCALED RANGE

Calculating the Rescaled Range 281

The R/S analysis program can either read from a GAUSS data file or im-port an ASCII file. It splits the data set into even increments that use boththe beginning and end points, as described in Chapter 4. Therefore, youshould choose data lengths that have the most divisors. If you input 499observations, you will get no output. The program in its current formtakes a raw data file (say, of prices), and first calculates the log differ-ences. It then does an AR(l) analysis and takes the residual. The AR(1)residual data series is passed on to the R/S analysis section of the pro-gram. Thus, the input file should have two more observations than youwish to pass on to the R/S analysis section. If you want analysis on= 500 observations, you need to input 502 prices.
The program outputs the log(R/S) and the log(i) for the AR(l) residu-als, and places them in an ASCII file called dlyarj.asc The ASCII filecan be renamed and used as input for whatever package you use forgraphics and The V statistic is calculated from this outputfile. As I said, I prefer to do this in a spreadsheetThe input file can be either a GAUSS data set or an ASCII file. TheGAUSS data set named here is the long daily Dow Jones Industrials se-ries used throughout this book. For shorter files, from other sources, Iuse an ASCII format. The ASCII input file is called prices.prn.

@Thjs opening section (which has been RRM'd out) reads aGAUSS dataset
.

@Open ex=djal .dat;
Pseekr(ex,l);
sret_—readr(ex 27002);

@Thjs section reads an ASCII file as input@
load sret [J=prices.prn;
datx=sret[.,l).
dat r = dat X;

@calculate number of observations to the lower lQ0+2@
obv= (lot ((rows (datr) -1) /100) *100) +2;

@Calculate the log
datn=(ln(datr)2b]/
Obvobv_ 1;

@Take AR (1) residuals@
yi=datn[2:obv]; xidatn[l:obv-l]; xi2xi"2;
ybar=meanc(yi); xbarmeanc(xi);
xyyi.*xi; sxx=obv*sumc(xi2)_(sumc(xi))"2;
sxyobv*(sumc(xy))_sumc(xi(*sunlc(yi);
slopesxy/ sxx; const =ybar_slope*xbar;

clear datri; obv=rows(datx);

@Calculate R/S@
1=9; @Starting value of number of observations for R/S

calculat ion@

do while i<obv-l;
ji+l; nfloor(obv/i) ; num (obv/i)

if n<num; goto repeat: endif; @This section checks whether

we have an even increment of' time. If not, we skip to the

next i.@
xl=reshape(datx' ,n, I) ; @time series is reformatted

into nXi matrix, to calculate R/S for periods of

length i.@

mumeanc(xl) '; @sample mean is calculated

and subtracted@
sig=stdc(xl); @sample standard deviations@

sumcumsumc(xl) ; @cumulative deviations from
mean@

maxmaxc(sum) ; minminc(sum) ; @maximum and minimum
deviations from mean@

@range calculation@
@rescaled range@
@log of the average R/S value,

and number of observations,

r=max—min;
rsr. /sig;
alog(meanc(rs)); blog(i);

@Pririt to File@

printdos "\27 [=6h";
ca b;
output file=dlyarl.asc on;
print C;

repeat: endo;
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I

calculating Sequential Standard Deviation and Mean 283

CALCULATING THE E(R/S)

This program calculates the expected value of R/S for Gaussian increments,using the methodology outlined in Chapter 5. In the beginning, there is a start-ing value for the number of observations, n, and an ending value, e. Like theprogram for calculating R/S, this program calculates E(R/S) for all the evenincrements between n and e. In practice, I run RIS on the actual data, and thenrun this program for the E(R/S), changing e to the total number of observa-
tions used for R/S, thus giving equivalent values. This can be modified, and
the representative values in Table A2. I, which follows this appendix, were cal-culated from this program as well.

The output is an ASCII file called ern.asc. It contains two columns,E(R/S) and the number of observations, n. Logs are not taken this time, al-though the program can easily be modified to do so. In the calculation, we
use equation (5.4), as long as n is less than 335. At that point, most PC mem-ories do not hold enough digits for the gamma functions, and the programshifts to equation (5.5), which uses Stirling's approximation.

n9; e1000; @beginning and ending observation nunthersg

do while n<e; n=ri+1;
i=fioor(e/fl); if i<num; goto repeat; endif;

if n< 335;

g=garnma( 5* (n-l) ) / (gaxnma( . *sqrt (pi));

endif;

r=0; surnQ;
do while r<n-l;rr+l;

Sum=sum+sqrt ( (n-r) /r); @empirical correction@
endo;

ern=g*sum;
@caiculationof E(R/S) using empirical

correct ion@
output file=ern asc on;
P=fl—ern; printp;

repeat: enclo;

CALCULATING SEQUENTIAL STANDARD
DEVIATION AND MEAN

The program that calculates the sequential standard deviation and mean is
merely a variation of the one that calculates the rescaled range. The data are
continually reformatted into an n X I matrix, but the increment is now a fixed
step of length, r. Instead of the rescaled range, only sigma and the mean are
calculated. This program uses only the first column; it does not average across
all increments of length i. Finally, it does not take AR(l) residuals, which are
unnecessary for this kind of analysis. The output is the sequential mean and
sigma, as well as the observation number, x.

@openex=djal.dat; p=seekr(ex,l);sretreadr(ex,27000);
datx= sret[. ,l]; obv = rows(datx);@ @GAUSS dataset input

REM'd out@

load sret [I = prices.prn; datx sret [. 1]
obv = rows [datx];

datr = ln(datx[2:obvl./datx[l:obv—lfl; @log returns@

obv = rows (datr);

r = 1; x = 19; @increments of one observation, start with 20
observat ions@

do while x<obv-r;
x = x + r; n = floor (obv/x);

xl = reshape (datr , n, x) ; @reformat data into n by x matrix@

sxl{.,lJ; v=stdc(s); inmeanc(s); @calcuiate
sequential sigma and mean@

@print to file@
format 1 8; Output file seqvar.asc on;

print x — v
endo;
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CALCULATING THE TERM STRUCTURE OF VOLATIUTy

I
Calculating The Term Structure of Volatility 285

As in the program for sequential mean and standard deviation, the term struc-ture of volatility program uses a major portion of the R/S analysis program,reformatting the data as an n X I matrix, with n the time frame of interest Inthis case, we start with daily data, make a 27,002 )< I vector of prices, andcalculate the standard deviation of the changes in the AR( I) residuals. We nextgo to 2-day data, and create a 13,502 X 2 matrix of prices. Column I now con-tains the price every two days. Then, we calculate the standard deviation of thechanges in the AR(l) residuals of column I. We continue doing that until werun out of data.
In this case, we once again use AR(l) residuals, because we do not want thestandard deviation of the longer periods to be biased by inflationary growth. Inthe shorter intervals, it does not make much difference.

@This section reads a GAUSS dataset as input. It has beenREM'd out@
@open ex=djal .dat;
Pseekr(ex, 1);
sret=readr(ex 27002);
datr=sret[.,i];@

@This section reads an ASCII file as input@
load srec[1=pricesprn;
datx=sret( ,1};
obv=((int(rows(datx)/lQQ))

even 100, +2 for AR(l)
calc@

datn=datx[2:obv] ./datx[l:obv]; @Calculate logreturns@
Obvrows (datn);

@take AR(l) residuals@
yidatn[2 :obv};

ybar=meanc(yi); xbarmeanc(xi);
*Xi;

sxy=obvl(sumc(xyH_sumc(xi)*sumc(yi);
slopesxy/sxx; const=ybar_slope*xbar;

obv=rows(datc);

@cumulate AR(1) residuals@
datx=cumsumc(datc[.,1]) + 100;

1 = 0; x 0;

do while x< (obv/2);

xx + 1;
num=obv/x; n=floor(obv/x); if n<num; goto repeat; endif;

@check if x is evenly divisible@

xlreshape(datx ,n,x); @reshape matrix to desired
investment horizon, "x"@

datn=xl t. , 1]; @use first column of prices only@

datr=ln(datn[2:n}./datn[l:n-l]); @logreturn@
sstdc (datr); @calculate standard deviation@
@print to file@
format 1,8;
output file std.asc on;
print x — S;

repeat: endo;

@print investment horizon, x, and
standard deviation, s@
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Table A2.1 cxpected Value of R/S, Gaussian Random Variable: Representative Values
N E(R/S) Iog(N) Log(E(R/S))

10 2.8722 1.0000 0.458215 3.7518 1.1761 0.574220 4.4958 1.3010 0.652825 5.1525 1.3979 0.712030 5.7469 1.4771 0.759435 6.2939 1.5441 0.7989 Appendix 3
40 6.8034 1.6021 0.832745 7.2822 1.6532 0.862350 7.7352 1.6990 0.8885 Fractal Distribution Tables55 8.1662 1.7404 0.912060 8.5781 1.7782 0.933465 8.9733 1.8129 0.953070 9.3537 1.8451 0.971075 9.7207 1.8751 0.987780 10.0758 1.9031 1.003385 10.4200 1.9294 1.017990 10.7542 1.9542 1.031695 11.0793 1.9777 1.0445 This appendix serves two purposes:100 11.3960 2.0000 1.0568200 16.5798 2.3010 1.2196300 20.5598 2.4771 1.3130 1. It presents tables that some readers will find useful if they delve into

400 23.8710 2.6021 1.3779 stable distributions as alternative proxies for risk, either for portfolio
500 26.8327 2.6990 1.4287 selection or option pricing, as described in Chapter 15.600 29.5099 2.7782 1.4700 2. It covers the methodology used to generate the tables. The text of this ap-700 31.9714 2.8451 1.5048800 34.2624 2.903 1 1.5348

pendix is addressed specifically to those interested in this level of detail.
900 36.4139 2.9542 1.56131,000 38.4488 3.0000 1.5849 In 1968 and 1971, Fama and Roll published cumulative distribution func-

1,500 47.3596 3.1 761 1 .6754 tions for the family of stable distributions. The tables were limited to the sym-
2,000 54.8710 3.3010 1.7393 metric case, where = 0. They were the first tables to be generated from2,500 61.4882 3.3979 1.78883,000 67.4704 3.4771 1 .8291

algorithms, rather than from interpolation in the manner of Mandelbrot
3,500 72.9714 3.5441 1

(1963). In this appendix, we will first describe the methodology used by Fama
4,000 78.0916 3.602 1 1.8926 and Roll. We will also briefly discuss other methods developed since 1971. At
4,500 82.9004 3.6532 1 .9186 the end of the appendix, three tables are reproduced from the Fama and Roll
5,000 87.4487 3.6990 1.94185,500 91.7747 3.7404 1 .9627

paper. It is now possible to generate these tables using some of the powerful
6,000 95.9081 3.7782 1 .9819

software available for personal computers, as well as for workstations. Inter-
6,500 99.8725 3.8129 1.9994 ested readers can try this as well.
7,000 103.6872 3.8451 2.01577,500 107.3678 3.8751 2.03098,000 110.9277 3.9031 2.0450 GENERATING THE TABLES
8,500 114.3779 3.9294 2.05839,000 117.7281 3.9542 2.0709 Fama and Roll based their methodology the work of Bergstrom (1952). In9,500 120.9864 3.9777 2.082710,000 124.1600 4.0000 2.0940

order to implement the Bergstrom expansion, we must begin with the standard-
ized variable:
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x—S
U

The distribution of u is the stable equivalent of the standard normal distribu-
tion, which has a mean of 0 and a standard deviation of 1. The difference is that
the stable distribution has mean 0 and c = I We typically normalize a time se-
ries by subtracting the sample mean and dividing by the standard deviation. The
standardized form of a stable distribution is essentially the same. is the mean
of the distribution. However, instead of dividing by the standard deviation, we
divide by the scaling parameter, c. Remember from Chapter 14 that the variance
of the normal distribution is equal to 2*c2. Therefore, a standardized stable
distribution, with a 2.0 will not be the same as a standard normal because
the scaling factor will be different. The stable distribution is rescaling by half
the variance of the normal distribution. We start with the standardized variablebecause its log characteristic function can be simplified to:

As we stated in Chapter 14, explicit expressions for stable distributions ex-ist only for the special cases of the normal and Cauchy distributions. However,Bergstrom (1952) developed a series expansion that Fama and Roll used to ap-proximate the densities for many values of alpha. When a> 1.0, they could
use Bergstrom's results to develop the following convergent series:

r (2*k + 1)
f0(u) (_l)k * a * u2*k

(2*k)!

The infinite series is difficult to deal with in reality. Luckily, Bergstrom
also supplied a finite series equivalent to equation (A3.3), which could be used
when a> 1. For u > 0, this gives:

I (l)k F(a*k+ I) /k*ir*a\fa(u)
+ ) + R(u)IT k=i k! 2 / F — F (Z)

d

288

C

Appendix 3

(A3.l)

(A3.2)

Generating the Tables 289

As u gets larger, the remainder R(u) becomes smaller than the previous
term in the summation. Equation (A3.4) is asymptotic for large u.

Term-by-term integration of equation (A3.3) gives a convergent series for
the cumulative distribution function of the standardized, symmetric stable
variable with a > 1:

= + * (_l)k * (A3.6)
2 k=I (2*k — 1)!

Similarly, integration of equation (A3.4) also yields the following asymp-
totic series, for large u:

1 F(a*k) fk*1T*a'\
1 + —k — fR(u)du (A3.7)

IT k=l 2 /

The integral of the remainder term R(u) will tend to zero in the limit.
In practice, Fama and Roll used equations (A3.6) and (A3.7) when calculating

the cumulative distribution functions. The approach was to use equation (A3.6)
for small u, and equation (A3.7) for large u. However, in practice, they found that
both equations were in agreement to five decimal places, except when a was close
to 1. For a close to I, they used equation (A3.7) when —4 + 5*a, and equa-
tion (A3.6) in all other cases.

Finally, Fama and Roll gave the following iterative procedure to determine
u(u,F), which I quote in its entirety:

I. Make a first approximation Z to u(a,F) by taking a weighted average of the F
fractiles of the Cauchy and Gaussian distributions.

2. If IZI > —4 + 5 *a, refine it by using the polynomial inverse of the first four terms
of the finite series.

3. Iterate as follows:
(a) Compute F —.
(b) Change Z according to:

where d is a weighted average of the Cauchy and Gaussian densities evaluated at
the point Z.
(c) Return to (a) and repeat the process until F — < .0001. The procedure

rarely requires more than three iterations.

(A3.3)

(A3.4)

R(u), the remainder, is a function of u U*(fl That is, for a constant, M:

R(u)j <
(A3.5)
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Table 
A3.1 

C
um

ulative 
D

istribution 
Functions 

for 
Standardized 

Sym
m

etric 
Stable 

D
istributions, 

F(u) 

1.60 
1.70 

1.80 
1.90 

1.95 
2.00 

0.05 
0.5159 

0.5153 
0.5150 

0.5147 
0.5145 

0.5144 
0.5143 

0.5142 
0.5142 

0.5141 
0.5141 

0.5141 
0.10 

0.5371 
0.5306 

0.5299 
0.5294 

0.5290 
0.5287 

0.5285 
0.5284 

0.5283 
0.5282 

0.5282 
0.5282 

0.15 
0.5474 

0.5458 
0.5447 

0.5439 
0.5434 

0.5430 
0.5427 

0.5425 
0.5424 

0.5423 
0.5423 

0.5422 
0.20 

0.5628 
0.5608 

0.5594 
0.5584 

0.5577 
0.5572 

0.5568 
0.5566 

0.5564 
0.5563 

0.5563 
0.5562 

0.25 
0.5780 

0.5756 
0.5740 

0.5728 
0.5719 

0.5713 
0.5709 

0.5706 
0.5704 

0.5702 
0.5702 

0.5702 
0.30 

0.5928 
0.5902 

0.5883 
0.5869 

0.5860 
0.5853 

0.5848 
0.5844 

0.5842 
0.5841 

0.5840 
0.5840 

0.35 
0.6072 

0.6044 
0.6024 

0.6009 
0.5998 

0.5991 
0.5985 

0.5982 
0.5979 

0.5978 
0.5978 

0.5977 
0.40 

0.6211 
0.6183 

0.6162 
0.6146 

0.6135 
0.6127 

0.6122 
0.6118 

0.6115 
0.6114 

0.6114 
0.6114 

0.45 
0.6346 

0.6318 
0.6297 

0.6281 
0.6270 

0.6262 
0.6256 

0.6252 
0.6250 

0.6249 
0.6248 

0.6248 
0.50 

0.6476 
0.6449 

0.6428 
0.6413 

0.6402 
0.6394 

0.6389 
0.6385 

0.6383 
0.6382 

0.6382 
0.6382 

0.55 
0.6601 

0.6576 
0.6557 

0.6542 
0.6532 

0.6524 
0.6519 

0.6516 
0.6514 

0.6513 
0.6513 

0.6513 
0.60 

0.6720 
0.6698 

0.6681 
0.6668 

0.6658 
0.6651 

0.6647 
0.6644 

0.6643 
0.6643 

0.6643 
0.6643 

0.65 
0.6835 

0.6817 
0.6802 

0.6790 
0.6782 

0.6776 
0.6772 

0.6770 
0.6770 

0.6770 
0.6770 

0.6771 
0.70 

0.6944 
0,6930 

0.6919 
0.6909 

0.6902 
0.6898 

0.6895 
0.6894 

0.6894 
0.6895 

0.6896 
0.6897 

0.75 
0.7048 

0.7039 
0.7031 

0.7025 
0.7020 

0.7017 
0.7015 

0.7O
15 

0.7016 
0.7018 

0.7019 
0.7021 

0.80 
0.7148 

0.7144 
0.7140 

0.7136 
0.7134 

0.7133 
0.7133 

0.7134 
0.7136 

0.7139 
0.7140 

0.7142 
0.85 

0.7242 
0.7244 

0.7244 
0.7244 

0.7244 
0.7245 

0.7247 
0.7250 

0.7253 
0.7257 

0.7259 
0.7261 

0.90 
0.7333 

0.7340 
0.7345 

0.7348 
0.7351 

0.7355 
0.7358 

0.7363 
0.7367 

0.7372 
0.7375 

0.7377 
0.95 

0.7418 
0.7432 

0.7441 
0.7449 

0.7455 
0.7461 

0.7467 
0.7472 

0.7479 
0.7485 

0.7488 
0.7491 

1.00 
0.7500 

0.7519 
0.7534 

0.7545 
0.7555 

0.7563 
0.7572 

0.7579 
0.7587 

0.7595 
0.7599 

0.7602 
1.10 

0.7651 
0.7682 

0.7707 
0.7727 

0.7744 
0.7759 

0.7772 
0.7784 

0.7795 
0.7806 

0.7811 
0.7817 

1.20 
0.7789 

0.7831 
0.7865 

0.7894 
0.7919 

0.7940 
0.7959 

0.7976 
0.7991 

0.8006 
0.8013 

0.8019 
1.30 

0.7913 
0.7965 

0.8010 
9.8048 

0.8080 
0.8108 

0.8133 
0.8155 

0.8175 
0.8193 

0.8202 
0.8210 

1.40 
0.8026 

0.8088 
0.8142 

0.8188 
0.8228 

0.8263 
0.8294 

0.8322 
0.8346 

0.8369 
0.8379 

0.8389 

1.50 
0.8128 

0.8194 
0.8261 

0.8316 
0.8364 

0.8406 
0.8443 

0.8475 
0.8505 

0.8531 
0.8544 

0.8556 
1.60 

0.8222 
0.8300 

0.8370 
0.8433 

0.8487 
0.8536 

0.8579 
0.8617 

0.8651 
0.8682 

0.8697 
0.8711 

1.70 
0.8307 

0.8393 
0.8470 

0.8539 
0.8600 

0.8655 
0.8703 

0.8747 
0.8786 

0.8821 
0.8838 

0.8853 
1.80 

0.8386 
0.8477 

0.8560 
0.8635 

0.8702 
0.8763 

0.8817 
0.8865 

0.8909 
0.8949 

0.8967 
0.8985 

1.90 
0.8458 

0.8554 
0.8643 

0.8723 
0.8795 

0.8861 
0.8920 

0.8973 
0.9021 

0.9065 
0.9085 

0.9104 
2.00 

0.8524 
0.8625 

0.8719 
0.8802 

0.8879 
0.8950 

0.9013 
0.9071 

0.9123 
0.9170 

0.9192 
0.9214 

2.20 
0.8642 

0.8750 
0.8850 

0.8941 
0.9025 

0.9103 
0.9174 

0.9238 
0.9298 

0.9352 
0.9377 

0.9401 
2.40 

0.8743 
0.8856 

0.8961 
0.9057 

0.9146 
0.9228 

0.9304 
0.9374 

0.9438 
0.9497 

0.9525 
0.9552 

2.60 
0.8831 

0.8948 
0.9055 

0.9155 
0.9246 

0.9331 
0.9409 

0.9482 
0.9550 

0.9612 
0.9642 

0.9670 
2.80 

0.8908 
0.9027 

0.9136 
0.9236 

0.9329 
0.9415 

0.9495 
0.9569 

0.9638 
0.9702 

0.9732 
0.9761 

3.00 
0.8976 

0.9096 
0.9205 

0.9306 
0.9399 

0.9484 
0.9564 

0.9638 
0.9707 

0.9771 
0.9801 

0.9831 
3.20 

0.9038 
0.9156 

0.9265 
0.9365 

0.9457 
0.9542 

0.9620 
0.9692 

0.9760 
0.9823 

0.9853 
0.9882 

3.40 
0.9089 

0.9209 
0.9318 

0.9417 
0.9507 

0.9590 
0.9666 

0.9736 
0.9802 

0.9862 
0.9891 

0.9919 
3.60 

0.9138 
0.9257 

0.9365 
0.9462 

0.9550 
0.9631 

0.9704 
0.9771 

0.9834 
0.9892 

0.9919 
0.9945 

3.80 
0.9181 

0.9299 
0.9406 

0.9501 
0.9587 

0.9665 
0.9736 

0.9800 
0.9859 

0.9914 
0.9939 

0.9964 
4.00 

0.9220 
0.9338 

0.9442 
0.9536 

0.9619 
0.9694 

0.9762 
0.9823 

0.9879 
0.9930 

0.9954 
0.9977 

4.40 
0.9289 

0.9403 
0.9504 

0.9593 
0.9672 

0.9742 
0.9804 

0.9859 
0.9908 

0.9951 
0.9972 

0.9991 
4.80 

0.9346 
0.9458 

0.9555 
0.9640 

0.9714 
0.9778 

0.9834 
0.9883 

0.9927 
0.9964 

0.9981 
0.9997 

5.20 
0.9395 

0.9504 
0.9597 

0.9678 
0.9747 

0.9807 
0.9858 

0.9902 
0.9939 

0.9972 
0.9986 

0.9999 
5.60 

0.9438 
0.9543 

0.9633 
0.9709 

0.9774 
0.9830 

0.9876 
0.9916 

0.9949 
0.9977 

0.9989 
1.0000 

6.00 
0.9474 

0.9576 
0.9663 

0.9736 
0.9797 

0.9848 
0.9891 

0.9927 
0.9956 

0.9980 
0.9991 

1.0000 
7.00 

0.9548 
0.9643 

0.9721 
0.9786 

0.9839 
0.9882 

0.9918 
0.9946 

0.9969 
0.9986 

0.9994 
1.0000 

8.00 
0.9604 

0.9692 
0.9764 

0.9821 
0.9868 

0.9905 
0.9935 

0.9958 
0.9976 

0.9990 
0.9995 

1.0000 
10.00 

0.9683 
0.9760 

0.9820 
0.9868 

0.9905 
0.9934 

0.9956 
0.9972 

0.9985 
0.9994 

0.9997 
1.0000 

15.00 
0.9788 

0.9847 
0.9891 

0.9923 
0.9947 

0.9965 
0.9977 

0.9986 
0.9993 

0.9997 
0.9999 

1.0000 
20.00 

0.9841 
0.9888 

0.9923 
0.9947 

0.9965 
0.9977 

0.9986 
0.9992 

0.9996 
0.9998 

0.9999 
1.0000 
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Table 
A3.2 

Fractiles 
of 

Standardized 
Sym

m
etric 

Stable 
D

istributions, 
u 

Alpha 
(a) 

F 
1.00 

1.10 
1.20 

1.30 
1.40 

1.50 
1.60 

1.70 
1.80 

1.90 
1.95 

2.00 
0.5200 

0.063 
0.065 

0.067 
0.068 

0.069 
0.070 

0.070 
0.070 

0.071 
0.071 

0.071 
0.071 

0.5400 
0.126 

0.131 
0.134 

0.136 
0.138 

0.139 
0.140 

0.141 
0.141 

0.142 
0.142 

0.142 
0.5600 

0.191 
0.197 

0.202 
0.205 

0.208 
0.210 

0.211 
0.212 

0.213 
0.213 

0.214 
0.214 

0.5800 
0.257 

0.265 
0.271 

0.275 
0.279 

0.281 
0.283 

0.284 
0.285 

0.286 
0.286 

0.286 
0.6000 

0.325 
0.334 

0.341 
0.347 

0.350 
0.353 

0.355 
0.357 

0.357 
0.358 

0.358 
0.358 

0.6200 
0.396 

0.406 
0.414 

0.420 
0.424 

0.427 
0.429 

0.430 
0.432 

0.432 
0.432 

0.432 
0.6400 

0.471 
0.481 

0.489 
0.495 

0.499 
0.502 

0.504 
0.506 

0.506 
0.507 

0.507 
0.507 

0.6600 
0.550 

0.560 
0.567 

0.573 
0.577 

0.580 
0.581 

0.583 
0.583 

0.583 
0.583 

0.583 
0.6800 

0.635 
0.643 

0.649 
0.654 

0.658 
0.660 

0.661 
0.662 

0.662 
0.662 

0.661 
0.661 

0.7000 
0.727 

0.732 
0.736 

0.739 
0.742 

0.743 
0.744 

0.744 
0.743 

0.743 
0.742 

0.742 
0.7200 

0.827 
0.828 

0.829 
0.830 

0.830 
0.830 

0.830 
0.829 

0.828 
0.826 

0.825 
0.824 

0.7400 
0.939 

0.932 
0.928 

0.926 
0.924 

0.921 
0.919 

0.917 
0.915 

0.912 
0.911 

0.910 
0.7600 

1.065 
1.048 

1.037 
1.030 

1.024 
1.018 

1.014 
1.010 

1.006 
1.003 

1.001 
0.999 

0.7800 
1.209 

1.179 
1.158 

1.143 
1.131 

1.122 
1.115 

1.108 
1.102 

1.097 
1.095 

1.092 

1.268 
1.249 

1.235 
1.223 

1.213 
1.204 

1.197 
1.194 

1.190 
1.409 

1.380 
1.358 

1.341 
1.326 

1.314 
1.304 

1.299 
1.295 

1.571 
1.528 

1.496 
1.471 

1.450 
1.433 

1.419 
1.413 

1.407 
1.762 

1.700 
1.653 

1.616 
1.587 

1.564 
1.544 

1.536 
1.528 

1.996 
1.905 

1.837 
1.785 

1.744 
1.711 

1.684 
1.672 

1.662 
2.297 

2.161 
2.061 

1.985 
1.927 

1.880 
1.843 

1.827 
1.813 

2.708 
2.503 

2.35 
1 

2.237 
2.150 

2.084 
2.030 

2.007 
1.988 

3.331 
3.002 

2.763 
2.581 

2.444 
2.341 

2.261 
2.228 

2.199 
3.798 

3.869 
3.053 

2.816 
2.638 

2.505 
2.404 

2.363 
2.327 

4.453 
3.882 

3.448 
3.127 

2.887 
2.708 

2.576 
2.522 

2.477 
5.476 

4.659 
4.049 

3.577 
3.234 

2.980 
2.795 

2.722 
2.661 

6.251 
5.240 

4.485 
3.901 

3.478 
3.160 

2.933 
2.846 

2.772 
7.359 

6.063 
5.099 

4.357 
3.799 

3.394 
3.104 

2.996 
2.905 

9.100 
7.341 

6.043 
5.056 

4.283 
3.728 

3.330 
3.191 

3.070 
12.313 

9.659 
7.737 

6.285 
5.166 

4.291 
3.670 

3.461 
3.290 

20.775 
15.595 

11.983 
9.332 

7.290 
5.633 

4.375 
3.947 

3.643 
120.952 

79.556 
54.337 

37.967 
26.666 

18.290 
11.333 

7.790 
4.653 

0.8000 
1.376 

1.327 
1.293 

0.8200 
1.576 

1.505 
1.447 

0.8400 
1.819 

1.709 
1.628 

0.8600 
2.125 

1.964 
1.847 

0.8800 
2.526 

2.290 
2.122 

0.9000 
3.078 

2.729 
2.480 

0.9200 
3.695 

3.366 
2.984 

0.9400 
5.242 

4.379 
3.774 

0.9500 
6.314 

5.165 
4.370 

0.9600 
7.916 

6.319 
5.230 

0.9700 
10.579 

8.189 
6.596 

0.9750 
12.706 

9.651 
7.645 

0.9800 
15.895 

11.802 
9.164 

0.9850 
21.205 

15.300 
11.589 

0.9900 
31.820 

22.071 
16.160 

0.9950 
63.657 

41 
.348 

28.630 
0.9995 

636.609 
334.595 

193.989 

From
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ALTERNATIVE METHODS

There are other less well-documented methodologies for calculating stable dis-
tributions. McCulloch (1985) briefly described these. He referenced an inte-
gral representation given by Zolotarev (1966), in addition to the convergent
series representation by Bergstrom (1952), used by Fama and Roll.

In addition, DuMouchel had evidently tabulated the distributions in his un-
published doctoral thesis in 1971. 1 was unable to obtain a copy of those tables,
but I did find a description of DuMouchel's methodology in a later paper (1973).
DuMouchel took advantage of the fact that the inverse Fourier transform of the
characteristic function behaves like a density function. For 0 < x < 10, he in-
verted the characteristic function (equation (A3.2)) using the fast Fourier trans-
form (FFT), and numerically calculated the densities. For the tail areas, x > 10,

he used equation (A3.7) as Fama and Roll do. While easier to calculate, the re-
sults should be similar to those of Fama and Roll (1971).

The symbolic languages now available for PCs—for example, Mathcad,
Matlab, and Mathematica—should make DuMouchel's method rather straight-
forward to implement. Other tables are also available. Holt and Crow (1973)
tabulated the probability density functions (as opposed to the cumulative dis-
tribution functions of Fama and Roll) for various values of a and 13. Those in-

should consult that work.

DESCRIPTION OF THE TABLES

Table A3.1 is the cumulative distribution function for standardized, symmetric

(13 0) stable distributions. It covers a from 1.0 to 2.0. The frequency
distribution for the standardized values can be found through subtraction, just
as for the standard normal cumulative distribution (found in all statistics
books). Although a = 2.0 is comparable to the normal distribution, these tables
will not match because they are standardized to c, not if, as we stated before.

Table A3.2 converts the results of Table A3.1 into fractiles. To learn what
value of F accounts for 99 percent of the observations for a = 1.0, go down the
F column on the left to 0.99, and across to the value u = 31.82. The Cauchy
distribution requires observations 31.82 c values from the mean to cover 99

percent of the probability. By contrast, the normal case reaches the 99 percent
level at u = 3.29. Again, this is different from the standard normal case, which
is 2.326 standard deviations rather than 3.29 units of c.

Table A3.3 gives further detail of the fractiles for 0.70 F 0.75, which
is used in Chapter 15 for estimating c, for option valuation.
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Alpha The measure of the peakedness of the probability density function.In the nor-
mal distribution, alpha equals 2. For fractal or Pareto distributions, alpha is between I
and 2. The inverse of the Hurst exponent (H).
Antipersistence In rescaled range (R/S) analysis, an antipersistent time series re-
verses itself more often than a random series would, If the system had been up in the
previous period, it is more likely that it will be down in the next period and vice versa.
Also called pink noise, or I/f noise. See Hurst exponent, Joseph effect, Noah effect, Per-
sistence, and Rescaled range (RIS) analysis.
Attractor In nonlinear dynamic series, a definitor of the equilibrium level of the sys-
tem. See Limit cycle, Point attractor, and Strange attractor.
Autoregressive (AR) process A stationary stochastic process where the current value
of the time series is related to the past p values, and where p is any integer, is called, an
AR(p) process. When the current value is related to the previous two values, it is an AR(2)
process. An AR(l) process has an infinite memory.

Autoregressive conditional heteroskedasticity (ARCH) process A nonlinear sto-
chastic process, where the variance is time-varying and conditional upon the past vari-
ance. ARCH processes have frequency distributions that have high peaks at the mean and
fat-tails, much like fractal distributions. The generalized ARCH (GARCH) model is also
widely used. See Fractal distribution.

Autoregressive fractionally integrated moving average (ARFIMA) process An
ARIMA(p,d,q) process where d takes a fractional value. When d is fractional, the
ARIMA process becomes fractional brownian motion and can exhibit long-memory ef-
fects, in combination with short-memory AR or MA effects. See Autoregressive (AR)
program, Autoregressive integrated moving average (ARIMA) process, Fractional brown-
ian motion, Moving average (MA) process.
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Autoregressive integrated moving average (ARIMA) process A nonstationary
stochastic process related to ARMA process. ARIMA(p,d,q) processes become sta-
tionary ARMA(p,q) processes after they have been differenced d number of times,
with d an integer. An ARIMA(p,l,q) process becomes an ARMA(p,q) process after
first differences have been taken. See Autoregressive fractionally integrated moving av-
erage (ARFIMA) process and Autoregressive moving average (ARMA) process.
Autoregressive moving average (ARMA) process A stationary stochastic process
that can be a mixed model of AR and MA processes. An ARMA(p,q) process combines
an AR(p) process and an MA(q) process.
BDS statistic A statistic based on the correlation integral that examines the probabil-
ity that a purely random system could have the same scaling properties as the system
under study. Named for its originators: Brock, Dechert, and Scheinkman (1987). See
Correlation integral.
Bifurcation Development, in a nonlinear dynamic system, of twice the possible solu-
tions that the system had before it passed its critical level. A bifurcation cascade is often
called the period doubling route to chaos, because the transition from an orderly system
to a chaotic system often occurs when the number of possible solutions begins increasing,
doubling at each increase.
Bifurcation diagram A graph that shows the critical points where bifurcation oc-
curs and the possible solutions that exist at each point.
Black noise See Persistence.
Capital Asset Pncing Model (CAPM) An equilibrium-based asset-pricing model
developed independently by Sharpe, Lintner, and Mossin. The simplest version states
that assets are priced according to their relationship to the market portfolio of all risky
assets, as determined by the securities' beta.
Central Limit Theorem The Law of Large Numbers; states that, as a sample of in-
dependent, identically distributed random numbers approaches infinity, its probability
density function approaches the normal distribution. See Normal distribution.
Chaos A deterministic, nonlinear dynamic system that can produce random-looking
results. A chaotic system must have a fractal dimension and must exhibit sensitive de-
pendence on initial conditions. See Fractal dimension, Lyapunov exponent, and Strange
attractor.
Coherent Market Hypothesis (CMH) A theory stating that the probability density
function of the market may be determined by a combination of group sentiment and
fundamental bias. Depending on combinations of these two factors, the market can be
in one of four states: random walk, unstable transition, chaos, or coherence.
Correlation The degree to which factors influence each other.
Correlation dimension An estimate of the fractal dimension that (1) measures the
probability that two points chosen at random will be within a certain distance of each
other and (2) examines how this probability changes as the distance is increased. White
noise will fill its space because its components are uncorrelated, and its correlation di-
mension is equal to whatever dimension it is placed in. A dependent system will be held
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together by its correlations and will retain its dimension in whatever embedding dimen- Fractal distribution A probability density function that is statistically self-similar.sion it is placed, as long as the embedding dimension is greater than its fractal dimension. That is, in different increments of time, the statistical characteristics remain the same.
Correlation integral The probability that two points are within a certain distance Fractal Market Hypothesis FMH) A market hypothesis that states: 1) a marketfrom one another; used in the calculation of the correlation dimension, consists of many investors with different investment horizons, and (2) the information

set that is important to each investment horizon is different. As long as the marketCritical levels Values of control parameters where the nature of a nonlinear dynamic
maintains this fractal structure, with no characteristic time scale, the market remainssystem changes. The system can bifurcate or it can make the transition from stable to
stable. When the market's investment horizon becomes uniform, the market becomesturbulent behavior. An example is the straw that breaks the camel's back,
unstable because everyone is trading based on the same information set.Cycle A full orbital period.
Fractional brownian motion A biased random walk; comparable to shooting crapsDeterminism A theory that certain results are fully ordained in advance. A deter- with loaded dice. Unlike standard brownian motion, the odds are biased in one direc-ministic chaos system is one that gives random-looking results, even though the results tion or the other.are generated from a system of equations.
Fractional noise A noise that is not completely independent of previous values. SeeDynamical noise When the output of a dynamical system becomes corrupted with Fractional brownian motion, White noise.noise, and the noisy value is used as input during the next iteration. Also called system
Fundamental information Information relating to the economic state of a companynoise. See Observational noise.
or economy. In market analysis, fundamental information is related only to the earn-Dynamical system A system of equations in which the output ofone equation is part ings prospects of a firm.of the input for another. A simple version of a dynamical system is a sequence of linear
Gaussian A system whose probabilities well described by a normal distribution,simultaneous equations. Nonlinear simultaneous equations are nonlinear dynamical
or bell-shaped curve.systems.

Generalized ARCH (GARCH) process See Autoregressive conditional heteroskedas-Econometrics The quantitative science of predicting the economy.
ticity (ARCH) process.Efficient frontier In mean/variance analysis, the curve formed by the set of eff i- Hurst exponent (H) A measure of the bias in fractional brownian motion.cient portfolios—that is, those portfolios or risky assets that have the highest level of
H = 0.50 for brownian motion; 0.50< H 1.00 for persistent or trend-reinforcingexpected return for their level of risk,
series; 0 H <0.50 for an antipersistent or mean-reverting system. The inverse ofEfficient Market Hypothesis (EMH) A theory that states, in its semi-strong form, the Hurst exponent is equal to alpha, the characteristic exponent for fractal, orthat because current prices reflect all public information, it is impossible for one mar- Pareto, distributions.ket participant to have an advantage over another and reap excess profits.
Implied volatility When using the Black—Scholes option pricing model, the level ofEntropy The level of disorder in a system. the standard deviation of price changes that equates the current option price to the
other independent variables in the formula. Often used as a measure of current levels ofEquilibrium The stable state of a system. See Attractor.
market uncertainty.Euclidean geometry Plane or 'high school" geometry, based on a few ideal, smboth,
Intermittency Alternation of a nonlinear dynamical system between periodic andsymmetric shapes.
chaotic behavior. See Chaos, Dynamical system.Feedback system An equation in which the output becomes the input in the next iter-
Joseph effect The tendency for persistent time series (0.50 < H 1.00) to haveation, operating much like a public address (PA) system, where the microphone is
trends and cycles. A term coined by Mandelbrot, referring to the biblical narrative ofplaced next to the speakers, who generate feedback as the signal is looped through the
Joseph's interpretation of Pharaoh's dream to mean seven fat years followed by sevenPA system.

lean years.Fractal An object in which the parts are in some way related to the whole; that is, the
Leptokurtosis The condition of a probability density curve that has fatter tails and aindividual components are "self-similar." An example is the branching network in a
higher peak at the mean than at the normal distribution.tree. Each branch and each successive smaller branching is different, but all are quali-tatively similar to the structure of the whole tree.
Limit cycle An attractor (for nonlinear dynamical systems) that has periodic cycles or
orbits in phase space. An example is an undamped pendulum, which will have a closed-Fractal dimension A number that quantitatively describes how an object fills its
circle orbit equal to the amplitude of the pendulum's swing. See Attractor, Phase space.space. In Euclidean (plane) geometry, objects are solid and continuous—they have noholes or gaps. As such, they have integer dimensions. Fractals are rough and often dis- Lyapunov exponent A measure of the dynamics of an attractor. Each dimension hascontinuous, like a wiffle ball, and so have fractional, or fractal dimensions, a Lyapunov exponent. A positive exponent measures sensitive dependence on initial
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condjt ions, or how much a forecast can diverge, based on different estimates of startingconditions. In another view, a Lyapunov exponent is the loss of predictive ability as onelooks forward in time. Strange attractors are characterized by at least one positive expo-nent. A negative exponent measures how points converge toward one another. Point at-
tractors are characterized by all negative variables. See Attractor, Limit cycle, Pointattractor, and Strange attractor.

Markovjan dependence A condition in which observations in a time series are de-pendent on previous observations in the near term. Markovian dependence dies quickly;
long-memory effects such as Hurst dependence decay over very long time periods.
Measurement noise See Observational noise.
Modern Portfolio Theory (MPT) The blanket name for the quantitative analysisof portfolios of risky assets based on expected return (or mean expected value) andthe risk (or standard deviation) of a portfolio of securities. According to MPT, in-vestors would require a portfolio with the highest expected return for a given levelof risk.

Moving average (MA) process A stationary stochastic process in which the ob-served time series is the result of the moving average of an unobserved random timeseries. An MA(q) process is a q period moving average.
Noah effect The tendency of persistent time series (0.50< H 1.00) to have abruptand discontinuous changes. The normal distribution assumes continuous changes in asystem. However, a time series that exhibits Hurst statistics may abruptly change levels,skipping values either up or down. Mandeibrot coined the term "Noah effect" to repre-sent a parallel to the biblical story of the Deluge. See Antipersistence, Hurst exponent,Joseph effect, and Persistence,
Noisy chaos A chaotic dynamical system with either observational or system noiseadded. See Chaos, Dynamical system, and Observational noise.
Normal distribution The well-known bell-shaped curve. According to the CentralLimit Theorem, the probability density function of a large number of independent,identically distributed random numbers will approach the normal distribution. In thefractal family of distributions, the normal distribution exists Only when alpha equals 2or the Hurst exponent equals 0.50. Thus, the normal distribution is a special casewhich, in time series analysis, is quite rare. See Alpha, Central Limit Theorem, Fractaldistribut ion.

Observational noise An error, caused by imprecision in measurement, between thetrue value in a system and its observed value. Also called measurement noise. See Dy-namical noise,
1/f noise See Antipersistence
Pareto (Pareto_Levy) distributions See Fractal distribution.
Persistence In resealed range (RIS) analysis, a tendency of a series to follow trends. If
the system has increased in the previous period, the chances are that it will continue toincrease in the next period. Persistent time series have a long "memory"; long-term cor-relation exists between current events and future events. Also called black noise.

Glossary 311

See Antipersistence, Hurst exponent, Joseph effect, Noah effect, and Rescaled range (R/S)
analysis.
Phase space A graph that allows all possible states of a system. In phase space, the
value of a variable is plotted against possible values of the other variables at the same
time. If a system has three descriptive variables, the phase space is plotted in three di-
mensions, with each variable taking one dimension.
Pink noise See Antipersistence.

Point attractor In nonlinear dynamics, an attractor where all orbits in phase space are
drawn to one point or value. Essentially, any system that tends to a stable, single-valued
equilibrium will have a point attractor. A pendulum damped by friction will always stop.
Its phase space will always be drawn to the point where velocity and position are equal to
zero. See Attractor, Phase space.
Random walk Brownian motion, where the previous change in the value of a variable
is unrelated to future or past changes.
Resealed range (RIS) analysis The method developed by H. E. Hurst to determine
long-memory effects and fractional brownian motion. A measurement of how the dis-
tance covered by a particle increases over longer and longer time scales. For brownian
motion, the distance covered increases with the square root of time. A series that in-
creases at a different rate is not random. See Antipersistence, Fractional brown ian mo-
tion, Hurst exponent, Joseph effect, Noah effect, and Persistence.

Risk In Modern Portfolio Theory (MPT), an expression of the standard deviation of
security returns.
Scaling Changes in the characteristics of an object that are related to changes in the
size of the measuring device being applied. For a three-dimensional object, an increase in
the radius of a covering sphere would affect the volume of an object covered. In a time
series, an increase in the increment of time could change the amplitude of the time series.

Self-similar A descriptive of small parts of an object that are qualitatively the same
as, or similar to, the whole object. In certain deterministic fractals, such as the Sierpin-
ski triangle, small pieces look the same as the entire object. In random fractals, small
increments of time will be statistically similar to larger increments of time. See Fractal.
Single Index Model An estimation of portfolio risk by measuring the sensitivity of a
portfolio of securities to changes in a market index. The measure of sensitivity is called
the "beta" of the security or portfolio. Related, but not identical, to the Capital Asset
Pricing Model (CAPM).
Stable Paretian, or fractal hypothesis A theory stating that, in the characteristic
function of the fractal family of distributions, the characteristic exponent alpha can
range between 1 and 2. See Alpha, Fractal distribution, Gaussian.
Strange attractor An attractor in phase space, where the points never repeat them-
selves and the orbits never intersect, but both the points and the orbits stay within the
same region of phase space. Unlike limit cycles or point attractors, strange attractors
are nonperiodic and generally have a fractal dimension. They are a configuration of a
nonlinear chaotic system. See Attractor, Chaos, Limit cycle, Point attractor.
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System noise See Dynamical noise.

Glossary

f

Technical information Information related to the momentum of a particular vari-
able. En market analysis, technical information is information related only to market
dynamics and crowd behavior.
Term structure The value of a variable at different time increments. The term struc-
ture of interest rates is the yield-to-maturity for different fixed-income securities at
different maturity times. The volatility term structure is the standard deviation of re-
turns of varying time horizons.
V statistic The ratio of (R/S). to the square root of a time index, n.
Volatility The standard deviation of security price changes.
White noise The audio equivalent of brownian motion; sounds that are unrelated and
sound like a hiss. The video equivalent of white noise is "snow" in television reception.
See Brownian motion.
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