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Theory of rational option pricing 
Robert C. Merton 
Assistant Professor of Finance 
Sloan School of Management 
Massachusetts Institute of Technology 

The long history of the theory of option pricing began in 1900 when the 
French mathematician Louis Bachelier deduced an option pricing 
formula based on the assumption that stock prices follow a Brownian 
motion with zero drift. Since that time, numerous researchers have 
contributed to the theory. The present paper begins by deducing a set of 
r estrictions on option pricing formulas from the assumption that in- 
vestors prefer more to less. These restrictions are necessary conditions 
for a formula to be consistent with a rational pricing theory. Attention 
is given to the problems created when dividends are paid on the under- 
lying common stock and when the terms of the option contract can be 
changed explicitly by a change in exercise price or implicitly by a shift 
in the investment or capital structure policy of the firm. Since the de- 
duced restrictions are not sufficient to uniquely determine an option 
pricing formula, additional assumptions are introduced to examine and 
extend the seminal Black-Scholes theory of option pricing. Explicit 
formulas for pricing both call and put options as well as.for warrants 
and the new "down-and-out" option are derived. The effects of dividends 
and call provisions on the warrant price are examined. The possibilities 
for further extension of the theory to the pricing of corporate liabilities 
are discussed. 

1. Introduction * The theory of warrant and option pricing has been studied ex- 
tensively in both the academic and trade literature.1 The approaches 
taken range from sophisticated general equilibrium models to ad hoc 
statistical fits. Because options are specialized and relatively unim- 
portant financial securities, the amount of time and space devoted 
to the development of a pricing theory might be questioned. One 
justification is that, since the option is a particularly simple type of 
contingent-claim asset, a theory of option pricing may lead to a 
general theory of contingent-claims pricing. Some have argued that 
all such securities can be expressed as combinations of basic option 
contracts, and, as such, a theory of option pricing constitutes a 
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theory of contingent-claims pricing.2 Hence, the development of an 
option pricing theory is, at least, an intermediate step toward a 
unified theory to answer questions about the pricing of a firm's 
liabilities, the term and risk structure of interest rates, and the 
theory of speculative markets. Further, there exist large quantities 
of data for testing the option pricing theory. 

The first part of the paper concentrates on laying the foundations 
for a rational theory of option pricing. It is an attempt to derive 
theorems about the properties of option prices based on assumptions 
sufficiently weak to gain universal support. To the extent it is suc- 
cessful, the resulting theorems become necessary conditions to be 
satisfied by any rational option pricing theory. 

As one might expect, assumptions weak enough to be accepted 
by all are not sufficient to determine uniquely a rational theory of 
option pricing. To do so, more structure must be added to the prob- 
lem through additional assumptions at the expense of losing some 
agreement. The Black and Scholes (henceforth, referred to as B-S) 
formulation3 is a significant "break-through" in attacking the 
option problem. The second part of the paper examines their model 
in detail. An alternative derivation of their formula shows that it is 
valid under weaker assumptions than they postulate. Several ex- 
tensions to their theory are derived. 

2. Restrictions on 
rational option pricing4 

* An "American"-type warrant is a security, issued by a company, 
giving its owner the right to purchase a share of stock at a given 
("exercise") price on or before a given date. An "American"-type 
call option has the same terms as the warrant except that it is issued 
by an individual instead of a company. An "American"-type put 
option gives its owner the right to sell a share of stock at a given 
exercise price on or before a given date. A "European"-type option 
has the same terms as its "American" counterpart except that 
it cannot be surrendered ("exercised") before the last date of the 
contract. Samuelson' has demonstrated that the two types of con- 
tracts may not have the same value. All the contracts may differ with 
respect to other provisions such as antidilution clauses, exercise 
price changes, etc. Other option contracts such as strips, straps, and 
straddles, are combinations of put and call options. 

The principal difference between valuing the call option and the 
warrant is that the aggregate supply of call options is zero, while 
the aggregate supply of warrants is generally positive. The "bucket 
shop" or "incipient" assumption of zero aggregate supply6 is useful 

2 See Black and Scholes [4] and Merton [29]. 
3 In [4]. 
4 This section is based on Merton [34] cited in Samuelson and Merton [43], 

p. 43, footnote 6. 
5 In [42]. 
6 See Samuelson and Merton [43], p. 26 for a discussion of "incipient" 

analysis. Essentially, the incipient price is such that a slightly higher price would 
induce a positive supply. In this context, the term "bucket shop" was coined in 
oral conversation by Paul Samuelson and is based on the (now illegal) 1920's 
practice of side-bets on the stock market. 

Myron Scholes has pointed out that if a company sells a warrant against stock 
already outstaiding (not just authorized), then the incipient analysis is valid 
as well. (E.g., Amerada Hess selling warrants against shares of Louisiana Land 142 / ROBERT C. MERTON 



because the probability distribution of the stock price return is un- 
affected by the creation of these options, which is not in general the 
case when they are issued by firms in positive amounts.7 The "bucket- 
shop" assumption is made throughout the paper although many of 
the results derived hold independently of this assumption. 

The notation used throughout is: F(S, r; E) - the value of an 
American warrant with exercise price E and r years before expiration, 
when the price per share of the common stock is S; f(S, r; E) the 
value of its European counterpart; G(S, r; E) - the value of an 
American put option; and g(S, r; E) - the value of its European 
counterpart. 

From the definition of a warrant and limited liability, we have 
that 

F(S, r; E) > O; f(S, T; E) _ O (1 

and when r = 0, at expiration, both contracts must satisfy 

F(S, 0; E) = f(S, 0; E) = Max[0, S - E]. (2) 

Further, it follows from conditions of arbitrage that 

F(S, r; E) > Max[O, S - E]. (3) 

In general, a relation like (3) need not hold for a European warrant. 

Definition: Security (portfolio) A is dominant over security 
(portfolio) B, if on some known date in the future, the return on 
A will exceed the return on B for some possible states of the world, 
and will be at least as large as on B, in all possible states of the world. 

Note that in perfect markets with no transactions costs and the 
ability to borrow and short-sell without restriction, the existence of a 
dominated security would be equivalent to the existence of an 
arbitrage situation. However, it is possible to have dominated 
securities exist without arbitrage in imperfect markets. If one assumes 
something like "symmetric market rationality" and assumes further 
that investors prefer more wealth to less,8 then any investor willing 
to purchase security B would prefer to purchase A. 

Assumption 1: A necessary condition for a rational option pricing 
theory is that the option be priced such that it is neither a dominant 
nor a dominated security. 

Given two American warrants on the same stock and with the 
same exercise price, it follows from Assumption 1, that 

F(S, ri; E) _ F(S, T2; E) if rl > T2, (4) 
and that 

F(S, r; E) _ f(S, r; E). (5) 

Further, two warrants, identical in every way except that one has a 
larger exercise price than the other, must satisfy 

F(S, r; E1) < F(S, r; E2) (6) 
f(S, -r; E1) < f(S, r; E2) if E1 > E2. 

and Exploration stock it owns and City Investing selling warrants against shares 
of General Development Corporation stock it owns.) 

I See Merton [29], Section 2. 
8 See Modigliani and Miller [35], p. 427, for a definition of "symmetric market 

rationality." 
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Because the common stock is equivalent to a perpetual (r = cc ) 
American warrant with a zero exercise price (E = 0), it follows from 
(4) and (6) that 

S > F(S, r; E), (7) 

and from (1 ) and (7), the warrant must be worthless if the stock is, 
i.e., 

F(O, r; E) = f(O, r; E) = 0. (8) 

Let P(r) be the price of a riskless (in terms of default), discounted 
loan (or "bond") which pays one dollar, r years from now. If it is 
assumed that current and future interest rates are positive, then 

1 = P(O) > P(rT) > PT2)> ... > P(Tn) 
for O< r1< r2< < rTn, (9) 

at a given point in calendar time. 

Theorem 1. If the exercise price of a European warrant is E and 
if no payouts (e.g. dividends) are made to the common stock over 
the life of the warrant (or alternatively, if the warrant is protected 
against such payments), thenf(S, r; E) > Max[O, S - EP(r)]. 

Proof: Consider the following two investments: 

A. Purchase the warrant forf(S, r; E); 
Purchase E bonds at price P(r) per bond. 

Total investment:f(S, r; E) + EP(r). 
B. Purchase the common stock for S. 

Total investment: S. 

Suppose at the end of r years, the common stock has value S*. Then, 
the value of B will be S*. If S* < E, then the warrant is worthless and 
the value of A will be 0 + E = E. If S* > E, then the value of A will 
be (S* - E) + E = S*. Therefore, unless the current value of A is at 
least as large as B, A will dominate B. Hence, by Assumption 1, 
f(S, r; E) + EP(r) _ S, which together with (1), implies that 
f(S, r; E) ? Max[O, S - EP(G)]. Q.E.D. 

From (5), it follows directly that Theorem 1 holds for American 
warrants with a fixed exercise price over the life of the contract. The 
right to exercise an option prior to the expiration date always has 
nonnegative value. It is important to know when this right has zero 
value, since in that case, the values of an European and American 
option are the same. In practice, almost all options are of the Ameri- 
can type while it is always easier to solve analytically for the value of 
an European option. Theorem 1 significantly tightens the bounds for 
rational warrant prices over (3). In addition, it leads to the following 
two theorems. 

Theorem 2. If the hypothesized conditions for Theorem 1 hold, an 
American warrant will never be exercised prior to expiration, and 
hence, it has the same value as a European warrant. 

Proof: If the warrant is exercised, its value will be Max[O, S - E]. 
But from Theorem 1, F(S, r; E) _ Max[O, S - EP(r)], which is 
larger than Max[O, S - E] for r > 0 because, from (9), P(r) < 1. 
Hence, the warrant is always worth more "alive" than "dead." 
Q.E.D. 144 / ROBERT C. MERTON 



Theorem 2 suggests that if there is a difference between the 
American and European warrant prices which implies a positive 
probability of a premature exercise, it must be due to unfavorable 
changes in the exercise price or to lack of protection against payouts 
to the common stocks. This result is consistent with the findings of 
Samuelson and Merton.9 

It is a common practice to refer to Max[O, S - E] as the intrinsic 
value of the warrant and to state that the warrant must always sell 
for at least its intrinsic value [condition (3)]. In light of Theorems 
I and 2, it makes more sense to define Max[O, S - EP(T)] as the 
intrinsic value. The latter definition reflects the fact that the amount 
of the exercise price need not be paid until the expiration date, and 
EP(T) is just the present value of that payment. The difference be- 
tween the two values can be large, particularly for long-lived war- 
rants, as the following theorem demonstrates. 

Theorem 3. If the hypothesized conditions for Theorem 1 hold, 
the value of a perpetual (T- cc ) warrant must equal the value of the 
common stock. 

Proof: From Theorem 1, F(S, cc; E) > Max[O, S - EP( cc )]. But, 
P( Oc ) = 0, since, for positive interest rates, the value of a discounted 
loan payable at infinity is zero. Therefore, F(S, oo; E) > S. But from 
(7), S > F(S, cc; E). Hence, F(S, so; E) = S. Q.E.D. 

Samuelson, Samuelson and Merton, and Black and Scholes10 
have shown that the price of a perpetual warrant equals the price of 
the common stock for their particular models. Theorem 3 demon- 
strates that it holds independent of any stock price distribution or 
risk-averse behavioral assumptions. II 

The inequality of Theorem 1 demonstrates that a finite-lived, 
rationally-determined warrant price must be a function of P(T-). For 
if it were not, then, for some sufficiently small P(T) (i.e., large interest 
rate), the inequality of Theorem 1 would be violated. From the form 
of the inequality and previous discussion, this direct dependence on 
the interest rate seems to be "induced" by using as a variable, the 
exercise price instead of the present value of the exercise price (i.e., 
I conjecture that the pricing function, F[S, T; E, P(Tr)], can be written 
as W(S, T; e), where e = EP(r).12 If this is so, then the qualitative 
effect of a change in P on the warrant price would be similar to a 
change in the exercise price, which, from (6), is negative. Therefore, 
the warrant price should be an increasing function of the interest 
rate. This finding is consistent with the theoretical models of Samuel- 

I In [43], p. 29 and Appendix 2. 
10 In [42], [43], and [4], respectively. 
"1 It is a bit of a paradox that a perpetual warrant with a positive exercise price 

should sell for the same price as the common stock (a "perpetual warrant" with a 
zero exercise price), and, in fact, the few such outstanding warrants do not sell 
for this price. However, it must be remembered that one assumption for the 
theorem to obtain is that no payouts to the common stock will be made over the 
life of the contract which is almost never true in practice. See Samuelson and 
Merton [43], pp. 30-31, for further discussion of the paradox. 

12 The only case where the warrant price does not depend on the exercise price 
is the perpetuity, and the only case where the warrant price does not depend on 
P(Tr) is when the exercise price is zero. Note that in both cases, e = 0, (the former 
because P( oo) = 0, and the latter because E = 0), which is consistent with our 
conjecture. 
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son and Merton and Black and Scholes and with the empirical study 
by Van Horne."3 

Another argument for the reasonableness of this result comes 
from recognizing that a European warrant is equivalent to a long 
position in the common stock levered by a limited-liability, discount 
loan, where the borrower promises to pay E dollars at the end of r 
periods, but in the event of default, is only liable to the extent of the 
value of the common stock at that time."4 If the present value of such 
a loan is a decreasing function of the interest rate, then, for a given 
stock price, the warrant price will be an increasing function of the 
interest rate. 

We now establish two theorems about the effect of a change in 
exercise price on the price of the warrant. 

Thleoremn 4. If F(S, T; E) is a rationally determined warrant price, 
then F is a convex function of its exercise price, E. 

Proof: To prove convexity, we must show that if 

?3 -E XE H- (1 -)E2, 

then for everyX, O < X < 1, 

F(S, T; E3) < XF(S, T; E?) + (1 - X)F(S, T; E2). 

We do so by a dominance argument similar to the proof of Theorem 
1. Let portfolio A contain X warrants with exercise price E1 and 
(1 - X) warrants with exercise price E? where by convention, 
E2 > E1. Let portfolio B contain one warrant with exercise price 
?3. If S- is the stock price on the date of expiration, then by the con- 
vexity of Max[O, S* - E], the value of portfolio A, 

N Max[O, S* - El] + (1 - N) Max[O, S* - E2], 

will be greater than or equal to the value of portfolio B, 

Max[O, S* - NE - (1 - )E2 ]. 

Hence, to avoid dominance, the current valtue of portfolio B must be 
less than or equal to the current value of portfolio A. Thus, the 
theorem is proved for a European warrant. Since nowhere in the 
argument is any factor involving T used, the same results would ob- 
tain if the warrants in the two portfolios were exercised prematurely. 
Hence, the theorem holds for American warrants. Q.E.D. 

Theorem 5. If f(S, T; E) is a rationally determined European 
warrant price, then for El < E2, -P(T)(E2 -El) ? f(S, T; E2) 

-f(S, T; E?) < 0. Further, if f is a differentiable function of its ex- 
ercise price, -P(r) < Of (S, T; E)/OE < 0. 

Proof: The right-hand inequality follows directly from (6). The 
left-hand inequality follows from a dominance argument. Let 
portfolio A contain a warrant to purchase the stock at E, and 
(E2- El) bonds at price P(T) per bond. Let portfolio B contain a 
warrant to purchase the stock at El. If S* is the stock price on the 

13 In [43], [4], and [54], respectively. 
14 Stiglitz [51], p. 788, introduces this same type loan as a sufficient condition 

for the Modigliani-Miller Theorem-i to obtain wheni there is a positive probability 
of bankruptcy. 146 / ROBERT C. MERTON 



date of expiration, then the terminal value of portfolio A, 

Max[0, S* - E2] + (E2-El), 

will be greater than the terminal value of portfolio B, Max[0, S-- ?E], 
when S* < E2, and equal to it when S* > E2. So, to avoid domi- 
nance, f(S, r; El) < f(S, T; E2) + P(7)(E2- El). The inequality on 
the derivative follows by dividing the discrete-change inequalities by 
(E2- El) and taking the limit as E2 tends to El. Q.E.D. 

If the hypothesized conditions for Theorem 1 hold, then the in- 
equalities of Theorem 5 hold for American warrants. Otherwise, we 
only have the weaker inequalities, -(E2- E) < F(S, T; E2) 

-F(S, r; El) < 0 and -1 < aF(S,r; E)/E < 0. 
Let Q(t) be the price per share on a common stock at time t and 

FQ(Q, r; EQ) be the price of a warrant to purchase one share of stock 
at price EQ on or before a given date r years in the future, when the 
current price of the common stock is Q. 

Theorem 6. If k is a positive constant; Q(t) = kS(t); EQ =kE, 
then FQ(Q, r; EQ) =_ kF(S, T; E) for all S, r; Eand each k. 

Proof: Let S* be the value of the common stock with initial value S 
when both warrants either are exercised or expire. Then, by the 
hypothesized conditions of the theorem, Q = kS* and 
EQ = kE. The value of the warrant on Q will be Max[0, Q* -EQ] 
= k Max[0, S* - E] which is k times the value of the warrant on S. 
Hence, to avoid dominance of one over the other, the value of the 
warrant on Q must sell for exactly k times the value of the warrant on 
S. Q.E.D. 

The implications of Theorem 6 for restrictions on rational war- 
rant pricing depend on what assumptions are required to produce the 
hypothesized conditions of the theorem. In its weakest form, it is a 
dimensional theorem where k is the proportionality factor between 
two units of account (e.g., k = 100 cents/dollar). If the stock and 
warrant markets are purely competitive, then it can be interpreted as 
a scale theorem. Namely, if there are no economies of scale with re- 
spect to transactions costs and no problems with indivisibilities, then 
k shares of stock will always sell for exactly k times the value of one 
share of stock. Under these conditions, the theorem states that a 
warrant to buy k shares of stock for a total of (kE) dollars when the 
stock price per share is S dollars, is equal in value to k times the price 
of a warrant to buy one share of the stock for E dollars, all other 
terms the same. Thus, the rational warrant pricing function is homo- 
geneous of degree one in S and E with respect to scale, which reflects 
the usual constant returns to scale results of competition. 

Hence, one can always work in standardized units of E = 1 
where the stock price and warrant price are quoted in units of exercise 
price by choosing k = 1jE. Not only does this change of units 
eliminate a variable from the problem, but it is also a useful opera- 
tion to perform prior to making empirical comparisons across dif- 
ferent warrants where the dollar amounts may be of considerably 
different magnitudes. 

Let Fi(Si, ri; Ei) be the value of a warrant on the common stock 
of firm i with current price per share Si when ri is the time to expira- 
tion and Es is the exercise price. 

RATIONAL OPTION 
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Assumption 2. If Si = Sj = S; Ti= Tj = T; Ei = Ej= E, and 
the returns per dollar on the stocks i andj are identically distributed, 
then F,(S, T; E) = Fj(S, r; E). 

Assumption 2 implies that, from the point of view of the warrant 
holder, the only identifying feature of the common stock is its 
(ex ante) distribution of returns. 

Define z(t) to be the one-period random variable return per dollar 

invested in the common stock in period t. Let Z()-- r z(t) be the 
t=l 

T-period return per dollar. 

Theorem 7. If Si = S = S, i, j = 1, 2,. . ; 

Z?1+1(T) - L XiZi(T) 

for Xi 4[0, 1] and Xi = 1, then 

F?1+1(S, T; E) < LX1iFi(S, T; E). 

Proof: By construction, one share of the (n + 1 )st security contains 
Xi shares of the common stock of firm i, and by hypothesis, the price 
per share, Sl+l = ZnXiSi = SEnXi = S. The proof follows from 
a dominance argument. Let portfolio A contain Xi warrants on the 
common stock of firm i, i = 1, 2,. . . , n. Let portfolio B contain one 
warrant on the (n + 1 )st security. Let Si* denote the price per share 
on the common stock of the ith firm, on the date of expiration, i = 1, 
2, . . ., n. By definition, S,,+," = L" X2Sj*. On the expiration date, 
the value of portfolio A, 

En X Max[O, Si, - El, is greater than or 
equal to the value of portfolio B, Max[O, EL XiS.i - E], by the 
convexity of Max[O, S - E]. Hence, to avoid dominance, 

F.+l(S, T; E) < ,X iFj(S9 T; E). Q.E.D. 

Loosely, Theorem 7 states that a warrant on a portfolio is less 
valuable than a portfolio of warrants. Thus, from the point of view 
of warrant value, diversification "hurts," as the following special 
case of Theorem 7 demonstrates: 

Corollary. If the hypothesized conditions of Theorem 7 hold and 
if, in addition, the zi(t) are identically distributed, then 

F,,+,(S, T; E) :5 Fi(S, T; E) 

for i = 1, 2, . . . , n. 

Proof: From Theorem 7, Fn+l(S, T; E) n 
Z XiFi(S, T; E). By hy- 

pothesis, the zi(t) are identically distributed, and hence, so are the 

Zi(T). Therefore, by Assumption 2, Fi(S, T; E) = Fj(S, r; E) for i, 
j = 1, 2, . . . n. Since ,1 = 1, it then follows that F,,+1(S, r; E) 
< Fi(S, T; E), i = 1, 2, . . . n. Q.E.D. 

Theorem 7 and its Corollary suggest the more general proposition 
that the more risky the common stock, the more valuable the war- 
rant. In order to prove the proposition, one must establish a careful 
definition of "riskiness" or "volatility." 

Definition: Security one is more r4isky than security two if Z1&-) 
= Z2T) + e where e is a random variable with the property 

E[ IZ2(&)] = 0. 148 / ROBERT C. MERTON 



This definition of more risky is essentially one of the three 
(equivalent) definitions used by Rothschild and Stiglitz."5 

Theorem 8. The rationally determined warrant price is a non- 
decreasing function of the riskiness of its associated common stock. 

Proof: Let Z(r) be the r-period return on a common stock with 
warrant price, Fz(S, 7; E). Let Zj(r) = Z(r) + et, i = 1, . . n, 
where the e? are independently and identically distributed random 
variables satisfying E[EciZ(r)] = 0. By definition, security i is more 
risky than security Z, for i = 1, ., n. Define the random variable 

1 1 
return Z?+1(r) -=- El, Z,(7) = Z(7) + - Er I . Note that, by con- 

n n 
struction, the Z(r) are identically distributed. Hence, by the Corol- 
lary to Theorem 7 with Xi = l/n, Fn+1(S, r; E) < F,(S, r; E) for 
i = 1, 2, . . ., n. By the law of large numbers, Zn+?(r) converges in 
probability to Z(r) as n -->c, and hence, by Assumption 2, limit 

12 -4 00 

F.+1(S, r; E) = Fz(S, r; E). Therefore, Fz(S, r; E) < F%(S, r; E) 
for i = 1, 2, . . ., n. Q.E.D. 

Thus, the more uncertain one is about the outcomes on the com- 
mon stock, the more valuable is the warrant. This finding is consistent 
with the empirical study by Van Horne. 16 

To this point in the paper, no assumptions have been made about 
the properties of the distribution of returns on the common stock. 
If it is assumed that the {z(t)} are independently distributed,17 then 
the distribution of the returns per dollar invested in the stock is in- 
dependent of the initial level of the stock price, and we have the 
following theorem: 

Theorem 9. If the distribution of the returns per dollar invested in 
the common stock is independent of the level of the stock price, then 
F(S, r; E) is homogeneous of degree one in the stock price per share 
and exercise price. 

Proof: Let zi(t) be the return per dollar if the initial stock price is 
Si, i = 1, 2. Define k = (S2/S1) and E2 = kEl. Then, by Theorem 6, 
F2(S2, r; E2) - kF2(Sl, r; E). By hypothesis, z1(t) and z2W) are 
identically distributed. Hence, by Assumption 2, F2(S1, r; E) 
= F1(Sl, r; E1). Therefore, F2(kS,, r; kE) =- kFl(Sl, r; E1) and the 
theorem is proved. Q.E.D. 

Although similar in a formal sense, Theorem 9 is considerably 
stronger than Theorem 6, in terms of restrictions on the warrant 
pricing function. Namely, given the hypothesized conditions of 
Theorem 9, one would expect to find in a table of rational warrant 
values for a given maturity, that the value of a warrant with exercise 
price E when the common stock is at S will be exactly k times as 

15 The two other equivalent definitions are: (1) every risk averter prefers X to 
Y (i.e., EU(X) > EU(Y), for all concave U); (2) Y has more weight in the tails 
than X. In addition, they show that if Y has greater variance than X, then it need 
not be more risky in the sense of the other three definitions. It should also be 
noted that it is the total risk, and not the systematic or portfolio risk, of the com- 
mon stock which is important to warrant pricing. In [ 39 ], p. 225. 

16 In [54]. 
17 Cf. Samuelson [42]. 
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valuable as a warrant on the same stock with exercise price E/k 
when the common stock is selling for S/k. In general, this result will 
not obtain if the distribution of returns depends on the level of the 
stock price as is shown by a counter example in Appendix 1. 

Theorem 10. If the distribution of the returns per dollar invested 
in the common stock is independent of the level of the stock price, 
then F(S, -r; E) is a convex function of the stock price. 

Proof: To prove convexity, we must show that if 

S3 XS1 + ( -)S2, 

then, for every X, 0 < X < 1, 

F(S3, r; E) < XF(S1, r; E) + (1 - X)F(S2, r; E). 

From Theorem 4, 

F(1, 7-; E3) < TyF(I, r; E1) + (1 - y)F(1, 7-; E2), 

for O < y < I and E3 = yEl + (1--y)E2. Take 'y XS1/S3, 
E1 -E/S1, and E2-- ES2. Multiplying both sides of the inequality 
by S3, we have that 

S3F(1, r; E3) < XS1F(1, r; E1) + (1 - X)S2F(1, -r; E2). 

From Theorem 9, F is homogeneous of degree one in S and E. Hence, 

F(S3, r; S3E3) < XF(S1, 7-; S1E1) + (1 - X)F(S2, T; S2E2). 

By the definition of E1, E2, and E3, this inequality can be rewritten as 
F(S3, -r; E) < XF(S1, -r; E) + (1 - X)F(S2, r; E). Q.E.D. 

Although convexity is usually assumed to be a property which 
always holds for warrants, and while the hypothesized conditions of 
Theorem 10 are by no means necessary, Appendix 1 provides an 
example where the distribution of future returns on the common 
stock is sufficiently dependent on the level of the stock price, to cause 
perverse local concavity. 

Based on the analysis so far, Figure 1 illustrates the general shape 
that the rational warrant price should satisfy as a function of the 
stock price and time. 

FIGURE 1 
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3. Effects of dividends 
and changing 
exercise price 

* A number of the theorems of the previous section depend upon 
the assumption that either no payouts are made to the common stock 
over the life of the contract or that the contract is protected against 
such payments. In this section, the adjustments required in the con- 
tracts to protect them against payouts are derived, and the effects of 
payouts on the valuation of unprotected contracts are investigated. 
The two most common types of payouts are stock dividends (splits) 
and cash dividends. 

In general, the value of an option will be affected by unanticipated 
changes in the firm's investment policy, capital structure (e.g., debt- 
equity ratio), and payout policy. For example, if the firm should 
change its investment policy so as to lower the riskiness of its cash 
flow (and hence, the riskiness of outcomes on the common stock), 
then, by Theorem 8, the value of the warrant would decline for a given 
level of the stock price. Similarly, if the firm changed its capital 
structure by raising the debt-equity ratio, then the riskiness of the 
common stock would increase, and the warrant would become more 
valuable. If that part of the total return received by shareholders in 
the form of dividends is increased by a change in payout policy, then 
the value of an unprotected warrant would decline since the warrant- 
holder has no claim on the dividends.18 

While it is difficult to provide a set of adjustments to the warrant 
contract to protect it against changes in investment or capital struc- 
ture policies without severely restricting the management of the firm, 
there do exist a set of adjustments to protect the warrant holders 
against payouts. 

Definition: An option is said to be payout protected if, for a fixed 
investment policy and fixed capital structure, the value of the option 
is invariant to the choice of payout policy. 

Theorem 11. If the total return per dollar invested in the common 
stock is invariant to the fraction of the return represented by payouts 
and if, on each expayout date during the life of a warrant, the con- 
tract is adjusted so that the number of shares which can be purchased 
for a total of E dollars is increased by (djSx) percent where d is the 
dollar amount of the payout and Sx is the expayout price per share 
of the stock, then the warrant will be payout protected. 

Proof: Consider two firms with identically distributed total returns 
per dollar invested in the common stock, z,(t), i = 1, 2, and whose 
initial prices per share are the same (S1 = S2 = S). For firm i, let 
Xi(t)(t > 1) be the return per dollar in period t from payouts and 
x,(t) be the return per dollar in period t from capital gains, such that 
z,(t) =_ X(t)xi(t). Let NX(t) be the number of shares of firm i which 
the warrant of firm i has claim on for a total price of E, at time t 
where N1(O) = N2(0) = 1. By definition, Xi(t) - 1 + di(t)/Six(t), 

t 
where Six(t) = II x,(k)S is the expayout price per share at time t. 

k=1 

Therefore, by the hypothesized conditions of the theorem, N,(t) 
= Xi(t)N%(t - 1). On the date when the warrants are either exercised 

18 This is an important point to remember wlhen valuing unprotected warrants 
of companies such as A. T. & T. where a substantial fraction of the total return to 
shareholders comes in the form of dividends. 
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or expire, the value of the warrant on firm i will be 

Max[O, Ni(t)S2x(t) - E]. 
t t t 

But, Ni(t)Six(t)= [ II Xi(t)][ HT x(t)S] = H z(t)S. Since, by 
k=l k=1 k=l 

hypothesis, the z%(t) are identically distributed, the distribution of 
outcomes on the warrants of the two firms will be identical. Therefore, 
by Assumption 2, F1(S, r; E) = F2(S, r; E), independent of the 
particular pattern chosen for the Xi(t). Q.E.D. 

Note that if the hypothesized conditions of Theorem 11 hold, 
then the value of a protected warrant will be equal to the value of a 
warrant which restricts management from making any payouts to the 
common stock over the life of the warrant (i.e., Xi(t) - 1). Hence, 
a protected warrant will satisfy all the theorems of Section 2 which 
depend on the assumption of no payouts over the life of the warrant. 

Corollary. If the total return per dollar invested in the common 
stock is invariant to the fraction of the return represented by payouts; 
if there are no economies of scale; and if, on each expayout date 
during the life of a warrant, each warrant to purchase one share of 
stock for exercise price E, is exchanged for X( - 1 + d/SX) warrants 
to purchase one share of stock for exercise price E/N, then the war- 
rant will be payout protected. 

Proof: By Theorem 11, on the first expayout date, a protected warrant 
will have claim on X shares of stock at a total exercise price of E. By 
hypothesis, there are no economies of scale. Hence, the scale inter- 
pretation of Theorem 6 is valid which implies that the value of a 
warrant on X shares at a total price of E must be identically (in N) 
equal to the value of X warrants to purchase one share at an exercise 
price of E/X. Proceeding inductively, we can show that this equality 
holds on each payout date. Hence, a warrant with the adjustment 
provision of the Corollary will be payout protected. Q.E.D. 

If there are no economies of scale, it is generally agreed that a 
stock split or dividend will not affect the distribution of future per 
dollar returns on the common stock. Hence, the hypothesized adjust- 
ments will protect the warrant holder against stock splits where X is 
the number of postsplit shares per presplit share.'9 

The case for cash dividend protection is more subtle. In the ab- 
sence of taxes and transactions costs, Miller and Modigliani20 have 
shown that for a fixed investment policy and capital structure, divi- 
dend policy does not affect the value of the firm. Under their hy- 
pothesized conditions, it is a necessary result of their analysis that the 
total return per dollar invested in the common stock will be invariant 
to payout policy. Therefore, warrants adjusted according to either 
Theorem 11 or its Corollary, will be payout protected in the same 

19 For any particular function, F(S, T; E), there are many other adjustments 
which could leave value the same. However, the adjustment suggestions of 
Theorem 11 and its Corollary are the only ones which do so for every such func- 
tion. In practice, both adjustments are used to protect warrants against stock 
splits. See Braniff Airways 1986 warrants for an example of the former and 
Leasco 1987 warrants for the latter. X could be less than one in the case of a 
reverse split. 

20 In [35]. 152 / ROBERT C. MERTON 



sense that Miller and Modigliani mean when they say that dividend 
policy "doesn't matter." 

The principal cause for confusion is different definitions of payout 
protected. Black and Scholes2" give an example to illustrate "that 
there may not be any adjustment in the terms of the option that will 
give adequate protection against a large dividend." Suppose that 
the firm liquidates all its assets and pays them out in the form of a 
cash dividend. Clearly, Sx = 0, and hence, the value of the warrant 
must be zero no matter what adjustment is made to the number of 
shares it has claim on or to its exercise price. 

While their argument is correct, it also suggests a much stronger 
definition of payout protection. Namely, since their example in- 
volves changes in investment policy and if there is a positive supply 
of warrants (the nonincipient case), a change in the capital structure, 
in addition to a payout, their definition would seem to require pro- 
tection against all three. 

To illustrate, consider the firm in their example, but where 
management is prohibited against making any payouts to the share- 
holders prior to expiration of the warrant. It seems that such a 
warrant would be called payout protected by any reasonable defini- 
tion. It is further assumed that the firm has only equity outstanding 
(i.e., the incipient case for the warrant) to rule out any capital struc- 
ture effects.22 

Suppose the firm sells all its assets for a fair price (so that the 
share price remains unchanged) and uses the proceeds to buy risk- 
less, Ir-period bonds. As a result of this investment policy change, 
the stock becomes a riskless asset and the warrant price will fall to 
Max[O, S - EP]. Note that if S < EP, the warrant will be worthless 
even though it is payout protected. Now lift the restriction against 
payouts and replace it with the adjustments of the Corollary to 
Theorem 11. Given that the shift in investment policy has taken place, 
suppose the firm makes a payment of -y percent of the value of the 
firm to the shareholders. Then, Sx = (1 - y)S and 

X = 1 + y/(l - y) = 1/(1 - y). 

The value of the warrant after the payout will be 

X Max[O, Sx - EP/X] = Max[O, S - EP], 

which is the same as the value of the warrant when the company was 
restricted from making payouts. In the B-S example, -y = 1 and so, 
X = co and E/X = 0. Hence, there is the indeterminancy of multiply- 
ing zero by infinity. However, for every -y < 1, the analysis is correct, 
and therefore, it is reasonable to suspect that it holds in the limit. 

A similar analysis in the nonincipient case would show that both 
investment policy and the capital structure were changed. For in this 
case, the firm would have to purchase -y percent of the warrants out- 
standing to keep the capital structure unchanged without issuing new 
stock. In the B-S example where y = 1, this would require purchasing 

21 In [4]. 
22 The incipient case is a particularly important example since in practice, the 

only contracts that are adjusted for cash payouts are options. The incipient as- 
sumption also rules out "capital structure induced" changes in investment policy 
by malevolent management. For an example, see Stiglitz [50]. 
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the entire issue, after which the analysis reduces to the incipient case. 
The B-S emphasis on protection against a "large" dividend is further 
evidence that they really have in mind protection against investment 
policy and capital structure shifts as well, since large payouts are 
more likely to be associated with nontrivial changes in either or both. 

It should be noted that calls and puts that satisfy the incipient 
assumption have in practice been the only options issued with cash 
dividend protection clauses, and the typical adjustment has been to 
reduce the exercise price by the amount of the cash dividend which 
has been demonstrated to be incorrect.23 

To this point it has been assumed that the exercise price remains 
constant over the life of the contract (except for the before-mentioned 
adjustments for payouts). A variable exercise price is meaningless for 
an European warrant since the contract is not exercisable prior to 
expiration. However, a number of American warrants do have vari- 
able exercise prices as a function of the length of time until expiration. 
Typically, the exercise price increases as time approaches the expira- 
tion date. 

Consider the case where there are n changes of the exercise price 
during the life of an American w-arrant, represented by the following 
schedule: 

Exercise Price Time until Expiration (7-) 

Eo O-< 7- < 'T1 

El 7-1 < 7- < 7-2 

En T n < -r 
where it is assumed that Ej+i < Ej for j = 0, 1, . . ., n- 1. If, 
otherwise the conditions for Theorems 1-1I1 hold, it is easy to show 
that, if premature exercising takes place, it will occur only at points 
in time just prior to an exercise price change, i.e., at r = rj+, 
j = 1, 2, . . ., n. Hence, the American warrant is equivalent to a 
modified European warrant which allows its owner to exercise the 
warrant at discrete times, just prior to an exercise price change. Given 
a technique for finding the price of an European warrant, there is a 
systematic method for valuing a modified European warrant. Namely, 
solve the standard problem for FO(S, r; Eo) subject to the boundary 
conditions Fo(S, 0: Eo) = Max[0, S - Eo] and r _ ri. Then, by the 
same technique, solve for F1(S, r; E1) subject to the boundary condi- 
tions F1(S, ri; E1) = Max[0, S - E1, Fo(S, r; E0)] and -ri < r < T2. 

Proceed inductively by this dynamic-programming-like technique, 
until the current value of the modified European warrant is deter- 
mined. Typically, the number of exercise price changes is small, so 
the technique is computationally feasible. 

Often the contract conditions are such that the warrant will 
never be prematurely exercised, in which case, the correct valuation 
will be the standard European warrant treatment using the exercise 

23 By Taylor series approximation, we can compute the loss to the warrant 
holder of the standard adjustment for dividends: namely, F(S - d, T; E - d) 
- F(S, r; E) = - dFs(S, T; E) - dFE(S, T; E) + o(d) = - [F(S, T; E) 
- (S - E)Fs(S, T; E)](d/E) + o(d), by the first-degree homogeneity of F in 
(S, E). Hence, to a first approximation, for S = E, the warrant will lose (d/S) 
percent of its value by this adjustment. Clearly, for S > E, the percentage loss 
will be smaller and for S < E, it will be larger. 154 / ROBERT C. MERTON 



price at expiration, Eo. If it can be demonstrated that 

Fj(S, ij+1; Ej) > S -Ej+l 

for all S > 0 andj=0, 1, . .,N- 1, (10) 

then the warrant will always be worth more "alive" than "dead," 
and the no-premature exercising result will obtain. From Theorem 1, 
Fj(S, 1j+i; Ej) _ Max[0, S - P(+l -j)Ej]. Hence, from (10), a 
sufficient condition for no early exercising is that 

Ej+llEj > P( -j+l rd) (1-1 ) 

The economic reasoning behind (11) is identical to that used to 
derive Theorem 1. If by continuing to hold the warrant and investing 
the dollars which would have been paid for the stock if the warrant 
were exercised, the investor can with certainty earn enough to over- 
come the increased cost of exercising the warrant later, then the war- 
rant should not be exercised. 

Condition (11 ) is not as simple as it may first appear, because in 
valuing the warrant today, one must know for certain that (I 1) will 
be satisfied at some future date, which in general will not be possible 
if interest rates are stochastic. Often, as a practical matter, the size 
of the exercise price change versus the length of time between changes 
is such that for almost any reasonable rate of interest, (11) will be 
satisfied. For example, if the increase in exercise price is 10 percent 
and the length of time before the next exercise price change is five 
years, the yield to maturity on riskless securities would have to be 
less than 2 percent before (11) would not hold. 

As a footnote to the analysis, we have the following Corollary. 

Corollary. If there is a finite number of changes in the exercise 
price of a payout-protected, perpetual warrant, then it will not be 
exercised and its price will equal the common stock price. 

Proof: applying the previous analysis, consider the value of the 
warrant if it survives past the last exercise price change, F0(S, o ; Eo). 
By Theorem 3, FO(S, oo; Eo) = S. Now consider the value just prior 
to the last change in exercise price, F1(S, o ; El). It must satisfy the 
boundary condition, 

F1(S, c; El) = Max[O, S - El, FO(S, c;c o)] 
- Max[O, S - E1, S] = S. 

Proceeding inductively, the warrant will never be exercised, and by 
Theorem 3, its value is equal to the common stock. Q.E.D. 

The analysis of the effect on unprotected warrants when future 
dividends or dividend policy is known,24 follows exactly the analysis 
of a changing exercise price. The arguments that no one will pre- 
maturely exercise his warrant except possibly at the discrete points in 
time just prior to a dividend payment, go through, and hence, the 
modified European warrant approach works where now the boundary 
conditions are Fj(S, rj; E) = Max [0, S - E, Fj11(S - dj, rj; E)] 

24 The distinction is made between knowing future dividends and dividend 
policy. With the former, one knows, currently, the actual amounts of future 
payments while, with the latter, one knows the conditional futLire payments, 
conditional on (currently unknown) future values, such as the stock price. 
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where dj equals the dividend per share paid at rj years prior to ex- 
piration, for j] 1, 2, . . ., n. 

In the special case, where future dividends and rates of interest 
are known with certainty, a sufficient condition for no premature 
exercising is that25 

E > L d(t)P(T - t)/[l - P(T)]. (12) 
t=O 

I.e., the net present value of future dividends is less than the present 
value of earnings from investing E dollars for r periods. If dividends 
are paid continuously at the constant rate of d dollars per unit time 
and if the interest rate, r, is the same over time, then (12) can be 
rewritten in its continuous form as 

d 
E > - . (13) 

r 

Samuelson suggests the use of discrete recursive relationships, 
similar to our modified European warrant analysis, as an approxima- 
tion to the mathematically difficult continuous-time model when there 
is some chance for premature exercising.26 We have shown that the 
only reasons for premature exercising are lack of protection against 
dividends or sufficiently unfavorable exercise price changes. Further, 
such exercising will never take place except at boundary points. Since 
dividends are paid quarterly and exercise price changes are less fre- 
quent, the Samuelson recursive formulation with the discrete-time 
spacing matching the intervals between dividends or exercise price 
changes is actually the correct one, and the continuous solution 
is the approximation, even if warrant and stock prices change 
continuously! 

Based on the relatively weak Assumption 1, we have shown that 
dividends and unfavorable exercise price changes are the only rational 
reasons for premature exercising, and hence, the only reasons for an 
American warrant to sell for a premium over its European counter- 
part. In those cases where early exercising is possible, a computa- 
tionally feasible, general algorithm for modifying a European 
warrant valuation scheme has been derived. A number of theorems 
were proved putting restrictions on the structure of rational European 
warrant pricing theory. 

4. Restrictions on 
rational put option 
pricing 

* The put option, defined at the beginning of Section 2, has received 
relatively little analysis in the literature because it is a less popular 
option than the call and because it is commonly believed27 that, 
given the price of a call option and the common stock, the value of a 
put is uniquely determined. This belief is false for American put 

25The interpretation of (12) is similar to the explanation given for (11). 
Namely, if the losses from dividends are smaller than the gains which can be 
earned risklessly, from investing the extra funds required to exercise the warrant 
and hold the stock, then the warrant is worth more "alive" than "dead." 

26 See [42], pp. 25-26, especially equation (42). Samuelson had in mind small, 
discrete-time intervals, while in the context of the current application, the in- 
tervals would be large. Chen [8] also used this recursive relationship in his 
empirical testing of the Samuelson model. 

27 See, for example, Black and Scholes [4] and Stoll [52]. 156 / ROBERT C. MERTON 



options, and the mathematics of put options pricing is more difficult 
than that of the corresponding call option. 

Using the notation defined in Section 2, we have that, at 
expiration, 

G(S, 0; E) = g(S, 0; E) = Max [O, E-S]. (14) 

To determine the rational European put option price, two port- 
folio positions are examined. Consider taking a long position in the 
common stock at S dollars, a long position in a r-year European put 
at g(S, r; E) dollars, and borrowing [EP'(r)] dollars where P'(r) is 
the current value of a dollar payable i-years from now at the bor- 
rowing rate28 (i.e., P'(r) may not equal P(r) if the borrowing and 
lending rates differ). The value of the portfolio r years from now with 
the stock price at S* will be: S* + (E- S*) - E= 0 if S* < E, 
and S* + 0 - E = S* - E, if S* > E. The pay-off structure is 
identical in every state to a European call option with the same 
exercise price and duration. Hence, to avoid the call option from 
being a dominated security,29 the put and call must be priced so that 

g(S, -; E) + S - EP'(r) > f(S, -; E). (15) 
As was the case in the similar analysis leading to Theorem 1, the 
values of the portfolio prior to expiration were not computed because 
the call option is European and cannot be prematurely exercised. 

Consider taking a long position in a i-year European call, a short 
position in the common stock at price S, and lending EP(i) dollars. 
The value of the portfolio r years from now with the stock price at 
S* will be: 0-S* + E= E- S*, if S* < E, and (S* -E) 
- S* + E = 0, if S* > E. The pay-off structure is identical in every 
state to a European put option with the same exercise price and 
duration. If the put is not to be a dominated security,80 then 

f(S, r; E)-S + EP(r) > g(S, r; E) (16) 
must hold. 

Theorem 12. If Assumption 1 holds and if the borrowing and 
lending rates are equal [i.e., P(i) = P'(i)], then 

g(S, i; E) = f(S, i; E) - S + EP(T). 

Proof: the proof follows directly from the simultaneous application 
of (15) and (16) when P'(T) = P(T). Q.E.D. 

Thus, the value of a rationally priced European put option is 
determined once one has a rational theory of the call option value. 
The formula derived in Theorem 12 is identical to B-S's equation 
(26), when the riskless rate, r, is constant (i.e., P(i) = e-rT). Note 

28 The borrowing rate is the rate on a r-year, noncallable, discounted loan. 
To avoid arbitrage, P'(r) < P(r). 

29 Due to the existent market structure, (15) must hold for the stronger reason 
of arbitrage. The portfolio did not require short-sales and it is institutionally 
possible for an investor to issue (sell) call options and reinvest the proceeds from 
the sale. If (15) did not hold, an investor, acting unilaterally, could make im- 
mediate, positive profits with no investment and no risk. 

30 In this case, we do not have the stronger condition of arbitrage discussed in 
footnote (29) because the portfolio requires a short sale of shares, and, under 
current regulations, the proceeds cannot be reinvested. Again, intermediate 
values of the portfolio are not examined because the put option is European. 
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that no distributional assumptions about the stock price or future 
interest rates were required to prove Theorem 12. 

Two corollaries to Theorem 12 follow directly from the above 
analysis. 

Cor ollary 1. EP(r) _ g(S, r; E). 

Proof: from (5) and (7),f(S, r; E) - S < 0 and from (16), EP(r) 
> g(S, r; E). Q.E.D. 

The intuition of this result is immediate. Because of limited liability 
on the common stock, the maximum value of the put option is E, and 
because the option is European, the proceeds cannot be collected 
for r years. The option cannot be worth more than the present value 
of a sure 'payment of its maximum value. 

Corollary 2. The value of a perpetual (r = co ) European put 
option is zero. 

Proof: the put is a limited liability security [g(S, r; E) > 0]. From 
Corollary 1 and the condition that P(oo) = 0, 0 _ g(S, cco; E). 
Q.E.D. 

Using the relationship g(Sr T; E) = f(S, r; E) - S + EP(r), it 
is straightforward to derive theorems for rational European put 
pricing which are analogous to the theorems for warrants in Section 
2. In particular, wheneverf is homogeneous of degree one or convex 
in S and E, so g will be also. The correct adjustment for stock and 
cash dividends is the same as prescribed for warrants in Theorem 11 
and its Corollary."' 

Since the American put option can be exercised at any time, its 
price must satisfy the arbitrage condition 

G(S, r; E) > Max[O, E - S]. (17) 

By the same argument used to derive (5), it can be shown that 

G(S, r; E) > g(S, T; E), (18) 

where the strict inequality holds only if there is a positive probability 
of premature exercising. 

As shown in Section 2, the European and American warrant have 
the same value if the exercise price is constant and they are protected 
against payouts to the common stock. Even under these assumptions, 
there is almost always a positive probability of premature exercising 
of an American put, and hence, the American put will sell for more 
than its European counterpart. A hint that this must be so comes from 
Corollary 2 and arbitrage condition (17). Unlike European options, 
the value of an American option is always a nondecreasing function 
of its expiration date. If there is no possibility of premature exercising, 
the value of an American option will equal the value of its European 
counterpart. By the Corollary to Theorem 11, the value of a perpetual 
American put would be zero, and by the monotonicity argument on 
length of time to maturity, all American puts would have zero value. 

31 While such adjustments for stock or cash payouts add to the value of a 
warrant or call option, the put option owner would prefer not to have them since 
lowering the exercise price on a put decreases its value. For simplicity, the effects 
of payouts are not considered, and it is assumed that no dividends are paid on the 
stock, and there are no exercise price changes. 158 / ROBERT C. MERTON 



This absurd result clearly violates the arbitrage condition (17) for 
S <E. 

To clarify this point, reconsider the two portfolios examined in 
the European put analysis, but with American puts instead. The first 
portfolio contained a long position in the common stock at price S, 
a long position in an American put at price G(S, r; E), and borrow- 
ings of [EP'(r)]. As was previously shown, if held until maturity, the 
outcome of the portfolio will be identical to those of an American 
(European) warrant held until maturity. Because we are now using 
American options with the right to exercise prior to expiration, the 
interim values of the portfolio must be examined as well. If, for all 
times prior to expiration, the portfolio has value greater than the 
exercise value of the American warrant, S - E, then to avoid domi- 
nance of the warrant, the current value of the portfolio must exceed 
or equal the current value of the warrant. 

The interim value of the portfolio at T years until expiration when 
the stock price is S*, is 

S* + G(S*, T; E) - EP'(T) 
= G(S*, T; E) + (S* - E) + E[1 - P'(T) > (S* - E). 

Hence, condition (15) holds for its American counterparts to avoid 
dominance of the warrant, i.e., 

G(S, r; E) + S - EP'(r) F(S, r; E). (19) 

The second portfolio has a long position in an American call at 
price F(S, r; E), a short position in the common stock at price S, and 
a loan of [EP(r)] dollars. If held until maturity, this portfolio rep- 
licates the outcome of a European put, and hence, must be at least 
as valuable at any interim point in time. The interim value of the 
portfolio, at T years to go and with the stock price at S*, is 

F(S*, T; E) - S* + EP(T) 
= (E -S*) + F(S*, T; E) -E[1I- P(T)] < E -S*, 

if F(S*, T; E) < E[1 - P(T)], which is possible for small enough S*. 
From (17), G(S*, T; E) > E - S*. So, the interim value of the 
portfolio will be less than the value of an American put for sufficiently 
small S*. Hence, if an American put was sold against this portfolio, 
and if the put owner decided to exercise his put prematurely, the value 
of the portfolio could be less than the value of the exercised put. This 
result would certainly obtain if S* < E[1 - P(T)]. So, the portfolio 
will not dominate the put if inequality (16) does not hold, and an 
analog theorem to Theorem 12, which uniquely determines the value 
of an American put in terms of a call, does not exist. Analysis of the 
second portfolio does lead to the weaker inequality that 

G(S, r; E) _ E-S + F(S, r; E). (20) 

Theorem 13. If, for some T < T, there is a positive probability 
that f(S, T; E) < E[1 - P(T)], then there is a positive probability 
that a i-year, American put option will be exercised prematurely 
and the value of the American put will strictly exceed the value of its 
European counterpart. 

Proof: the only reason that an American put will sell for a premium 
over its European counterpart is that there is a positive probability 
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of exercising prior to expiration. Hence, it is sufficient to prove that 
g(S, r; E) < G(S, r; E). From Assumption 1, if for some T < , 
g(S*, T; E) < G(S*, T; E) for some possible value(s) of S*, then 
g(S, r; E) < G(S, r; E). From Theorem 12, g(S*, T; E) = f(S*, T; E) 
- S* + EP(T). From (17), G(S*, T; E) > Max [0, E - S*]. But 
g(S*, T; E) < G(S*, T; E) is implied if E - S* > f(S*, T; E) -S* 
+ EP(T), which holds iff(S*, T; E) < E[1 - P(T)]. By hypothesis 
of the theorem, such an S* is a possible value. Q.E.D. 

Since almost always there will be a chance of premature exercising, 
the formula of Theorem 12 or B-S equation (26) will not lead to a 
correct valuation of an American put and, as mentioned in Section 3, 
the valuation of such options is a more difficult analytical task than 
valuing their European counterparts. 

5. Rational option 
pricing along Black- 
Scholes lines 

* A number of option pricing theories satisfy the general restric- 
tions on a rational theory as derived in the previous sections. One such 
theory developed by B-S82 is particularly attractive because it is a 
complete general equilibrium formulation of the problem and be- 
cause the final formula is a function of "observable" variables, making 
the model subject to direct empirical tests. 

B-S assume that: (1) the standard form of the Sharpe-Lintner- 
Mossin capital asset pricing model holds for intertemporal trading, 
and that trading takes place continuously in time; (2) the market 
rate of interest, r, is known and fixed over time; and (3) there are no 
dividends or exercise price changes over the life of the contract. 

To derive the formula, they assume that the option price is a 
function of the stock price and time to expiration, and note that, over 
"short" time intervals, the stochastic part of the change in the option 
price will be perfectly correlated with changes in the stock price. A 
hedged portfolio containing the common stock, the option, and a 
short-term, riskless security, is constructed where the portfolio 
weights are chosen to eliminate all "market risk." By the assumption 
of the capital asset pricing model, any portfolio with a zero ("beta") 
market risk must have an expected return equal to the risk-free rate. 
Hence, an equilibrium condition is established between the expected 
return on the option, the expected return on the stock, and the risk- 
less rate. 

Because of the distributional assumptions and because the option 
price is a function of the common stock price, B-S in effect make use 
of the Samuelson33 application to warrant pricing of the Bachelier- 
Einstein-Dynkin derivation of the Fokker-Planck equation, to ex- 
press the expected return on the option in terms of the option price 
function and its partial derivatives. From the equilibrium condition 
on the option yield, such a partial differential equation for the option 
price is derived. The solution to this equation for a European call 
option is 

f(S, r; E) = S4J(dl) - Ee-r4(d2), (21) 

where 4f is the cumulative normal distribution function, o2 is the 

321In [4]. 
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instantaneous variance of the return on the common stock, 

di [log (SIE) + (r + 1f2)T] , 

and d2 - oTlIl-. 
An exact formula for an asset price, based on observable variables 

only, is a rare finding from a general equilibrium model, and care 
should be taken to analyze the assumptions with Occam's razor 
to determine which ones are necessary to derive the formula. Some 
hints are to be found by inspection of their final formula (21 ) and a 
comparison with an alternative general equilibrium development. 

The manifest characteristic of (21) is the number of variables 
that it does not depend on. The option price does not depend on the 
expected return on the common stock,34 risk preferences of investors, 
or on the aggregate supplies of assets. It does depend on the rate of 
interest (an "observable") and the total variance of the return on the 
common stock which is often a stable number and hence, accurate 
estimates are possible from time series data. 

The Samuelson and Merton35 model is a complete, although very 
simple (three assets and one investor) general equilibrium formula- 
tion. Their formula"6 is 

00 

f(S, r; E) = e-rr (ZS - E)dQ(Z; r), (22) 
E/S 

where dQ is a probability density function with the expected value 
of Z over the dQ distribution equal to err. Equations (22) and (21) 
will be the same only in the special case when dQ is a log-normal 
density with the variance of log (Z) equal to 0-2r.87 However, dQ is a 
risk-adjusted ("util-prob") distribution, dependent on both risk- 
preferences and aggregate supplies, while the distribution in (21) 
is the objective distribution of returns on the common stock. B-S 
claim that one reason that Samuelson and Merton did not arrive at 
formula (21) was because they did not consider other assets. If a 
result does not obtain for a simple, three asset case, it is unlikely that 
it would in a more general example. More to the point, it is only 
necessary to consider three assets to derive the B-S formula. In con- 
nection with this point, although B-S claim that their central assump- 
tion is the capital asset pricing model (emphasizing this over their 
hedging argument), their final formula, (21), depends only on the 
interest rate (which is exogenous to the capital asset pricing model) 
and on the total variance of the return on the common stock. It does 
not depend on the betas (covariances with the market) or other assets' 
characteristics. Hence, this assumption may be a "red herring." 

Although their derivation of (21) is intuitively appealing, such an 

34 This is an important result because the expected return is not directly ob- 
servable and estimates from past data are poor because of nonstationarity. It also 
implies that attempts to use the option price to estimate expected returns on the 
stock or risk-preferences of investors are doomed to failure (e.g., see Sprenkle 
[49]). 

35 In [43]. 
36 Ibid., p. 29, equation 30. 
37 This will occur only if: (1) the objective returns on the stock are log-normally 

distributed; (2) the investor's utility function is iso-elastic (i.e., homothetic in- 
difference curves); and (3) the supplies of both options and bonds are at the 
incipient level. 
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important result deserves a rigorous derivation. In this case, the 
rigorous derivation is not only for the satisfaction of the "purist," 
but also to give insight into the necessary conditions for the formula 
to obtain. The reader should be alerted that because B-S consider 
only terminal boundary conditions, their analysis is strictly applicable 
to European options, although as shown in Sections 2 through 4, the 
European valuation is often equal to the American one. 

Finally, although their model is based on a different economic 
structure, the formal analytical content is identical to Samuelson's 
"linear, a = A" model when the returns on the common stock are 
log-normal."8 Hence, with different interpretation of the parameters, 
theorems proved in Samuelson and in the difficult McKean ap- 
pendix"9 are directly applicable to the B-S model, and vice versa. 

6. An alternative 
derivation of the 
Black-Scholes model 40 

* Initially, we consider the case of a European option where no 
payouts are made to the common stock over the life of the contract. 
We make the following further assumptions. 

(1) "Frictionless" markets: there are no transactions costs or 
differential taxes. Trading takes place continuously and bor- 
rowing and short-selling are allowed without restriction.41 
The borrowing rate equals the lending rate. 

(2) Stock price dynamics: the instantaneous return on the com- 
mon stock is described by the stochastic differential equation42 

dS 
-= -adt + odz, (23) 
S 

where a is the instantaneous expected return on the common 
stock, o2 is the instantaneous variance of the return, and dz 
is a standard Gauss-Wiener process. a may be a stochastic 
variable of quite general type including being dependent on 
the level of the stock price or other assets' returns. Therefore, 
no presumption is made that dS/S is an independent incre- 
ments process or stationary, although dz clearly is. However, 

38 In [42]. See Merton [28] for a brief description of the relationship between 
the Samuelson and B-S models. 

39 In [26]. 
40 Although the derivation presented here is based on assumptions and tech- 

niques different from the original B-S model, it is in the spirit of their formulation, 
and yields the same formula when their assumptions are applied. 

41 The assumptions of unrestricted borrowing and short-selling can be 
weakened and still have the results obtained by splitting the created portfolio of 
the text into two portfolios: one containing the common stock and the other con- 
taining the warrant plus a long position in bonds. Then, as was done in Section 2, 
if we accept Assumption 1, the formulas of the current section follow immediately. 

42 For a general description of the theory of stochastic differential equations 
of the Ito type, see McKean [27] and Kushner [24]. For a description of their 
application to the consumption-portfolio problem, see Merton [32], [33 ], and [31]. 
Briefly, 1t6 processes follow immediately from the assumption of a continuous- 
time stochastic process which results in continuous price changes (with finite 
moments) and some level of independent increments. If the process for price 
changes were functions of stable Paretian distributions with infinite moments, it 
is conjectured that the only equilibrium value for a warrant would be the stock 
price itself, independent of the length of time to maturity. This implication is 
grossly inconsistent with all empirical observations. 162 / ROBERT C. MERTON 



o- is restricted to be nonstochastic and, at most, a known 
function of time. 

(3) Bond price dynamics. P(r) is as defined in previous sections 
and the dynamics of its returns are described by 

dP 
-= g(r)dt + 5(r)dq(t; r), (24) 
p 

where A is the instantaneous expected return, 62 is the in- 
stantaneous variance, and dq(t; r) is a standard Gauss- 
Wiener process for maturity r. Allowing for the possibility 
of habitat and other term structure effects, it is not assumed 
that dq for one maturity is perfectly correlated with dq for 
another, i.e., 

dq(t; r)dq(t; T) = pTTdt, (24a) 

where PTT may be less than one for r - T. However, it is 
assumed that there is no serial correlation43 among the (un- 
anticipated) returns on any of the assets, i.e., 

dq(s; -r)dq(t; T) = 0 for s - t (24b) 
dq(s; -r)dz(t) = 0 for s -b t, 

which is consistent with the general efficient market hypothe- 
sis of Fama and Samuelson.44 A(r) may be stochastic through 
dependence on the level of bond prices, etc., and different for 
different maturities. Because P(r) is the price of a discounted 
loan with no risk of default, P(O) = 1 with certainty and 
5(r) will definitely depend on r with b(0) = 0. However, a is 
otherwise assumed to be nonstochastic and independent of 
the level of P. In the special case when the interest rate is non- 
stochastic and constant over time, 5 0, = u = r, and 
P(r) = erT 

(4) Investor preferences and expectations: no assumptions are 
necessary about investor preferences other than that they 

43 The reader should be careful to note that it is assumed only that the un- 
anticipated returns on the bonds are not serially correlated. Cootner [11] and 
others have pointed out that since the bond price will equal its redemption price 
at maturity, the total returns over time cannot be uncorrelated. In no way does 
this negate the specification of (24), although it does imply that the variance of the 
unanticipated returns must be a function of time to maturity. An example to 
illustrate that the two are not inconsistent can be found in Merton [29]. Suppose 
that bond prices for all maturities are only a function of the current (and future) 
short-term interest rates. Further, assume that the short-rate, r, follows a Gauss- 
Wiener process with (possibly) some drift, i.e., dr = adt + gdz, where a and g 
are constants. Although this process is not realistic because it implies a positive 
probability of negative interest rates, it will still illustrate the point. Suppose that 
all bonds are priced so as to yield an expected rate of return over the next period 
equal to r (i.e., a form of the expectations hypothesis): 

P(T; r) = exp[-rr - ? gT 1 

and 
dP p = rdt - gTdz. 

By construction, dz is not serially correlated and in the notation of (24), 
() = - ga e 

44 In [ 13 ] and [41 ], respectively. 
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satisfy Assumption 1 of Section 2. All investors agree on the 
values of o- and 6, and on the distributional characteristics 
of dz and dq. It is not assumed that they agree on either a 
or .45 

From the analysis in Section 2, it is reasonable to assume that 
the option price is a function of the stock price, the riskless bond 
price, and the length of time to expiration. If H(S, P, r; E) is the 
option price function, then, given the distributional assumptions on 
S and P, we have, by It6's Lemma,46 that the change in the option 
price over time satisfies the stochastic differential equation, 

dH = HLdS + H2dP + H3dr 
+2 [Hll(dS)2 + 2Hl2(dSdP) + H22(dP)2], (25) 

where subscripts denote partial derivatives, and (dS)2 = O2S2dt, 
(dp)2 = 62P2dt, dr = - dt, and (dSdP) = po-- SPdt with p, the in- 
stantaneous correlation coefficient between the (unanticipated) re- 
turns on the stock and on the bond. Substituting from (23) and (24) 
and rearranging terms, we can rewrite (25) as 

dH = j3Hdt + 'yHdz + -qHdq, (26) 

where the instantaneous expected return on the warrant, A, equals 
[2r2S2Hn + po6SPH12 + 2 52P2H22 + aSH1 + giPH2 - H31]H, 
-y o-SH1/H, and 7 _PH2/H. 

In the spirit of the Black-Scholes formulation and the analysis in 
Sections 2 thru 4, consider forming a portfolio containing the com- 
mon stock, the option, and riskless bonds with time to maturity, -, 
equal to the expiration date of the option, such that the aggregate 
investment in the portfolio is zero. This is achieved by using the pro- 
ceeds of short-sales and borrowing to finance long positions. Let W1 
be the (instantaneous) number of dollars of the portfolio invested in 
the common stock, W2 be the number of dollars invested in the 
option, and W3 be the number of dollars invested in bonds. Then, 
the condition of zero aggregate investment can be written as 
W1 + W2 + W3 = 0. If dY is the instantaneous dollar return to the 
portfolio, it can be shown47 that 

dS dH dP 
dY= W1 + W2 + W3- 

S H P 

= [Wi(a - t) + W2(3 - g)]dt + [W1l + W2y]dz 

+ [W2q - (W1 + W2)6 ]dq, (27) 

where W3 - (W1 + W2) has been substituted out. 

45 This assumption is much more acceptable than the usual homogeneous ex- 
pectations. It is quite reasonable to expect that investors may have quite different 
estimates for current (and future) expected returns due to different levels of in- 
formation, techniques of analysis, etc. However, most analysts calculate estimates 
of variances and covariances in the same way: namely, by using previous price 
data. Since all have access to the same price history, it is also reasonable to assume 
that their variance-covariance estimates may be the same. 

46 Ito's Lemma is the stochastic-analog to the fundamental theorem of the 
calculus because it states how to differentiate functions of Wiener processes. For 
a complete description and proof, see McKean [27]. A brief discussion can be 
found in Merton [33]. 

47 See Merton [32] or [33]. 164 / ROBERT C. MERTON 



Suppose a strategy, Wj = Wj*, can be chosen such that the co- 
efficients of dz and dq in (27) are always zero. Then, the dollar return 
on that portfolio, dY*, would be nonstochastic. Since the portfolio 
requires zero investment, it must be that to avoid "arbitrage"48 
profits, the expected (and realized) return on the portfolio with this 
strategy is zero. The two portfolio and one equilibrium conditions 
can be written as a 3 X 2 linear system, 

(a -,g)Wl* + (3 -A)W2* = 0 

CTW1* + YW2* = 0 (28) 

. -5W1* + (?7 - 6)W2* = O0 

A nontrivial solution (Wl* - 0; W2* - 0) to (28) exists if and 
only if 

A3- -y 6 - - 
-__ =_= .(29) 

Because we make the "bucket shop" assumption, ,u, a, 6, and o- are 
legitimate exogeneous variables (relative to the option price), and 
A, y, and -q are to be determined so as to avoid dominance of any of 
the three securities. If (29) holds, then -y/o = 1 - -l5, which implies 
from the definition of y and in (26), that 

SH1 PH2 
= 1- (30) 

H H 
or 

H= SH1+PH2. (31) 

Although it is not a sufficient condition, by Euler's theorem, (31) 
is a necessary condition for H to be first degree homogeneous in 
(S, P) as was conjectured in Section 2. 

The second condition from (29) is that :- = y(a - 4)o, 
which implies from the definition of A and -y in (26) that 

2o2S2H0 u + pO(6SPH12 + 22P2H22 

+ aSH1 + 11PH2 - H3 - IuH = SH1(a - p), (32) 

or, by combining terms, that 

252H0 1 + pO(6SPH12 + 12P2H22 + pISH1 

+ IPH2-H3-IH= 0. (33) 

Substituting for H from (31) and combining terms, (33) can be 
rewritten as 

1[Of2S2Hi1 + 2po-SPH12 + 62P2H22] - H3 = 0, (34) 

which is a second-order, linear partial differential equation of the 
parabolic type. 

48 "Arbitrage" is used in the qualified sense that the distributional and other 
assumptions are known to hold with certainty. A weaker form would say that if 
the return on the portfolio is nonzero, either the option or the common stock 
would be a dominated security. See Samuelson [44] or [45] for a discussion of this 
distinction. 
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If H is the price of a European warrant, then H must satisfy 
(34) subject to the boundary conditions: 

H(O, P, r; E) = 0 (34a) 

H(S, 1, 0; E) = Max[0, S - E], (34b) 

since by construction, P(0) = 1. 
Define the variable x _ SIEP(r), which is the price per share of 

stock in units of exercise price-dollars payable at a fixed date in the 
future (the expiration date of the warrant). The variable x is a well- 
defined price for r > 0, and from (23), (24), and It6's Lemma, the 
dynamics of x are described by the stochastic differential equation, 

dx 
-= [a -,u + 62 - pu]dt + odz- dq. (35) 
x 

From (35), the expected return on x will be a function of S, P, etc., 
through a and A, but the instantaneous variance of the return on x, 
V2(r), is equal to o2 + 62 - 2po6, and will depend only on r. 

Motivated by the possible homogeneity properties of H, we try 
the change in variables, h(x, r; E) H(S, P, r; E)/EP where h is 
assumed to be independent of P and is the warrant price evaluated 
in the same units as x. Substituting (h, x) for (H, S) in (34), (34a) and 
(34b), leads to the partial differential equation for h, 

21 V2x2hll-h2 = 0, (36) 

subject to the boundary conditions, h(O, r; E) = 0, and h(x, 0; E) 
= Max[0, x - 1]. From inspection of (36) and its boundary condi- 
tions, h is only a function of x and r, since V2 is only a function of r. 
Hence, the assumed homogeneity property of H is verified. Further, 
h does not depend on E, and so, H is actually homogeneous of degree 
one in [S, EP(r)]. 

Consider a new time variable, T -Jo V2(s)ds. Then, if we de- 
fine y(x, T) = h(x, r) and substitute into (36), y must satisfy 

yll -Y2 = 0, (37) 

subject to the boundary conditions, y(O, T) = 0 and y(x, 0) 
= Max [0, x - 1]. Suppose we wrote the warrant price in its "full 
functional form," H(S, P, r; E, -2, 652, p). Then, 

y = H(x, 1, T; 1, 1, 0, 0), 

and is the price of a warrant with T years to expiration and exercise 
price of one dollar, on a stock with unit instantaneous variance of 
return, when the market rate of interest is zero over the life of the 
contract. 

Once we solve (37) for the price of this "standard" warrant, we 
have, by a change of variables, the price for any European warrant. 
Namely, 

H(S, P, r; E) = EP(-)y[S/EP(O), f V2(s)ds]. (38) 

Hence, for empirical testing or applications, one need only compute 
tables for the "standard" warrant price as a function of two variables, 
stock price and time to expiration, to be able to compute warrant 
prices in general. 166 / ROBERT C. MERTON 



To solve (37), we first put it in standard form by the change in 
variables Z log (x) + T/2 and O(Z, T) y(x, T)/x, and then sub- 
stitute in (37) to arrive at 

0 = 12011 2, (39) 

subject to the boundary conditions: 4)(Z, T)I < 1 and O(Z, 0) 
= Max [0, 1 - eZ]. Equation (39) is a standard free-boundary 
problem to be solved by separation of variables or Fourier trans- 
forms.49 Its solution is 

y(x, T) = x4)(Z, T) = [xerfc(hi) - erfc(h2)]/2, (40) 

where erfc is the error complement function which is tabulated, 
h - [log x + 2 T]/ <2T, and h2 - [log x-2 T]/ 1[2T. Equation 
(40) is identical to (21 ) with r = 0, -2 = 1, and E = 1. Hence, (38) 
will be identical to (21) the B-S formula, in the special case of a non- 
stochastic and constant interest rate (i.e., ( = 0, u = r, P= e-r= 
and T =2r) 

Equation (37) corresponds exactly to Samuelson's equation50 for 
the warrant price in his "linear" model when the stock price is log- 
normally distributed, with his parameters a = A= 0, and 2= 1. 
Hence, tables generated from (40) could be used with (38) for valua- 
tions of the Samuelson formula where e-ar is substituted for P(T) 
in (38).51 Since a in his theory is the expected rate of return on a 
risky security, one would expect that e-ar < P(r). As a consequence 
of the following theorem, e-ar < P(T) would imply that Samuelson's 
forecasted values for the warrants would be higher than those fore- 
casted by B-S or the model presented here. 

Theorem 14. For a given stock price, the warrant price is a non- 
increasing function of P(r), and hence, a nondecreasing function of 
the T-year interest rate. 

Proof: it follows immediately, since an increase in P is equivalent to 
an increase in E which never increases the value of the warrant. 
Formally, H is a convex function of S and passes through the origin. 
Hence, H - SH1 < 0. But from (31), H - SH1 = PH2, and since 
P > 0, H2 < 0. By definition, P(r) is a decreasing function of the 
r-year interest rate. Q.E.D. 

Because we applied only the terminal boundary condition to (34), 
the price function derived is for an European warrant. The correct 
boundary conditions for an American warrant would also include 
the arbitrage-boundary inequality 

H(S, P, r; E) ? Max [0, S - E]. (34c) 

Since it was assumed that no dividend payments or exercise price 
changes occur over the life of the contract, we know from Theorem 
1, that if the formulation of this section is a "rational" theory, then 

49 For a separation of variables solution, see Churchill [9], pp. 154-156, and 
for the transform technique, see Dettman [12], p. 390. Also see McKean [26]. 

50 In [42], p. 27. 
61 The tables could also be used to evaluate warrants priced by the Sprenkle 

[49] formula. Warning: while the Samuelson interpretation of the ",3 = a" case 
implies that expected returns are equated on the warrant and the stock, the B-S 
interpretation does not. Namely, from [29], the expected return on the warrant 
satisfies , =r + H,S(a - r)/H, where Hi can be computed from (21) by 
differentiation. 
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it will satisfy the stronger inequality H ? Max[O, S - EP(r)] [which 
is homogeneous in S and EP(r)], and the American warrant will have 
the same value as its European counterpart. Samuelson argued that 
solutions to equations like (21) and (38) will always have values at 
least as large as Max[O, S - E], and Samuelson and Merton52 
proved it under more general conditions. Hence, there is no need for 
formal verification here. Further, it can be shown that (38) satisfies 
all the theorems of Section 2. 

As a direct result of the equal values of the European and 
American warrants, we have: 

Theorem 15. The warrant price is a nondecreasing function of 
the variance of the stock price return. 

Proof: from (38), the change in H with respect to a change in vari- 
ance will be proportional to Y2. But, y is the price of a legitimate 
American warrant and hence, must be a nondecreasing function of 
time to expiration, i.e., Y2 _ 0. Q.E.D. 

Actually, Theorem 15 is a special case of the general proposition 
(Theorem 8) proved in Section 2, that the more risky is the stock, the 
more valuable is the warrant. Although Rothschild and Stiglitz53 
have shown that, in general, increasing variance may not imply in- 
creasing risk, it is shown in Appendix 2 that variance is a valid meas- 
ure of risk for this model. 

We have derived the B-S warrant pricing formula rigorously 
under assumptions weaker than they postulate, and have extended the 
analysis to include the possibility of stochastic interest rates. 

Because the original B-S derivation assumed constant interest 
rates in forming their hedge positions, it did not matter whether they 
borrowed or lent long or short maturities. The derivation here clearly 
demonstrates that the correct maturity to use in the hedge is the one 
which matches the maturity date of the option. "Correct" is used in 
the sense that if the price P(r) remains fixed while the price of other 
maturities changes, the price of a r-year option will remain 
unchanged. 

The capital asset pricing model is a sufficient assumption to 
derive the formula. While the assumptions of this section are neces- 
sary for the intertemporal use of the capital asset pricing model,54 
they are not sufficient, e.g., we do not assume that interest rates are 
nonstochastic, that price dynamics are stationary, nor that investors 
have homogeneous expectations. All are required for the capital 
asset pricing model. Further, since we consider only the properties of 
three securities, we do not assume that the capital market is in full 
general equilibrium. Since the final formula is independent of a or 
,u it will hold even if the observed stock or bond prices are transient, 
nonequilibrium prices. 

The key to the derivation is that any one of the securities' returns 
over time can be perfectly replicated by continuous portfolio com- 
binations of the other two. A complete analysis would require that 

52 In [42] and [43], respectively. 
63 In [39 ]. 
6 See Merton [311 for a discussion of necessary and sufficient conditions for a 

Sharpe-Lintner-Mossin type model to obtain in an intertemporal context. The 
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all three securities' prices be solved for simultaneously which, in 
general, would require the examination of all other assets, knowledge 
of preferences, etc. However, because of "perfect substitutability" of 
the securities and the "bucket shop" assumption, supply effects can 
be neglected, and we can apply "partial equilibrium" analysis resul- 
ting in a "causal-type" formula for the option price as a function of 
the stock and bond prices. 

This "perfect substitutability" of the common stock and borrow- 
ing for the warrant or the warrant and lending for the common stock 
explains why the formula is independent of the expected return on the 
common stock or preferences. The expected return on the stock and 
the investor's preferences will determine how much capital to invest 
(long or short) in a given company. The decision as to whether to 
take the position by buying warrants or by leveraging the stock de- 
pends only on their relative prices and the cost of borrowing. As 
B-S point out, the argument is similar to an intertemporal Modigliani- 
Miller theorem. The reason that the B-S assumption of the capital 
asset pricing model leads to the correct formula is that because it is an 
equilibrium model, it must necessarily rule out "sure-thing" profits 
among perfectly correlated securities, which is exactly condition 
(29). Careful study of both their derivations shows that (29) is the 
only part of the capital asset pricing model ever used. 

The assumptions of this section are necessary for (38) and (40) to 
hold.55 The continuous-trading assumption is necessary to establish 
perfect correlation among nonlinear functions which is required to 
form the "perfect hedge" portfolio mix. The Samuelson and Merton 
model56 is an immediate counter-example to the validity of the 
formula for discrete-trading intervals. 

The assumption of It6 processes for the assets' returns dynamics 
was necessary to apply 1to's Lemma. The further restriction that a 
and a be nonstochastic and independent of the price levels is required 
so that the option price change is due only to changes in the stock or 
bond prices, which was necessary to establish a perfect hedge and to 
establish the homogeneity property (31 ).57 Clearly if investors did 
not agree on the value of V2(r), they would arrive at different values 
for the same warrant. 

The B-S claim that (21 ) or (38) is the only formula consistent with 
capital market equilibrium is a bit too strong. It is not true that if the 
market prices options differently, then arbitrage profits are ensured. 
It is a "rational" option pricing theory relative to the assumptions of 
this section. If these assumptions held with certainty, then the B-S 
formula is the only one which all investors could agree on, and no 
deviant member could prove them wrong.58 

65 If most of the "frictionless" market assumptions are dropped, it may be 
possible to show that, by substituting current institutional conditions, (38) and 
(40) will give lower bounds for the warrant's value. 

66 In [43], 
6 In the special case when interest rates are nonstochastic, the variance of the 

stock price return can be a function of the price level and the derivation still goes 
through. However, the resulting partial differential equation will not have a simple 
closed-form solution. 

"8This point is emphasized in a critique of Thorp and Kassouf's [53] "sure- 
thing" arbitrage techniques by Samuelson [45] and again, in Samuelson [44], 
footnote 6. 
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7. Extension of the 
model to include 
dividend payments 
and exercise price 
changes 

* To analyze the effect of dividends on unprotected warrants, it is 
helpful to assume a constant and known interest rate r. Under this 
assumption, a = 0, ,= r, and P(r) = err. Condition (29) sim- 
plifies to 

A-r= y(a--r)jo. (41) 
Let D(S, r) be the dividend per share unit time when the stock 
price is S and the warrant has r years to expiration. If a is 
the instantaneous, total expected return as defined in (23), then 
the instantaneous expected return from price appreciation is 
[la - D(S, r)jS]. Because P(r) is no longer stochastic, we suppress 
it and write the warrant price function as W(S, r; E). As was done in 
(25) and (26), we apply Ito's Lemma to derive the stochastic dif- 
ferential equation for the warrant price to be 

dW = W1(dS - D(S, r)dt) + W2dT + 2 Wll(dS)2 
= [Ij2S2Wi1 + (aS - D ) W1 - W2]dt + oSW1dz. (42) 

Note: since the warrant owner is not entitled to any part of the 
dividend return, he only considers that part of the expected dollar 
return to the common stock due to price appreciation. From (42) 
and the definition of ,B and -y, we have that 

(3W = 2 a2S2W11 + (aS - D ) W1 - W2(43) 
'yW= cTSWJ. 

Applying (41) to (43), we arrive at the partial differential equa- 
tion for the warrant price, 

YOf2S2 W1+ (rS- D)W1- W2 - rW= 0, (44) 
subject to the boundary conditions, W(O, r; E) = 0, W(S, 0; E) 
= Max [0, S - E] for a European warrant, and to the additional 
arbitrage boundary condition, W(S, r; E) > Max [0, S - E] for an 
American warrant. 

Equation (44) will not have a simple solution, even for the 
European warrant and relatively simple functional forms for D. In 
evaluating the American warrant in the "no-dividend" case (D = 0), 
the arbitrage boundary inequalities were not considered explicitly 
in arriving at a solution, because it was shown that the European 
warrant price never violated the inequality, and the American and 
European warrant prices were equal. For many dividend policies, the 
solution for the European warrant price will violate the inequality, 
and for those policies, there will be a positive probability of prema- 
ture exercising of the American warrant. Hence, to obtain a correct 
value for the American warrant from (44), we must explicitly consider 
the boundary inequality, and transform it into a suitable form for 
solution. 

If there exists a positive probability of premature exercising, then, 
for every r, there exists a level of stock price, CLr], such that for all 
S > CLr], the warrant would be worth more exercised than if held. 
Since the value of an exercised warrant is always (S - E), we have 
the appended boundary condition for (44), 

W(C[r], r; E) = C[r] - E, (44a) 

where Wsatisfies (44) for O < S < C[r]. 
If C[r] were a known function, then, after the appropriate change 
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appended, would be a semiinfinite boundary value problem with a 
time-dependent boundary. However, C[r] is not known, and must be 
determined as part of the solution. Therefore, an additional boundary 
condition is required for the problem to be well-posed. 

Fortunately, the economics of the problem are sufficiently rich 
to provide this extra condition. Because the warrant holder is not 
contractually obliged to exercise his warrant prematurely, he chooses 
to do so only in his own best interest (i.e., when the warrant is worth 
more "dead" than "alive"). Hence, the only rational choice for 
C[r] is that time-pattern which maximizes the value of the warrant. 
Let f(S, r; E, C[r]) be a solution to (44)-(44a) for a given C[r] 
function. Then, the value of a r-year American warrant will be 

W(S, r; E) = Maxf (S, r; E, C). (45) 
Ic} 

Further, the structure of the problem makes it clear that the optimal 
C[7r] will be independent of the current level of the stock price. In 
attacking this difficult problem, Samuelson59 postulated that the 
extra condition was "high-contact" at the boundary, i.e., 

Wl(C[r], r; E) = 1. (44b) 

It can be shown60 that (44b) is implied by the maximizing behavior de- 
scribed by (45). So the correct specification for the American warrant 
price is (44) with the European boundary conditions plus (44a) and 
(44b). 

Samuelson and Samuelson and Merton6" have shown that for a 
proportional dividend policy where D(S, r) = pS, p > 0, there is 
always a positive probability of premature exercising, and hence, the 
arbitrage boundary condition will be binding for sufficiently large 
stock prices.62 With D = pS, (44) is mathematically identical to 
Samuelson's63 "nonlinear" (", > a") case where his ,B = r and his 
a = r - p. Samuelson and McKean64 analyze this problem in great 
detail. Although there are no simple closed-form solutions for finite- 
lived warrants, they did derive solutions for perpetual warrants which 
are power functions, tangent to the "S - E" line at finite values of 
S.65 

In [42]. 
60 Let f (x, c) be a differentiable function, concave in its second argument, for 

0 ? x ? c. Require that f (c, c) = h(c), a differentiable function of c. Let 
c = c* be the c which maximizes f, i.e., 

f 2(x, c*) = 0, 

where subscripts denote partial derivatives. Consider the total derivative of f with 
respect to c along the boundary x = c. Then, 

df /dc = dh/dc = fi(c, c) + f2(c, c). 
For c = c*, f2 = 0. Hence, fi(c*, c*) dh/dc. In the case of the text, h = c - E, 
and the "high-contact" solution,fi(c*, c*) = 1, is proved. 

61 In [42] and [43], respectively. 
62 For D = pS, the solution to (44) for the European warrant is 

W = [e-P-SD(d) - Ee-rV(d2)] 

where 4, di, and d2 are as defined in (21). For large S, 
W [e-PTS- Ee-rT] 

which will be less than (S - E) for large S and p > 0. Hence, the American 
warrant can be worth more "dead" than "alive." 

63 In [42]. 
64 Ibid. In the appendix. 
65 Ibid., p. 28. 
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A second example of a simple dividend policy is the constant one 
where D = d, a constant. Unlike the previous proportional policy, 
premature exercising may or may not occur, depending upon the 
values for d, r, E, and r. In particular, a sufficient condition for no 
premature exercising was derived in Section 3. Namely, 

d 
E> -. (13) 

r 

If (13) obtains, then the solution for the European warrant price 
will be the solution for the American warrant. Although a closed- 
form solution has not yet been found for finite r, a solution for the 
perpetual warrant when E > dlr, is66 

W(S, E); F) 
(2d \2r/a2 

d \02S) /2r 2r -2d\ 
= (-- I2- M +-, ) (46) 

where M is the confluent hypergeometric function, and W is plotted 
in Figure 2. 
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66 Make the change in variables: Z-3/S and 

h(Z)-exp[Z]Z-rW 
where 

and 
z-2r/us2. 

Then, substituting in (44), we have the differential equation for h: 

Zh" + ( +2 -Z)h' -2/i= 0, 

whose general solution is h = ciM(2, 2 + y, Z) + cnZ?(+')M(1 -, -y, Z) 
which becomes (46) when the boundary conditions are applied. Analysis of (46) 
shows that W passes through the origin, is convex, and is asymptotic to the line 
(S -d/r) for large S, i.e., it approaches the common stock value less the present 
discounted value of all future dividends forgone by holding the warrant. 172 / ROBERT C. MERTON 



Consider the case of a continuously changing exercise price, E(r), 
where E is assumed to be differentiable and a decreasing function of 
the length of time to maturity, i.e., dE/dr =- dE/dt = - E < 0. 
The warrant price will satisfy (44) with D 0, but subject to the 
boundary conditions, 

W[S, 0; E(O)] = Max [O, S -E(O)] 
and 

W[S, r; E(r)] ? Max [O, S - E(r)]. 

Make the change in variables X = S/E(r) and 

F(X, r)-- W[S, r; E(r)]/E(r ). 
Then, F satisfies 

2a2X2F11 + q(r)XF, - q(r)F - F2 = 0, (47) 

subject to F(X, O) = Max [O, X-1 ] and F(X, r) > Max [O, X-1 ] 
where 7(r) =_ r - /E. Notice that the structure of (47) is identical 
to the pricing of a warrant with a fixed exercise price and a variable, 
but nonstochastic, "interest rate" 7(r). (I.e., substitute in the analy- 
sis of the previous section for P(-r), exp [- foT r(s)ds], except 7(Tr) 
can be negative for sufficiently large changes in exercise price.) We 
have already shown that for JofT 7(s)ds _ 0, there will be no pre- 
mature exercising of the warrant, and only the terminal exercise price 
should matter. Noting that JfoT (s)ds = JfoT [r + dE/dr]ds = rr 
+ log [E(r)/E(O)], formal substitution for P(r) in (38) verifies that 
the value of the warrant is the same as for a warrant with a fixed 
exercise price, E(O), and interest rate r. We also have agreement of the 
current model with (11) of Section 3, because foT rq(s)ds ? 0 im- 
plies E(-r) ? E(O) exp [ - rr], which is a general sufficient condition 
for no premature exercising. 

8. Valuing an 
American put option 

* As the first example of an application of the model to other types 
of options, we now consider the rational pricing of the put option, 
relative to the assumptions in Section 7. In Section 4, it was demon- 
strated that the value of an European put option was completely de- 
termined once the value of the call option is known (Theorem 12). 
B-S give the solution for their model in equation (26). It was also 
demonstrated in Section 4 that the European valuation is not valid 
for the American put option because of the positive probability of 
premature exercising. If G(S, r; E) is the rational put price, then, by 
the same technique used to derive (44) with D = 0, G satisfies 

_"2S2Gii + rSG, - rG -G2 = 0, (48) 

subject to G(cc, T; E) = 0, G(S, 0; E) = Max [0, E - S], and 
G(S, T; E) _ Max [0, E - S]. 

From the analysis by Samuelson and McKean67 on warrants, 
there is no closed-form solution to (48) for finite T. However, using 
their techniques, it is possible to obtain a solution for the perpetual 
put option (i.e., T = co ). For a sufficiently low stock price, it will 
be advantageous to exercise the put. Define C to be the largest value 
of the stock such that the put holder is better off exercising than con- 
tinuing to hold it. For the perpetual put, (48) reduces to the ordinary 

67 In [42]. 
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differential equation, 

2S2Gil + rSG, - rG = 0, (49) 
which is valid for the range of stock prices C < S < co. The bound- 
ary conditions for (49) are: 

G(co, oo; E) = 0, (49a) 

G(C, co; E) = E-C, and (49b) 

choose C so as to maximize the value of the option, which 
follows from the maximizing behavior arguments of the (49c) 
previous section. 

From the theory of linear ordinary differential equations, solu- 
tions to (49) involve two constants, a, and a2. Boundary conditions 
(49a), (49b), and (49c) will determine these constants along with the 
unknown lower-bound, stock price, C. The general solution to (49) is 

G(S, oo; E) = aiS + a2S-e, (50) 

where -y = 2r/o-2 > 0. Equation (49a) requires that a, = 0, and 
(49b) requires that a2 = (E - C)CY. Hence, as a function of C, 

G(S, co; E) = (E - C)(S/C)-,. (51) 

To determine C, we apply (49c) and choose that value of C which 
maximizes (51), i.e., choose C = C* such that aG/aC = 0. Solving 
this condition, we have that C* = yE/(l + y), and the put option 
price is, 

E 
G(S, oo; E) = ( Y [(1 + y)S/lyE]--. (52) 

The Samuelson "high-contact" boundary condition 

G1(C*, oo; E) = - 1, 

as an alternative specification of boundary condition (49c), can be 
verified by differentiating (52) with respect to S and evaluating at 
S = C*. Figure 3 illustrates the American put price as a function of 
the stock price and time to expiration. 

FIGURE 3 

(9 
jE 

C-) 

I, E S <= G (S,r2;E) 

I I ~~~~~~~~~~~~G (S,,rl ; E) 

0 C (r2) C (r1) E 
STOCK PRICE, S 174 / ROBERT C. MERTON 



9. Valuing the "down- 
and-out" call option 

* As a second example of the application of the model to other 
types of options, we consider the rational pricing of a new type of 
call option called the "down-and-outer."68 This option has the same 
terms with respect to exercise price, antidilution clauses, etc., as the 
standard call option, but with the additional feature that if the stock 
price falls below a stated level, the option contract is nullified, i.e., 
the option becomes worthless.69 Typically, the "knock-out" price is a 
function of the time to expiration, increasing as the expiration date 
nears. 

Letf(S, T; E) be the value of an European "down-and-out" call 
option, and B[T] = bEexp [- qT] be the "knock-out" price as a 
function of time to expiration where it is assumed that Xq > 0 and 
O < b < 1. Then f will satisfy the fundamental partial differential 
equation, 

2 "2S2fii + rSfi - rf-f2 0, (53) 

subject to the boundary conditions, 

f(B[T], T; E) = 0 
f(S, 0; E) = Max [0, S - E]. 

Note: if B(T) = 0, then (53) would be the equation for a standard 
European call option. 

Make the change in variables, x log [S/B(T)]; T T2; 

H(x, T) -exp [ax + 'YT]f(S, T; E)/E, 

and a - [r - - -y2/2]/oy2 and y =- r + a2o-2/2. Then, by substitut- 
ing into (53), we arrive at the equation for H, 

i, - H2 = 0 (54) 
subject to 

H(O, T) = 0 
H(x, 0) =eaxMax [0, bex -1], 

which is a standard, semiinfinite boundary value problem to be solved 
by separation of variables or Fourier transforms.70 

Solving (54) and substituting back, we arrive at the solution for 
the "down-and-out" option, 

f(S, T; E) = [S erfc(h1) - Ee-rT erfc(h2)]/2 
- (S/B[T])- [B[T] erfc(h3) -(S/B[T]) EeTrT erfc(h4)]/2, (55) 

68 See Snyder [48] for a complete description. A number of Wall Street houses 
are beginning to deal in this option. See Fortune, November, 1971, p. 213. 

69 In some versions of the "down-and-outer," the option owner receives a 
positive rebate, R(T), if the stock price hits the "knock-out" price. Typically, 
R(T) is an increasing function of the time until expiration [i.e., R'(T) > 0] with 
R(O) = 0. Let g(S, T) satisfy (53) for B(r) < S < oo, subject to the boundary 
conditions (a) g(B[TJ, T) = R(T) and (b) g(S, 0) = 0. Then, F(S, T; E) -g(S, T) 
+ f (S, r; E) will satisfy (53) subject to the boundary conditions (a) F(B[r], r; E) 
= R(T) and (b) F(S, 0; E) = Max [0, S - E]. Hence, F is the value of a "down- 
and-out" call option with rebate payments R(T), and g(S, T) is the additional 
value for the rebate feature. See Dettman [12], p. 391, for a transform solution 
for g(S, r). 

70 See Churchill [9], p. 152, for a separation of variables solution and Dettman 
[12], p. 391, for a transform solution. 
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where 

h -[ log (S/E) + (r + o 2/2)T]/<2o-2'T, 
h2 -[log (S/E) + (r -2/2)T]/<2 2T, 

h3 - [2 log (B[T ]/E) - log (S/E) + (r + (7 2)T]/ 2o2T, 

h4 - [2 log (B[T]/E) - log (S/E) + (r- /2)T]/42 T, 

and 6 2(r - 'q)/of2. Inspection of (55) and (21) reveals that the 
first bracketed set of terms in (55) is the value of a standard call 
option, and hence, the second bracket is the "discount" due to the 
"down-and-out" feature. 

To gain a better perspective on the qualitative differences between 
the standard call option and the "down-and-outer," it is useful to go 
to the limit of a perpetual option where the "knock-out" price is 
constant (i.e., - 0). In this case, (53) reduces to the ordinary 
differential equation 

l,,2S2f"/ + rSf'- rf = 0 (56) 
subject to 

f(bE)= 0 (56a) 
f(S) S I, (56b) 

where primes denote derivatives and f(S) is short forf(S, co; E). By 
standard methods, we solve (56) to obtain 

f(S) = S - bE(S/bE)-Y, (57) 
where -y =2r/f2. Remembering that the value of a standard per- 
petual call option equals the value of the stock, we may interpret 
bE(S/bE)-e as the "discount" for the "down-and-out" feature. 
Both (55) and (57) are homogeneous of degree one in (S, E) as 
are the standard options. Further, it is easy to show that f(S) 
? Max [0, S - E], and although a tedious exercise, it also can be 
shown thatf(S, T; E) > Max [0, S - E]. Hence, the option is worth 
more "alive" than "dead," and therefore, (55) and (57) are the cor- 
rect valuation functions for the American "down-and-outer." 

From (57), the elasticity of the option price with respect to the 
stock price [Sf'(S)/f(S)] is greater than one, and so it is a "levered" 
security. However, unlike the standard call option, it is a concave 
function of the stock price, as illustrated in Figure 4. 

FIGURE 4 
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10. Valuing a callable 
warrant 

* As our third and last example of an application of the model to 
other types of options, we consider the rational pricing of a callable 
American warrant. Although warrants are rarely issued as callable, 
this is an important example because the analysis is readily carried 
over to the valuation of other types of securities such as convertible 
bonds which are almost always issued as callable. 

We assume the standard conditions for an American warrant ex- 
cept that the issuing company has the right to ("call") buy back the 
warrant at any time for a fixed price. Because the warrant is of the 
American type, in the event of a call, the warrant holder has the 
option of exercising his warrant rather than selling it back to the 
company at the call price. If this occurs, it is called "forced con- 
version," because the warrant holder is "forced" to exercise, if the 
value of the warrant exercised exceeds the call price. 

The value of a callable warrant will be equal to the value of an 
equivalent noncallable warrant less some "discount." This discount 
will be the value of the call provision to the company. One can think 
of the callable warrant as the resultant of two transactions: the com- 
pany sells a noncallable warrant to an investor and simultaneously, 
purchases from the investor an option to either "force" earlier con- 
version or to retire the issue at a fixed price. 

Let F(S, T; E) be the value of a callable American warrant; 
H(S, T; E) the value of an equivalent noncallable warrant as ob- 
tained from equation (21), C(S, T; E) the value of the call provision. 
Then H = F + C. F will satisfy the fundamental partial differential 
equation, 

2 2S2Fll + rSF - rF - F2 = 0 (58) 

for 0 < S < S and subject to 

F(O, T; E) = 0, 
F(S, 0; E) = Max[O, S - E] 
F(S, T; E) = Max[K, S - E], 

where K is the call price and S is the (yet to be determined) level of 
the stock price where the company will call the warrant. Unlike the 
case of "voluntary" conversion of the warrant because of unfavorable 
dividend protection analyzed in Section 7, S is not the choice of the 
warrant owner, but of the company, and hence will not be selected 
to maximize the value of the warrant. 

Because C = H - F and H and F satisfy (58), C will satisfy 
(58) subject to the boundary conditions, 

C(0, T; E) = 0 

C(S, 0; E) = 0 

C(S, T; E) = H(S, T; E) - Max[K, S - E]. 

Because S is the company's choice, we append the maximizing condi- 
tion that 3 be chosen so as to maximize C(S, T; E) making (58) a 
well-posed problem. Since C = H - F and H is not a function of S, 
the maximizing condition on C can be rewritten as a minimizing 
condition on F. 

In general, it will not be possible to obtain a closed-form solution 
to (58). However, a solution can be found for the perpetual warrant. 
In this case, we known that H(S, T; E) = S, and (58) reduces to the 
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ordinary differential equation 

!if252SCU + rSC' - rC = 0 (59) 

for O < S < S and subject to 

C(O)= 0 

C(S) = S - Max (K, S - E) 
Choose S so as to maximize C, 

where C(S) is short for C(S, co; E) and primes denote derivatives. 
Solving (59) and applying the first two conditions, we have 

C(S) = (1 - Max[K/S, 1 - E/S])S. (60) 

Although we cannot apply the simple calculus technique for finding 
the maximizing S, it is obviously S = K + E, since for S < K + E, 
C is an increasing function of S and for S > K + E, it is a decreasing 
function. Hence, the value of the call provision is 

/ E 
C(S)= )S, (61) 

\K+E/ 

and because F = H - C, the value of the callable perpetual warrant 
is 

F(S)= (K )ES. (62) 

11. Conclusion * It has been shown that a B-S type model can be derived from 
weaker assumptions than in their original formulation. Themain 
attractions of the model are: (1) the derivation is based on the rela- 
tively weak condition of avoiding dominance; (2) the final formula 
is a function of "observable" variables; and (3) the model can be ex- 
tended in a straightforward fashion to determine the rational price 
of any type option. 

The model has been applied with some success to empirical in- 
vestigations of the option market by Black and Scholes and to war- 
rants by Leonard.7" 

As suggested by Black and Scholes and Merton,72 the model can 
be used to price the various elements of the firm's capital structure. 
Essentially, under conditions when the Modigliani-Miller theorem 
obtains, we can use the total value of the firm as a "basic" security 
(replacing the common stock in the formulation of this paper) and 
the individual securities within the capital structure (e.g., debt, con- 
vertible bonds, common stock, etc.) can be viewed as "options" or 
"contingent claims" on the firm and priced accordingly, So, for ex- 
ample, one can derive in a systematic fashion a risk-structure of 
interest rates as a function of the debt-equity ratio, the risk-class of 
the firm, and the riskless (in terms of default) debt rates. 

Using the techniques developed here, it should be possible to 
develop a theory of the term structure of interest rates along the 

71 In [5] and [25], respectively. 
72 In [4] and [29], respectively. 178 / ROBERT C. MERTON 



lines of Cootner and Merton.73 The approach would also have ap- 
plication in the theory of speculative markets. 

Appendix 174 

U Theorems 9 and 10 state that warrants whose common stock per 
dollar returns possess distributions that are independent of stock 
price levels (henceforth, referred to as D.I.S.P.) are: (1) homoge- 
neous of degree one in stock price S and exercise price E-Theorem 9 
and (2) convex in S-Theorem 10. This appendix exhibits via 
counterexample the insufficiency of the posited assumptions sans 
D.I.S.P. for the proof of Theorems 9 and 10. 

First, we posit a very simple, noncontroversial, one-period 
European warrant pricing function, W: 

r00 

W(S, X) = K (SZ - E)dP(Z; S, X), (Al) 
E/S 

wherein: 1 > K > 0 is a discounting factor which is deemed (some- 
what erroneously) to be constant at this point in time (i.e., in- 
dependent of S), 

XE[0, 1 ] is a parameter of the distribution, dP, 
Z Z + Xg(S)E =Z + U(S, X) -Common stock per (A2 

dollar return, 

Z and E are independent random variables such that E(E I Z) = 0. 

The function g(S) has the following properties for our example: 
dg(S) 

g(S)E(0, 1), ds < 0, dP(Z; S, X) is the Stieltjes integral represen- 

tation of the probability density which is equivalent to the convolu- 
tion of the probability densities of Z and U. 

In constructing the counterexample, we choose the following 
uniform distributions for Z and U: 

f (e) = (1/2) for -1 < K 1 (A3) 

= 0 elsewhere 

1 
(U) = for -Xg(S) < U < Xg(S) 

2Xg(S) 

= 0 elsewhere 

h(Z)= (1/2) for 1<Z<3 

= 0 elsewhere. (A4) 

The convoluted density would then be: 

A(Z;S,A=--- 
dZ 4Xg(S) 

for 1-Xg(S) < Z < 1 + Xg(S) (A5) 

73In [11I] and [29 ], respectively. 
74 I thank B. Goldman of M.I.T. for constructing this example and writing 
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(1/2) for 1 + Xg(S) < Z < 3-Xg(S) 

3 + Xg(S) - Z 

4Xg(S) 

for 3-Xg(S) < Z < 3 + Xg(S) 

- 0 elsewhere. 

As a further convenience, we choose the exercise price, E, to be in 
the neighborhood of twice the stock price, S, and evaluate (Al): 

W(S, X) = K[E2/4S - 3E/2 + 9S/4 + X2g(S)2S/12]. (A6) 

By inspection of (A6), we notice that W is not homogeneous of de- 
gree one in S and E. Moreover, the convexity of W can be violated 

d2 Wneai) (locally) (i.e., dS2 can become negative by choosing a sufficiently 

d2g(S) 
negative dgS 

dS2 

d2W 

dS2 
(A7) 

K(E2/2S3 + X2/6 [2g(S)dg/ds + S- + Sg(S) - d ]T) < 0 
(dS) dS2 _J' 

Thus, our example has shown Theorems 9 and 10 to be not gen- 
erally consistent with a non-D.I.S.P. environment; however, we can 
verify Theorems 9 and 10 for the D.I.S.P. subcase of our example, 
since by construction setting X = 0 reinstates the D.I.S.P. character 
of the probability distribution. By inspection, we observe that when 
X = O, the right-hand side of (A6) is homogeneous of degree one in S 
and E, while the right-hand side of (A7) is KE2/2S3 > 0, verifying the 
convexity theorem. 

Appendix 2 

* It was stated in the text that Theorem 15 is really a special case of 
Theorem 8, i.e., variance is a consistent measure of risk in the B-S 
model. To prove consistency, we use the equivalent, alternative 
definition (Rothschild and Stiglitz')75 of more risky that X is more 
risky than Y if E[X] = E[ Y] and EU(X) < EU(Y) for every con- 
cave function U. 

Since the B-S formula for warrant price, (21), is independent of 
the expected return on the stock and since the stock returns are as- 
sumed to be log normally distributed, different securities are dis- 

tinguished by the single parameter, 0-2. Therefore, without loss of 
generality, we can assume that a = 0, and prove the result by show- 
ing that for every concave U, EU(Z) is a decreasing function of O-, 

where Z is a log-normal variate with E[Z] = 1 and the variance of 

751 In [39]. 180 / ROBERT C. MERTON 



log (Z) equal to v2: 

1 r00 
EU(Z) = - U(Z) exp{ - [logZ + (I/2)of2]2/2,y2} dZ/Z 

I27ro2 0 

1 00 
= 

|27 U(e'- (I/ 2)of2 )e (- 1/ 2)X2dX' 

for x a [log Z + (I /2 )a2 ]/a; 

F00 
OEU(Z)/dOo = 1-00 U'( ) exp[ - (1/2)(x - O)2](X - o)dx 

1 pX j U(eoy+(1I2) f2)ye- 12y2dy, for y x-a- 
i27r Joo 

- Covariance [U'(eoy+ (1/2)cT2), y] 

But, U'( ) is a decreasing function of y by the concavity of U. 
Hence, by Theorem 236, Hardy et al.,76 Cov[U', y] < 0. Therefore, 
OEU/dao < 0 for all concave (I 

76 In [16], p. 168. 
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