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Foreword

The study of financial markets has become one of the most active and pro-
ductive empirical endeavors in the social sciences. A cynic, or a trained
economist, might say that the volume of financial research reflects the high
price that market participants are willing to pay for it, but there are also
deep intellectual reasons for the interest in financial market data.

First, these data are abundant at all frequencies from tick-by-tick data at
one extreme, to century-by-century data at the other, and across multiple
correlated assets. Such data abundance is atypical in the social sciences,
and it compensates to some degree for the fact that the data are generated
by the interactions of investors rather than by controlled experiments.

Second, the uncertainty that financial econometricians face when esti-
mating their models is the same uncertainty that investors face when they
trade in asset markets and determine market prices. As Campbell, Lo,
and MacKinlay (1997) express it, “The random fluctuations that require
the use of statistical theory to estimate and test financial models are inti-
mately related to the uncertainty on which those models are based.” This
gives financial modelling a special relevance to market participants. Intel-
lectually, it poses the challenge of building stochastic equilibrium models
in which the second and higher moments of random shocks determine the
first moments of asset returns.

As financial econometricians have explored the properties of asset return
data over the past 30 years, they have uncovered some fascinating regulari-
ties. First, measured at high frequencies, the distribution of asset returns is
very far from normal; there is excess kurtosis, a strong tendency for returns
to stay either very close to the mean or far from it. Investors were forcefully
reminded of the non-normality of stock returns when stock prices crashed
in October 1987, although the basic facts were already well established in
the academic literature.1 This non-normality diminishes when returns are
measured over longer time intervals.

Second, conditioning information can be used to predict both first and
second moments of asset returns. The predictability in first moments is
subtle, as one would expect given the fundamental insight of the efficient
markets hypothesis, that competition among investors ensures modest trad-
ing profits so that most price variation is driven by the arrival of news. The
predictability in second moments, on the other hand, is obvious even to a

1
I vividly remember delivering a technical lecture on excess kurtosis at Princeton

during the morning of October 19, 1987. A student at the back of the room put up his
hand and said “Professor Campbell, are you aware that the Dow is down 200 points?”
I was not.
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casual observer. A vast literature on this phenomenon has documented that
conditional volatility can move suddenly but also varies persistently, so that
time-varying volatility is apparent both within the trading day and across
decades. Movements in conditional volatility often appear to be correlated
with asset returns themselves.

A direct way to model changing second moments is to write down a
process for the volatility of returns, conditional on past returns and possibly
other information available to an econometrician. In the early 1980’s Robert
Engle followed this direct approach when he proposed the ARCH model.
This seminal contribution was recognized in 2003 by the award to Engle of
the Nobel Memorial Prize in Economic Sciences.

While the ARCH framework is a natural way to model changing volatil-
ity, it does not offer an integrated explanation of return phenomena at dif-
ferent frequencies. It explains high-frequency non-normality by exogenous
non-normal shocks, and persistence of volatility using a slowly decaying
(fractionally integrated) volatility process. Each of these features must be
chosen separately to match different aspects of financial market data.

An alternative approach, which has attracted interest in recent years, is
to write down a process for a latent state variable that is not observable
to the econometrician.2 The simplest version of this “stochastic volatil-
ity” approach assumes that, conditional on the state variable, returns are
normally distributed with a volatility governed by the state variable, and
that the state variable follows a smooth autoregressive process. Since the
state variable is unobserved, returns are not in general normal conditional
on observed information, so in principle a smoothly evolving stochastic
volatility model can explain a wide variety of asset pricing phenomena. In
practice, however, empirical analyses of stochastic volatility models find
that additional jumps are needed to fit the data: jumps in volatility, to
accommodate sudden changes in volatility, and jumps in prices, to gen-
erate the extreme non-normality observed in high-frequency return data.
Correlation between these jumps causes sudden movements in asset prices
to predict subsequent volatility (Duffie, Pan, and Singleton, 2000, Eraker;
Johannes, and Polson, 2003).

Once stochastic volatility is allowed to jump, it becomes natural to con-
sider a discrete-state regime-switching model of the sort introduced to the
economics literature by Hamilton (1988, 1989). Regime-switching models
are particularly appealing because they are tractable both for econome-
tricians and for financial economists solving asset pricing models.3 Given

2
For surveys, see Ghysels, Harvey, and Renault (1996) or Andersen and Benzoni

(2008).
3
Mehra and Prescott (1985) used a regime-switching model in their seminal paper

on the equity premium puzzle. Garcia, Meddahi, and Tédongap (2008) use a regime-
switching model to analyze several models that have been popular in the recent literature
on consumption-based asset pricing.



Foreword xiii

the richness of financial data, however, one would like to allow for many
possible states in volatility. Until recently, this requirement has barred the
use of regime-switching models in volatility modelling, because the number
of parameters in regime-switching models increases with the square of the
number of states, so the models become unusable very quickly as new states
are added.

The research that Laurent Calvet and Adlai Fisher present in this volume
is exciting because it breaks this barrier, and does so in a way that pro-
vides a unified explanation of many of the stylized facts of asset pricing. The
Markov-Switching Multifractal (MSM) model assumes that volatility is the
product of a large number of discrete variables, each of which can randomly
switch to a new value drawn from a common distribution. The variables are
ordered by their switching probability, which increases smoothly from low-
frequency to high-frequency volatility components. Volatility jumps when
a regime switch occurs, and the change in volatility can be extremely per-
sistent if the switch affects a low-frequency component of volatility. The
model has only four parameters even if it has many more volatility compo-
nents and an enormous number of states. This parsimony makes the model
a strong performer in forecasting volatility out of sample.

Because the MSM is easy to embed in a general equilibrium asset pricing
framework, Calvet and Fisher are able to calculate the effects on prices
of jumps in the volatility of fundamentals when investors are risk-averse.
They find that exogenous jumps in fundamental volatility cause endogenous
jumps in asset prices, providing an attractive economic explanation of the
jump correlations documented by Eraker, Johannes, and Polson (2003)
among others.

The appeal of the multifractal approach becomes clear when one con-
siders its various applications together. Calvet, Fisher, and their coauthors
have published a series of papers on multifractal volatility, but the impor-
tance of the work is much easier to see when it is presented in a
unified manner in this volume. Multifractal volatility modelling is a major
advance, and this book is a milestone in the modern literature on financial
econometrics.

John Y. Campbell
Harvard University

June 2008
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1
Introduction

Financial markets are uniquely complicated systems, combining the
interactions of thousands of individuals and institutions and generating
at every instant the prices to buy and sell claims to future uncertain cash
flows. The timing of dividends, coupons, and other payoffs varies widely
across assets, and valuations are correspondingly driven by news as diverse
as short-run weather forecasts (Roll, 1984a) or technological breakthroughs
that may take decades to come to fruition (Greenwood and Jovanovic,
1999; Pastor and Veronesi, 2008). Market participants adopt a variety of
trading strategies and investment horizons. High-frequency speculators,
arbitrageurs, and day traders attempt to exploit opportunities over the
very short run, while insurance companies, pension funds and 401(k) partic-
ipants have investment objectives spanning several decades. Furthermore,
the recent diffusion of algorithmic trading techniques implies that even
long-run investors now routinely engage in sophisticated high-frequency
transactions.

The complexity of asset markets is matched by the rich dynamic proper-
ties of the return data that they produce, and quantifying risk has been for
over a century one of the leading topics of investigation in finance. For some
researchers, the pure scientific challenge of understanding this intricate
environment is sufficient motivation. At the same time, the potential pecu-
niary rewards to improved modeling of financial data are substantial. The
fields of portfolio management and asset pricing require an accurate view of
the statistical properties of asset returns. Risk managers must quantify the
exposure of trading positions and portfolios of contingent claims. Option
values are largely determined by market forecasts of future volatility.
The models we develop in this book capture empirically relevant and
seemingly disparate features of financial returns in a single, parsimonious
framework.

1.1 Empirical Properties of Financial Returns

One well-known property of financial volatility is its persistence. When
returns are substantially positive or negative on a given day, further
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large movements are likely to follow.1 In 1982, Robert Engle concisely
modeled time-varying volatility in his seminal publication on autoregressive
conditional heteroskedasticity (ARCH), which laid the foundation for his
2003 Nobel Memorial Prize in Economic Sciences.2 Subsequent research
showed that volatility clustering can remain substantial over very long hori-
zons (Ding, Granger, and Engle, 1993), and that an accurate representation
may require the possibility of extreme changes, or jumps, in volatility (e.g.,
Duffie, Pan, and Singleton, 2000). Under conditions where volatility is both
highly persistent and highly variable, we should expect volatility fluctua-
tions to have substantial valuation and risk management implications.

Asset prices themselves can change by large amounts in short periods
of time, a phenomenon often described as tail risk. In continuous-time set-
tings, such extreme events can be modeled as jumps (Press, 1967; Merton,
1976), or as sudden bursts of volatility (Mandelbrot and Taylor, 1967;
Rosenberg, 1972; Clark, 1973). In discrete time, postulating a thick-tailed
conditional distribution of returns can achieve a similar effect (Boller-
slev, 1987). Extreme returns have been a pervasive feature of financial
markets throughout their history, and recent turbulence (e.g., Greenspan,
2007) suggests that tail risk will continue to be important in the new
century.

A deeper understanding of financial returns can be obtained by inves-
tigating their characteristics at various frequencies. For instance, the per-
sistence and variability of financial volatility can be apparent whether one
observes returns at intradaily, daily, weekly, monthly, yearly, or decennial
intervals. That is, as casual observation suggests, there are volatile decades
and quiet decades, volatile years and quiet years, and so on. Intuition
suggests that these features are important for volatility forecasting, and
that improved filtering can be used to distinguish between cycles of different
durations.

The multifrequency nature of volatility is consistent with the intuition
that economic shocks have highly heterogeneous degrees of persistence. For
example, liquidity shocks tend to be sudden and transitory, but their dura-
tion is quite random. The liquidity crisis that started in the fall of 2007 is
still in progress as we are writing these lines in April 2008. Volatility also

1Early suggestions of volatility persistence and corroborative empirical evidence for
various financial series appear in Osborne (1962), Mandelbrot (1963), Fama (1965, 1970),
Beaver (1968), Kassouf (1969), Praetz (1969), Fisher and Lorie (1970), Fielitz (1971),
Black and Scholes (1972), Rosenberg (1972), Officer (1973), Hsu, Miller, and Wichern
(1974), Black (1976), Latane and Rendleman (1976), and Schmalensee and Trippi (1978).
Additional evidence is provided by, among others, Akgiray (1989), Baillie and Bollerslev
(1989), Bollerslev (1987), Chou (1988), Diebold and Nerlove (1989), French, Schwert, and
Stambaugh (1987), McCurdy and Morgan (1987), Milhoj (1987), Poterba and Summers
(1986), Schwert (1989), and Taylor (1982).

2See Diebold (2004) for a discussion of Engle’s contributions.
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varies over horizons of a few years, for instance in conjunction with earnings
and business cycles (e.g., Schwert, 1989; Hamilton and Lin, 1996). At longer
horizons, slow variations in macroeconomic volatility, or uncertainty about
oil reserves, technology, and global security can affect volatility over a gen-
eration or longer (e.g., Bansal and Yaron, 2004; Lettau, Ludvigson, and
Wachter, 2004).

This heterogeneity is accompanied by important nonlinearities. For
instance, the unconditional distribution of returns varies nonlinearly as
the frequency of observation changes (e.g., Campbell, Lo, and MacKinlay,
1997, Chapter 1). At short horizons, returns tend to be either close to the
mean or to take large values. By contrast, for longer horizons the bell and
the tails of the return distribution become thinner, while the intermediate
regions gain mass. These nonlinearities are also apparent in the behavior of
return moments, as documented by the expanding literature on power vari-
ation. In many financial series, the moments of the absolute value of returns
vary as a power function of the frequency of observation. Additionally, the
growth rate of the qth moment is a nonlinear and strictly concave function
of q, a feature consistent with the nonlinear variations of the return distri-
bution with the sampling horizon (e.g., Andersen et al., 2001; Barndorff-
Nielsen and Shephard, 2003; Calvet and Fisher, 2002a; Calvet, Fisher, and
Mandelbrot, 1997; Galluccio et al., 1997; Ghashghaie et al., 1996; Pasquini
and Serva, 1999, 2000; Richards, 2000; Vandewalle and Ausloos, 1998;
Vassilicos, Demos, and Tata, 1993).

In equity markets, the unconditional distribution of returns is negatively
skewed, since large negative returns are more frequently observed than large
positive returns. Moreover, as pointed out by Fischer Black (1976), volatil-
ity is typically higher after a stock market fall than after a stock market
rise, so stock returns are negatively correlated with future volatility. Black
hypothesized that this effect could be caused by financial leverage, which
rises after the market value of a firm declines thereby tending to exacerbate
risk in the residual equity claim. The financial leverage channel is gener-
ally regarded as too small, however, to fully account for the skewness of
equity index returns (e.g., Schwert, 1989; Aydemir, Gallmeyer, and Holli-
field, 2006). An alternative explanation focuses on feedback between news
about future volatility and current prices (Abel, 1988; Barsky, 1989; French,
Schwert, and Stambaugh, 1987; Pindyck, 1984). When market participants
revise upward their forecasts of future dividend volatility, they tend to price
down the stock, creating a negative correlation between current returns and
future volatility. Intuition suggests that heterogeneous horizons can play an
important role in this context. High-frequency volatility shocks can capture
the dynamics of typical variations, while lower-frequency movements can
generate extreme returns through the feedback channel. Multifrequency
shocks may therefore be helpful to understanding the skewness and kurtosis
of asset returns.
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1.2 Modeling Multifrequency Volatility

The theme of this book is that a simple class of models provides a parsi-
monious description of the seemingly disparate aspects of financial market
returns discussed above. We have developed this approach in a series of
scientific articles written over the past ten years. The motivation for this
book is to provide a unified treatment that makes it accessible to a wider
audience of practitioners and academics.

The model we describe is based on regime-switching, which was advanced
in economics and finance by the seminal work of James Hamilton (1988,
1989). While the theoretical formulation of regime-switching is very gene-
ral, researchers typically employ only a small number of discrete states
in empirical applications. This partly stems from the common view that
regimes change infrequently. In a general formulation, a more practical limi-
tation is that the transition matrix, and therefore the number of parame-
ters, grows quadratically with the cardinality of the state space. Restric-
tions on switching probabilities offer a natural solution, as pursued, for
example, by Bollen, Gray, and Whaley (2000) in a four-regime model. We
extend this approach by considering a tight set of restrictions inspired by
the multifractal literature.

We start with the assumption that volatility is determined by com-
ponents that have different degrees of persistence. These components
randomly switch over time, generating a volatility process that can be both
highly persistent and highly variable. The transition probabilities are het-
erogeneous across components and follow a tight geometric specification.We
obtain additional parsimony by assuming that when a component switches,
its new value is drawn from a fixed distribution that does not depend on
the frequency. Our model therefore assumes that volatility shocks have the
same magnitude at all time scales. These restrictions, which are inspired by
earlier research on multifractals in the natural sciences, provide parsimony
and appear broadly consistent with financial data at standard confidence
levels.

This specification, which we call the Markov-Switching Multifractal
(MSM), offers a number of appealing features to the practitioner and
applied researcher. Because it is based on a Markov chain, MSM is a highly
tractable multifrequency stochastic volatility model. The empiricist can
apply Bayesian updating to compute the conditional distribution of the
latent state and thus disentangle volatility components of different dura-
tions. Multistep forecasting is convenient, and estimation can be efficiently
conducted by maximizing the likelihood function, which is available in
closed form. In empirical applications, we routinely estimate the 4 param-
eters of MSM for specifications with ten frequencies and over a thousand
states.
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Our research shows that MSM can outperform some of the most reli-
able forecasting models currently in use, including Generalized ARCH
(“GARCH,” Bollerslev, 1986) and related models, both in- and out-of-
sample. These improvements are especially pronounced in the medium and
long run, and have been confirmed and extended in a variety of financial
series (e.g., Bacry, Kozhemyak, and Muzy, 2008; Lux, 2008). MSM also
captures well the power variation or “moment-scaling” of returns, works
equally well in discrete time and in continuous time, and generalizes to
multivariate settings.

To demonstrate some of the properties of the basic MSM approach
and how these are consistent with financial returns, Figure 1.1 shows
a simulation from a simple MSM process estimated later in this book
(Chapter 3) alongside a time series of British pound/U.S. dollar daily
returns. One can see in both figures the long volatility cycles, thick tails,
and presence of multiple frequencies that characterize financial data.
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FIGURE 1.1. Simulated Multifractal Process and British Pound/U.S.
Dollar Exchange Rate. This figure illustrates daily returns from a simulated
Markov-switching multifractal process (top panel) and historical daily returns
from the British pound/U.S. dollar series (bottom panel). The construction of
MSM is described in Chapter 3. The simulation in the top panel is based on eight
volatility components and the maximum likelihood parameter estimates reported
in Chapter 3 for the pound series. The exchange rate data in the second panel
spans from June 1, 1973 to June 28, 2002. Both panels have 7,298 returns.
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1.3 Pricing Multifrequency Risk

We explore the pricing implications of multifrequency risk by embed-
ding MSM within an economic equilibrium framework. We assume that
fundamentals, such as dividend news, are subject to multifrequency volatil-
ity risk, and we value the resulting cash flow stream in a standard
consumption-based model, as developed in Lucas (1978) and surveyed
in Campbell (2003). The assumption that fundamentals are exposed to
multifrequency risk seems reasonable given the heterogeneity of the news
that drive financial returns, and the pervasive evidence of multifractality
in weather patterns and other natural phenomena affecting the economy.
Because MSM has a Markov structure, the resulting equilibrium is tractable
and can be estimated by maximizing the likelihood of the excess return
series, which is again available in closed form.

The MSM equilibrium model can capture the extreme realizations of
actual equity returns. In examples calibrated to U.S. aggregate equity, small
but persistent changes in dividend news volatility generate substantial price
movements, which are comparable in size to the most extreme histori-
cal returns. Multifrequency risk also helps to explain the large difference
between dividend and stock volatility that has long presented a puzzle to
researchers (Shiller, 1981). For instance, in a classic paper John Campbell
and Ludger Hentschel (1992) use a quadratic GARCH specification to fit
dividend news, and show that the variance of returns exceeds the variance
of dividends by about 1 to 2%. They attribute this modest amplification to
the property of GARCH-type specifications that the volatility of volatility
can only be large if volatility itself is large. In our multifrequency environ-
ment, the variance of returns exceeds the variance of dividends by about
20 to 40%, which brings us substantially closer to the amplification levels
observed in practice.

Multifrequency risk is easily incorporated into the drift of fundamen-
tals, such as aggregate consumption and dividend news. As in the work of
Ravi Bansal and Amir Yaron (2004), we can use a reasonable level of risk
aversion to match the equity premium and still generate a substantial
contribution of equilibrium feedback to dividend volatility. The exten-
sion also offers a pure regime-switching formulation of long-run risks in
a multifrequency environment.

In order to match the skewness of equity returns, we consider economies
in which the volatility state is not directly observable by market partici-
pants. We derive the novel theoretical result that investors should learn
abruptly about volatility increases (bad news) but slowly about volatility
decreases (good news). Learning about a volatility increase should be
abrupt because outliers are highly improbable if in fact volatility remains
low. By contrast, realizations near the mean are a likely outcome under
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any volatility scenario, and hence investors should learn slowly about a
volatility decrease. This learning asymmetry is a powerful source of negative
skewness in returns.

Our learning results complement earlier research by Pietro Veronesi on
how information quality affects stock returns. Whereas Veronesi (2000)
considers learning about the latent drift in a two-state Lucas economy, our
investors receive signals about an arbitrary number of dividend volatility
components. By incorporating multiple shocks of heterogeneous durations,
we obtain a structural learning model that can be applied to higher-
frequency stock returns, in contrast to the lower-frequency calibrations
typically considered in the learning literature. More broadly, multifre-
quency equilibrium modeling can be viewed as a first step toward bringing
together the lower-frequency macro-finance and higher-frequency financial
econometrics literatures.

Examining the equilibrium implications of multifrequency risk in con-
tinuous time provides additional insights. We consider an economy in
which consumption and dividends follow continuous Itô diffusions. Markov
switches in the drift or volatility of fundamentals induce endogenous jumps
in equilibrium prices, in contrast to the exogenous price discontinuities typ-
ically postulated in the literature. The multifrequency specification further
generates many small jumps, a few moderate jumps, and rare large jumps,
while also producing additional features such as correlation between jumps
in volatility and prices. Previous literature also emphasizes the empirical
appeal of these properties, but generally assumes that they are exogenous
features of the price process (e.g., Bakshi, Cao, and Chen, 1997; Bates,
2000; Duffie, Pan, and Singleton, 2000; Eraker, 2004; Eraker, Johannes,
and Polson, 2003; Madan, Carr, and Chang, 1998). In our equilibrium,
when the number of volatility components goes to infinity, the stock price
weakly converges to the sum of a continuous multifractal diffusion and an
infinite intensity pure jump process, producing a new stochastic process
that we call a multifractal jump-diffusion.

1.4 Contributions to Multifractal Literature

The research described in this book makes several contributions to the
extensive literature on fractals and multifractals. Earlier work in the
natural sciences had focused on developing multifractal measures to rep-
resent the distribution of physical quantities, such as the distribution of
minerals in the Earth’s crust or the distribution of energy in turbulent
dissipation. New frontiers of research were opened by the development
of multifractal diffusions. Specifically, the Multifractal Model of Asset
Returns (“MMAR,” Calvet, Fisher, and Mandelbrot, 1997) proposed the
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first martingale multifractal diffusion in order to capture the dynamics
of financial prices. The Markov-Switching Multifractal (Calvet and Fisher,
1999, 2001) improves on the MMAR’s combinatorial (also called grid-bound
or cartoon) construction by randomizing news arrival times, guaranteeing
a strictly stationary stochastic process. MSM readily permits estimation
and forecasting through standard econometric techniques, and subsequent
research continues to build on these innovations (Calvet and Fisher, 2004,
2007; Calvet, Fisher, and Thompson 2006; Bacry, Kozhemyak, and Muzy,
2008; Lux, 2008).

MSM establishes a mutually beneficial bridge between multifractality
and general Markov-switching models. Early research on multifractals is
limited to informal visual tests based on moment scaling and power vari-
ation. In contrast, the MSM construction shows that a large class of
multifractal processes can be obtained as high-dimensional cases of general
regime-switching models. As a result, MSM can be estimated by maximum
likelihood, standard errors and hypothesis tests are available, the condi-
tional distribution of the latent state can be inferred at any instant, and
multistep forecasting is convenient. Thus, the development of MSM made
available to the multifractal literature the rigorous statistical foundations of
general Markov-switching processes. Conversely, our research suggests that
the regime-switching literature can benefit from fractal insights. Our four-
parameter Markov specification accommodates arbitrarily many states,
has a dense transition matrix, and works as well or better than mod-
els based on smooth autoregressive transitions. As noted by Hamilton
(2006), specifying high-dimensional Markov-switching models with tight
restrictions on parameters offers a promising new approach to financial
econometrics.

Prior fractal literature emphasizes that the presence of crashes and
outliers should be taken as evidence of a system out of equilibrium
(e.g., Mandelbrot and Hudson, 2004). We suggest in this book that equi-
librium theory and fractal modeling may be complementary in many
instances, and can in fact be fruitfully combined. For instance, incorpo-
rating multifrequency risk in standard asset pricing models provides new
insights into the potential magnitude of the volatility feedback effect, the
skewness of equity returns, and the possibility of large outliers in equili-
brium. Conversely, equilibrium pricing helps to endogenously generate
the multifractal jump-diffusion, which is an entirely novel class of fractal
model.

1.5 Organization of the Book

Part I of the book is devoted to discrete-time models. In Chapter 2,
we review ARCH-type and Markov-switching processes. ARCH and its
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numerous variants, which are now essential to financial market practitioners,
are based on smooth linear variations in volatility and a single decay rate
in basic formulations. Markov-switching models have become increasingly
useful in financial econometrics and represent one of the foundations of our
approach. Chapter 3 introduces the workhorse of the book, the Markov-
Switching Multifractal (MSM), which permits a rich diversity of volatility
shocks. MSM produces good volatility forecasts, especially at longer hori-
zons, and outperforms standard processes in- and out-of-sample. Chapter 4
establishes that the approach easily generalizes to several assets. In an empir-
ical application, multivariate MSM provides reasonable estimates of the
value-at-risk inherent in a single currency or a portfolio of currencies.

Part II shows that multifrequency modeling works equally well in contin-
uous time. Chapter 5 provides background material on self-similar processes
and multifractal measures. Self-similar processes, such as Brownian motion
and Lévy stable processes, assume that the unconditional distribution of
returns is identical across all time horizons, and do not adequately control
for time-varying volatility. These models do, however, foreshadow certain
aspects of the multifrequency approach that we develop in subsequent chap-
ters. Multifractal measures were first applied in the natural sciences, and
provide another building block of the MSM approach. Chapter 6 presents
the earliest multifractal diffusion, the MMAR, defined as a Brownian
motion in trading time, where trading time is the cumulative distribution
function of a multifractal measure obtained by recursively reallocating mass
within a finite time interval.

Chapter 7 shows that the discrete-time MSM approach developed in
Chapter 3 easily extends to continuous time and solves the nonstationar-
ity problems inherent in the MMAR. We demonstrate weak convergence
of the discrete-time construction to the continuous-time process, and the
connection between the parameters is available in closed form. The limit
MSM process contains an infinite number of frequencies and its sample
paths are characterized by a continuum of local scales. Chapter 8 presents
empirical evidence on the power variation of returns at various frequencies
and demonstrates its consistency with the multifractal model.

Part III of the book derives equilibrium implications of multifrequency
volatility. In the discrete-time approach of Chapter 9, we assume that the
volatility of dividend news follows an MSM process and we derive the
endogenous stock return process. We find that variations in multifrequency
volatility shocks can have substantial feedback effects on overall financial
volatility. We also show that learning about volatility is a powerful source
of endogenous skewness in returns, and develop a multifrequency version
of long-run risk. Chapter 10 considers equilibrium stock returns in contin-
uous time, focusing on endogenous jump-diffusions and convergence to a
multifractal jump-diffusion. Unless stated otherwise, all proofs are in the
Appendix.



10 1. Introduction

The book should be accessible to practitioners working on risk manage-
ment and volatility forecasting applications. It is also suited for researchers
in economics, finance, econometrics, and statistics, or natural scientists
and general readers interested in fractal modeling. Graduate students in
economics and finance, as well as advanced undergraduates with solid foun-
dations in econometrics, may find useful ideas and inspiration for future
research.



2
Background: Discrete-Time Volatility
Modeling

In this chapter, we briefly discuss several common approaches to modeling
financial volatility, including GARCH, stochastic volatility, and Markov-
switching formulations. Our goal is not to provide a complete survey, but to
briefly introduce key models that facilitate the development of MSM and pro-
vide comparisons. Excellent surveys of the literature can be found in Boller-
slev, Engle, and Nelson (1994), Engle (2004), Ghysels, Harvey, and Renault
(1996), Hamilton (2006), Hamilton and Raj (2002), and Shephard (2005).

2.1 Autoregressive Volatility Modeling

The most common approach to volatility modeling builds on the general-
ized autoregressive conditional heteroskedasticity (GARCH) class (Engle,
1982; Bollerslev, 1986), in which volatility follows a smooth autoregressive
transition. Let rt denote the log return of a financial asset, such as an
exchange rate, between dates t − 1 and t. Under GARCH(p, q), the return
is specified as

rt = h
1/2
t εt,

where ht denotes the conditional variance of rt at date t − 1, and εt

is an independently and identically distributed (i.i.d.) random variable
with zero mean and unit variance. The conditional variance ht follows the
autoregressive process:

ht = ω +
p∑

i=1

βiht−i +
q∑

j=1

αjr
2
t−j ,

and is therefore a smooth deterministic function of past squared returns.
The noise εt can be a standard normal (Engle, 1982; Bollerslev, 1986).
In order to better capture the outliers of financial series, researchers have
considered numerous extensions where εt has a distribution with thicker
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tails than the Gaussian, such as the Student-t (Bollerslev, 1987), the gen-
eralized error distribution (Nelson, 1991), or nonparametric specifications
(Engle and Gonzalez-Rivera, 1991).1

The GARCH conditional variance ht is known to the econometrician
at date t − 1, and the conditional distribution of the period-t return, rt =
h

1/2
t εt, is a rescaled version of the noise εt. When the specification for εt has

a closed-form density, the conditional distribution of rt and more generally
the likelihood of the return series r1, . . . , rT are available in closed form,
which facilitates maximum likelihood estimation.

Because GARCH variance follows a smooth autoregressive transition,
standard specifications have difficulty capturing the sudden changes in
volatility exhibited by many financial series. For this reason, econometri-
cians have considered extensions, called stochastic volatility models,2 in
which volatility is hit by separate shocks:

ln(ht) = ω +
p∑

i=1

βi ln(ht−i) +
q∑

j=1

αjr
2
t−j + ηt.

The noise ηt is realized at date t jointly with the return rt. If the econometri-
cian has access only to returns, the volatility state is not directly observable
and must be imputed. Consequently, the density of rt = h

1/2
t εt is unavail-

able in closed form and estimation proceeds by moment-based inference or
simulation. As will be discussed in Chapter 3, the multifrequency approach
also incorporates volatility-specific shocks. In contrast to standard stochas-
tic volatility models, however, our model generates a closed-form likelihood,
which permits convenient and efficient likelihood-based estimation.

1Extensions and applications ofGARCH infinance and economics have been the object
of a vast literature, which includes, among many other contributions, Baillie and Bollerslev
(1989), Barone-Adesi, Engle, and Mancini (2008), Bera and Lee (1992), Bollerslev, Chou,
and Kroner (1992), Bollerslev, Engle, and Nelson (1994), Campbell and Hentschel (1992),
Chou, Engle, and Kane (1992), Diebold (1988), Drost and Nijman (1993), Engle (2002a,
2004), Engle and Rangel (2008), Engle and Ng (1993), Engle, Lilien, and Robins (1987),
French, Schwert, and Stambaugh (1987), Gallant and Tauchen (1989), Gallant, Hsieh,
and Tauchen (1991), Gallant, Rossi, and Tauchen (1992, 1993), Geweke (1989), Glosten,
Jagannathan, and Runkle (1993), Gouriéroux and Montfort (1992), Nelson (1989, 1990,
1991), Nijman and Palm (1993), Pagan and Hong (1991), Pagan and Schwert (1990), Rossi
(1996), Schwert (1989), Sentana (1995), and Zakoian (1994).

2Contributions to the stochastic volatility literature include Andersen (1994, 1996),
Andersen and Sørensen (1996), Andersen, Benzoni, and Lund (2002), Bakshi, Cao, and
Chen (1997), Barndorff-Nielsen and Shephard (2001, 2003), Bates (1996), Chernov,
Gallant, Ghysels, and Tauchen (2003), Clark (1973), Eraker (2001), Eraker, Johannes
and Polson (2003), Gallant, Hsieh, and Tauchen (1997), Ghysels, Harvey, and Renault
(1996), Harvey, Ruiz, and Shephard (1994), Heston (1993), Hull and White (1987),
Jacquier, Polson, and Rossi (1994, 2004), Johannes, Polson, and Stroud (2002), Jones
(2003), Kim, Shephard, and Chib (1998), Melino and Turnbull (1990), Renault and
Touzi (1996), Rosenberg (1972), Shephard (2005), Stein and Stein (1991), Taylor (1982,
1986), and Wiggins (1987).
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Standard GARCH models provide good forecasts of short-run volatil-
ity dynamics, but often have difficulties capturing lower-frequency cycles.
Consider, for instance, GARCH(1, 1), which is one of the best perform-
ing models in the GARCH literature (e.g., Akgiray, 1989; Andersen and
Bollerslev, 1998a; Hansen and Lunde, 2005; Pagan and Schwert, 1990; West
and Cho, 1995). Volatility follows

ht = ω + βht−1 + αr2
t−1,

and forward iteration implies

ht = ω + αr2
t−1 + β(ω + αr2

t−2 + βht−2)

=
ω

1 − β
+ α

∞∑

i=1

βi−1r2
t−i.

A volatility shock declines at a single exponential rate β. In practice, this
implies that GARCH(1, 1) picks up the short-run autocorrelation in volatil-
ity but cannot easily capture longer cycles. More generally, stationarity
places practical limits on the type of lower-frequency cycles that can be
captured by a GARCH(p, q) model.

For this reason, econometricians have considered volatility models that
incorporate stronger persistence in squared returns. Specifically, while typ-
ical ARCH/GARCH processes have weak persistence, long memory in
squared returns is a characteristic feature of fractionally integrated GARCH
(Baillie, Bollerslev, and Mikkelsen, 1996)3 and long-memory stochastic
volatility (Breidt, Crato, and de Lima, 1998; Comte and Renault, 1998;
Harvey, 1998; Robinson and Zaffaroni, 1998).4 Long-memory processes cap-
ture very low-frequency cycles in financial or other data by permitting
slowly declining autocorrelations of a hyperbolic form at long horizons. By
contrast, short-memory processes are characterized by the fast exponential
declines of autocorrelations. Long memory was first analyzed in the con-
text of fractional integration of Brownian motion by Mandelbrot (1965a)
and Mandelbrot and van Ness (1968).5 It has been documented in squared
and absolute returns for many financial data sets (Dacorogna et al., 1993;
Ding, Granger, and Engle, 1993; Taylor, 1986). We refer the reader to
Baillie (1996), Beran (1994), and Robinson (2003) for excellent surveys of
long memory in econometrics and statistics.

3Ding and Granger (1996) develop the related Long Memory ARCH process.
4Additional contributions include Deo and Hurvich (2001), Deo, Hurvich, and Lu

(2006), Gonçalves da Silva and Robinson (2007), Hurvich, Moulines, and Soulier (2005),
Hurvich and Ray (2003), Robinson (2001), and Zaffaroni (2007).

5Granger and Joyeux (1980) and Hosking (1981) advanced the use of long memory
in economics by introducing a discrete-time counterpartof fractional Brownian motion,
the autoregressive fractionally integrated moving average (ARFIMA) process.



16 2. Background: Discrete-Time Volatility Modeling

Another important strand of the ARCH literature attempts to jointly
capture volatility dynamics in several financial markets. Multivariate
GARCH, pioneered by Kraft and Engle (1982) and Bollerslev, Engle, and
Wooldridge (1988), is perhaps the most commonly used class of models,
and has been extended in many directions.6 In Chapter 4 we show how to
model multifrequency shocks in a multi-asset environment.

2.2 Markov-Switching Models

In contrast to the GARCH volatility models discussed earlier, stochastic
regime-switching models permit the conditional mean and variance of finan-
cial returns to depend on an unobserved latent “state” that may change
unpredictably. The application of regime-switching models in economics and
finance was pioneered by Hamilton (1988, 1989, 1990), and a rich literature
has emerged.7

The general approach considers a latent state Mt ∈
{
m1, ..., md

}
, where

the positive integer d describes the number of possible states. Returns are
given by

rt = μ(Mt) + σ(Mt) εt,

where μ(Mt) and σ(Mt) are, respectively, the state-dependent conditional
mean and variance of returns. The dynamics of the Markov chain Mt

are fully characterized by the transition matrix A = (ai,j)1≤i,j≤d with
components aij = P(Mt+1 = mj |Mt = mi).

Estimation and forecasting methods for regime-switching models are now
standard. We provide details specific to our setting in the individual chap-
ters, and the interested reader may refer to Hamilton (1994, Chapter 22)
for further discussion of the general approach.

6Examples include Bollerslev (1990), Diebold and Nerlove (1989), Engle (1987,
2002b), Engle and Kroner (1995), Engle and Mezrich (1996), Engle, Ng, and Rothschild
(1990), Kraft and Engle (1982), and Ledoit, Santa-Clara, and Wolf (2003).

7The likelihood-based estimation of Markov-switching processes was developed by
Lindgren (1978) and Baum et al. (1980) in the statistics literature. Hamilton (1988, 1989,
1990) introduced these processes to the economics literature and spurred the development
of a large body of research. Contributions to the original version of the model advance
estimation and testing (Albert and Chib, 1993; Garcia, 1998; Hansen, 1992; Shephard,
1994), and investigate a wide range of empirical applications (e.g., Hamilton, 1988; Garcia
and Perron, 1996). The approach has been extended to incorporate GARCH transitions
(Cai, 1994; Gray, 1996; Hamilton and Susmel, 1994; Kim, 1994; Kim and Nelson, 1999;
Klaassen, 2002), vector processes (Hamilton and Lin, 1996; Hamilton and Pérez-Quirós,
1996), and time-varying transition probabilities (Diebold, Lee, and Weinbach, 1994;
Durland and McCurdy, 1994; Filardo, 1994; Maheu and McCurdy, 2000; Pérez-Quirós
and Timmermann, 2000). See Hamilton and Raj (2002) and Hamilton (2006) for a survey.
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In typical applications, researchers use Markov switching to model
low-frequency variations and rely on other techniques for shorter-run
dynamics. For example, Markov-switching ARCH and GARCH processes
separately specify regime shifts at low frequencies, smooth autoregressive
volatility transitions at midrange frequencies, and a thick-tailed condi-
tional distribution of returns at high-frequency (Cai, 1994; Hamilton and
Susmel, 1994; Gray, 1996; Klaassen, 2002). In Chapter 3, we develop the
Markov-Switching Multifractal approach based on pure regime-switching at
all frequencies, and we compare this model with earlier Markov-switching
formulations.



3
The Markov-Switching Multifractal
(MSM) in Discrete Time

In this chapter, we present the discrete-time version of the main model
in this book, the Markov-Switching Multifractal (MSM). MSM closely
matches the intuition that a range of economic uncertainties with vary-
ing degrees of persistence impact financial markets. Using a tight set
of restrictions inspired by the multifractal literature, we define a pure
regime-switching specification with multiple frequencies, arbitrarily many
states, and a dense transition matrix. The MSM construction is strikingly
parsimonious as it requires only four parameters.

MSM volatility is derived by multiplying together a finite number of
random first-order Markov components. We assume for parsimony that the
volatility components are identical except for differences in their switch-
ing probabilities, which follow an approximately geometric progression.
The construction delivers a multifrequency stochastic volatility model with
a closed-form likelihood, enabling us for the first time to apply a stan-
dard econometric toolkit to estimating and forecasting using a multifractal
model.

An empirical investigation of four daily currency series shows that MSM
performs well in comparison with leading forecasting models, including
GARCH(1,1), both in- and out-of-sample. In the data, MSM has a higher
likelihood than GARCH for all currencies, and the improvement is statisti-
cally significant. Since both models have the same number of parameters, the
multifractal is also preferred by standard selection criteria. Out-of-sample,
MSM matches the accuracy of GARCH forecasts at very short horizons
such as one day, and provides substantially better forecasts at longer hori-
zons, such as 20 to 50 business days. We also demonstrate that the multi-
fractal model improves on Markov-switching GARCH (MS-GARCH) and
fractionally integrated GARCH (FIGARCH) out of sample.

Traditional Markov-switching approaches such as MS-GARCH use
regime-switching only for low-frequency events, while also using linear
autoregressive transitions at medium frequencies and a thick-tailed con-
ditional distribution of returns. By contrast, MSM captures long-memory
features, intermediate frequency volatility dynamics, and thick tails in
returns all with a single regime-switching approach. It is noteworthy that

This chapter is based on an earlier paper: “How to Forecast Long-Run Volatility: Regime-
Switching and the Estimation of Multifractal Processes” (with A. Fisher), Econometrics,
2: 49–83, Spring 2004.
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a single mechanism can play all three of these roles so effectively, and the
innovation that achieves this surprising economy of modeling technique is
based on scale-invariance.

3.1 The MSM Model of Stochastic Volatility

3.1.1 Definition
We consider a financial series Pt defined in discrete time on the regular grid
t = 0, 1, 2, . . . ,∞. In applications, Pt will be the price of a financial asset or
exchange rate. Let rt ≡ ln(Pt/Pt−1) denote the log-return. The economy is
driven by a first-order Markov state vector with k̄ components:

Mt =
(
M1,t;M2,t; . . . ;Mk̄,t

)
∈ R

k̄
+.

The components of Mt have the same marginal distribution but evolve at
different frequencies, as we now explain.

Assume that the volatility state vector has been constructed up to date
t−1. For each k∈{1, . . . , k̄}, the next period multiplier Mk,t is drawn from
a fixed distribution M with probability γk, and is otherwise equal to its
previous value: Mk,t =Mk,t−1. The dynamics of Mk,t can be summarized as

Mk,t drawn from distribution M with probability γk

Mk,t = Mk,t−1 with probability 1 − γk,

where the switching events and new draws from M are assumed to be
independent across k and t. We require that the distribution of M has a
positive support and unit mean: M ≥ 0 and E(M) = 1.

Under these assumptions, the random multipliers Mk,t are persistent and
nonnegative, and satisfy E(Mk,t) = 1. The multipliers differ in their transi-
tion probabilities γk but not in their marginal distribution M . Components
of different frequencies are mutually independent; that is, the variables
Mk,t and Mk′,t′ are independent if k differs from k′. These features greatly
contribute to the parsimony of the model.

We model stochastic volatility by

σ(Mt) ≡ σ̄

⎛

⎝
k̄∏

i=1

Mk,t

⎞

⎠
1/2

,

where σ̄ is a positive constant. Returns rt are then

rt = σ(Mt)εt, (3.1)
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where the random variables {εt} are i.i.d. standard Gaussians N (0, 1). Since
the multipliers are statistically independent, the parameter σ̄ coincides with
the unconditional standard deviation of the innovation rt.

The transition probabilities γ ≡ (γ1, γ2, . . . , γk̄) are specified as

γk = 1 − (1 − γ1)(
bk−1) , (3.2)

where γ1 ∈ (0, 1) and b ∈ (1,∞). This specification was initially introduced
in connection with the discretization of Poisson arrivals with exponentially
increasing intensities, as will be explained Chapter 7.1 Consider a process
with very persistent components and thus a very small parameter γ1. For
small values of k, the quantity γ1b

k−1 remains small, and the transition
probability satisfies

γk ≈ γ1b
k−1.

The transition probabilities of low-frequency components grow approxi-
mately at geometric rate b. At higher frequencies, the rate of increase slows
down, and condition (3.2) guarantees that the parameter γk remains lower
than 1. In empirical applications, it is numerically convenient to estimate
parameters of the same magnitude. Since γ1 < . . . < γk̄ < 1 < b, we choose
(γk̄, b) to specify the set of transition probabilities.

We call this construct the Markov-Switching Multifractal (or Markov-
Switching Multifrequency) process. The notation MSM(k̄) refers to versions
of the model with k̄ frequencies, and we view the choice of k̄ as a model
selection problem. Economic intuition suggests that the multiplicative
structure (3.1) is appealing to model the high variability and high volatility
persistence exhibited by financial time series. When a low-level multiplier
changes, volatility varies discontinuously and has strong persistence. In
addition, high-frequency multipliers produce substantial outliers.

MSM imposes only minimal restrictions on the marginal distribution of
the multipliers: M ≥ 0 and E (M) = 1, allowing flexible parametric or
nonparametric specifications of M . A simple example is binomial MSM, in
which the random variable M takes only two values, m0 or m1. For simpli-
city, we often assume that these two outcomes occur with equal probability,
which implies that m1 = 2 − m0. The full parameter vector is then

ψ ≡ (m0, σ̄, b, γk̄) ∈ R
4
+,

where m0 characterizes the distribution of the multipliers, σ̄ is the uncondi-
tional standard deviation of returns, and b and γk̄ define the set of switching
probabilities.

1
In continuous time, we will consider Poisson arrivals of intensity λ1bk−1, k ∈

{1, . . . , k̄}. Correspondingly, the discretized process on a grid of step size Δt has
transition probabilities γk = 1 − exp(−λ1bk−1Δt), which satisfies (3.2).
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We can naturally consider other parametric specifications for the dis-
tribution M . For example, multinomial MSM extends binomial MSM by
allowing any discrete distribution satisfying the positivity and unit mean
requirements. Continuous densities can also be useful. In Chapters 7 and 8
we assume that the distribution of M is lognormal, which defines lognor-
mal MSM. In the remainder of Chapter 3 and in Chapter 4, we will see
that even the simplest version of binomial MSM with equal probabilities is
sufficient to produce good results in- and out-of-sample.

3.1.2 Basic Properties
MSM(k̄) permits the parsimonious specification of a high-dimensional state
space. Assume, for instance, that the distribution M is a binomial. Each
volatility component Mk,t is either high or low, and the state vector Mt can
take 2k̄ possible values. We will routinely work with models that have 10
components, or 210 = 1,024 states. MSM is also remarkably parsimonious.
In a general Markov chain, the size of the transition matrix is equal to
the square of the number of states. For instance, a Markov chain with 210

states generally needs to be parametrized by 210×210 or more than a million
elements. In contrast, binomial MSM only requires four parameters.

Because binomial MSM is a pure regime-switching model, we can use all
the tools that commonly apply to this class of processes. In the next sec-
tion, we will review Bayesian updating and write the closed-form likelihood
function. This book therefore brings to the literature a class of stochas-
tic volatility models that have multiple degrees of persistence and can
be estimated by maximum likelihood. The approach also creates a bridge
between Markov-switching and multifractals, and permits the application
of standard inference techniques to multifractal processes. The connection
between fractal modeling and MSM will become more apparent in Part II.

A representative return series is illustrated in Figure 3.1. The graph
reveals large heterogeneity in volatility levels and substantial outliers. This
is notable since the return process has by construction finite moments of
every order. It would be easy to obtain thick tails by considering i.i.d. shocks
εt with Paretian distributions. In this chapter, however, we focus on the
Gaussian case for several reasons. First, the likelihood is then available
in closed form. Second, we will show that even when εt is Gaussian, high-
frequency regime switches are sufficient to mimic in finite samples the heavy
tails exhibited by financial data. Finally, the basic specification performs
well relative to existing competitors and provides a useful benchmark for
future refinements.

3.1.3 Low-Frequency Components and Long Memory
The MSM construction permits low-frequency regime shifts and long
volatility cycles in sample paths. We will see that in exchange rate series,
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FIGURE 3.1. Simulated MSM Process. This figure illustrates the simulated
log-returns of a binomial Markov-switching multifractal. The process has k̄ = 8
frequencies and parameter values m0 = 1.4, σ̄ = 0.5, γk̄ = 0.95, and b = 3. These
parameter values are roughly consistent with estimates reported in later sections
of the chapter.

the duration of the most persistent component, 1/γ1, is typically of the
same order as the length of the data. Estimated processes thus tend to
generate volatility cycles with periods proportional to the sample size, a
property also apparent in the sample paths of long-memory processes. As
seen in Chapter 2, long memory is often defined by a hyperbolic decline in
the autocovariance function as the lag goes to infinity. Fractionally inte-
grated processes generate such patterns by assuming that an innovation
linearly affects future periods at a hyperbolically declining weight. We now
show that over a large range of intermediate lags, MSM similarly provides a
slow decline in autocovariances, and hence mimics a defining characteristic
of long memory with a Markov regime-switching mechanism that also gives
abrupt volatility changes.

Consider a fixed parameter vector ψ, and for every moment q ≥ 0 and
every integer n, define the autocorrelation in levels:

ρq(n) = Corr(|rt|q , |rt+n|q).

Let α1 < α2 denote two arbitrary numbers in the open interval (0, 1). The
set of integers

Ik̄ = {n : α1 logb(b
k̄) ≤ logb n ≤ α2 logb(b

k̄)}

contains a broad collection of lags. In the Appendix, we show the following:

Proposition 1 (Long-memory feature) The autocorrelation in levels
satisfies

sup
n∈Ik̄

∣∣∣∣
ln ρq(n)
lnn−δ(q) − 1

∣∣∣∣ → 0 as k̄ → +∞,

where δ(q) = logb E(Mq) − logb

{
[E(Mq/2)]2

}
.
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Multifrequency volatility is therefore consistent over a large range of lags
with the hyperbolic autocorrelation exhibited by many financial series.2

The proof of this result builds on the decomposition of log autocorrela-
tion:

ln ρq(n) ≈
k̄∑

k=1

ln
E(Mq/2

k,t M
q/2
k,t+n)

E(Mq)
,

and the mean-reversion property:

E(Mq/2
k,t M

q/2
k,t+n) = E(Mq)(1 − γk)n + [E(Mq/2)]2[1 − (1 − γk)n].

We infer:

ln ρq(n) ≈
k̄∑

k=1

ln
1 + (bδ(q) − 1)(1 − γ∗)nbk−k̄

bδ(q) , (3.3)

where the transition probability γ∗ = γk̄ is a fixed parameter. For any n ∈
Ik̄, consider k(n) such that nbk(n)−k̄ ≈ 1, or equivalently k(n) ≈ k̄−logb(n).
The kth addend in (3.3) is negligible if k < k(n), and close to −δ(q) ln b if
k > k(n), implying

ln ρq(n) ≈ −δ(q)[k̄ − k(n)] ln b,

or ln [ρq(n)] ≈ −δ(q) ln n. We also note that for n sufficiently large, the
autocorrelation transitions smoothly from a hyperbolic to an exponential
rate of decline.

The proof of Proposition 1 is reminiscent of Granger (1980) and Robinson
(1978), who generate long memory by aggregating first-order autoregressive
processes with heterogeneous coefficients.3 MSM components are similarly
mean-reverting with diverse decay rates, and their product correspondingly
exhibits hyperbolic decay. The result also complements earlier research
that has emphasized the difficulty of distinguishing between long mem-
ory and structural change in finite samples (e.g., Bhattacharya, Gupta,
and Waymire, 1983; Diebold and Inoue, 2001; Granger and Hyung, 1999;
Hidalgo and Robinson, 1996; Klemeš, 1974; Künsch, 1986; Lobato and
Savin, 1997). The structure provided by MSM permits direct analysis of
the approximate shape of the autocorrelation function, and allows us to
identify the region of lags in which long memory-like behavior holds.

2
See, for instance, Dacorogna et al. (1993), Ding, Granger, and Engle (1993), Baillie,

Bollerslev, and Mikkelsen (1996), and Gouriéroux and Jasiak (2002).
3
Ding and Granger (1996) use similar aggregation insights to specify a model of

long-memory volatility.
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MSM thus illustrates that a Markov chain can imitate one of the defining
features of long memory, a hyperbolic decline of the autocovariogram.4 The
combination of long-memory behavior with sudden volatility movements in
MSM has a natural appeal for financial econometrics.

3.2 Maximum Likelihood Estimation

When the multiplier M has a discrete distribution, there exist a finite
number of volatility states. Standard filtering methods then provide the
likelihood function in closed form.

3.2.1 Updating the State Vector
We assume in this section and the rest of the chapter that the distribution
M is discrete. The Markov state vector Mt then takes finitely many values
m1, . . . , md ∈ R

k̄
+, and its dynamics are characterized by the transition

matrix A = (ai,j)1≤i,j≤d with components aij = P(Mt+1 = mj
∣∣ Mt = mi).

Conditional on the volatility state, the return rt has Gaussian density
frt

(
r
∣∣Mt = mi

)
= n

[
r;σ2

(
mi

)]
, where n

(
.;σ2

)
denotes the density of

a centered normal with variance σ2. The econometrician does not directly
observe Mt but can compute the conditional probabilities

Πj
t ≡ P

(
Mt = mj |r1, . . . , rt

)
. (3.4)

We can stack these probabilities in the row vector Πt =
(
Π1

t , . . . ,Π
d
t

)
∈ R

d
+.

The conditional probability vector is computed recursively. By Bayes’
rule, Πt can be expressed as a function of the previous belief Πt−1 and the
innovation rt:

Πt =
ω(rt) ∗ (Πt−1A)

[ω(rt) ∗ (Πt−1A)]1′ , (3.5)

where 1 = (1, . . . , 1) ∈ R
d, x ∗ y denotes the Hadamard product

(x1y1, . . . , xdyd) for any x, y ∈ R
d, and

ω(rt) =
(
n

[
rt;σ2 (

m1)] , . . . , n
[
rt;σ2 (

md
)])

.

These results are familiar in regime-switching models. In empirical appli-
cations, the initial vector Π0 is chosen to be the ergodic distribution of

4
Liu (2000) provides an example of long memory in a non-Markovian regime-

switching environment. The model assumes independently drawn regimes with inter-
arrival times drawn from a thick-tailed infinite variance distribution, which requires
history dependence in transition probabilities.
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the Markov process. Since the multipliers are mutually independent, the
ergodic distribution is given by Πj

0 =
∏k̄

l=1 P(M = mj
l ) for all j.

The multifrequency model can generate rich forecast dynamics. Consider
the vector of past and current returns

Rt = {r1, . . . , rt} .

For each k, the n-step component forecast E(Mk,t+n|Rt) monotonically
reverts to E(M) = 1 as the time horizon n increases, but the volatility fore-
casts E

(
σ2 (Mt+n) |Rt

)
need not be monotonic in n. Consider, for instance,

a state Mt with a low value of the transitory component Mk̄,t, and high
values of M1,t, . . . , Mk̄−1,t. In such a state, current volatility σ2 (Mt) is
high, but the volatility forecast E(σ2 (Mt+n) |Mt) can increase with n in
the short run before decreasing toward the long-run mean σ̄2 at longer
horizons. This suggests that MSM can provide finer filtering and forecasts
than a unifrequency model.

3.2.2 Closed-Form Likelihood
Having solved the conditioning problem, we easily check that the log-
likelihood function is

lnL (r1, . . . , rT ;ψ) =
T∑

t=1

ln[ω(rt) · (Πt−1A)],

where x · y denotes the inner product x1y1 + · · · + xdyd for any x, y ∈ R
d.

For a fixed k̄, we know that the maximum likelihood (ML) estimator
is consistent and asymptotically efficient as T → ∞. The parsimonious
parameterization of the transition matrix represents an important differ-
ence between MSM and standard Markov-switching models. This allows us
to estimate MSM with reasonable precision even under a very large state
space. While the Expectation Maximization (EM) algorithm (Hamilton,
1990) is not directly applicable to constrained transition probabilities, we
have shown in Calvet and Fisher (2004) that numerical optimization of the
likelihood function produces good results. Specifically, ML estimation of
the parameters m0, σ̄, b, and γk̄ of binomial MSM and model selection for
the number of frequency components k̄ produce reliable results in finite
samples of the size considered in this book.

3.3 Empirical Results

Using a binomial specification for the multiplier M , we apply ML estima-
tion to four exchange rate series and obtain preferred specifications with a
large number of volatility frequencies.
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3.3.1 Currency Data
The empirical analysis uses daily exchange rate data for the Deutsche mark
(DM), Japanese yen (JA), British pound (UK), and Canadian dollar (CA),
all against the U.S. dollar. The data consists of daily prices reported at noon
by the Federal Reserve Bank of New York. The fixed exchange rate system
broke down in early 1973, and the DM, JA, and UK series accordingly begin
on 1 June 1973. The CA series starts a year later (1 June 1974) because
the Canadian currency was held essentially at parity with the U.S. dollar
for several months after the demise of Bretton Woods. The Deutsche mark
was replaced by the euro at the beginning of 1999. The DM data thus ends
on 31 December 1998, while the other three series run until 30 June 2002.
Overall, the series contains 6,420 observations for the Deutsche mark, 7,049
observations for the Canadian dollar, and 7,299 observations for the yen
and the pound.

Figure 3.2 illustrates the daily returns of each series and shows apparent
volatility clustering at a range of frequencies. For each series, we compute
in Table 3.1 the standard deviation of returns over the entire sample and
over four subsamples of equal length. The sample standard deviation varies
substantially across subperiods, consistent with the low-frequency regime
shifts in MSM.

3.3.2 ML Estimation Results
Table 3.2 reports ML estimation results for all four currencies. The columns
of the table correspond to the number of frequencies k̄ varying from 1 to
10. The first column is a standard Markov-switching model with only two
possible values for volatility. As k̄ increases, the number of states increases
at the rate 2k̄. There are thus over one thousand states when k̄ = 10.

TABLE 3.1. Currency Volatility

Standard Deviations of Daily Returns (%)

By SubperiodEntire
Sample 1 2 3 4

DM 0.664 0.587 0.716 0.708 0.635
JA 0.657 0.545 0.640 0.646 0.775
UK 0.607 0.486 0.724 0.699 0.473
CA 0.274 0.220 0.255 0.284 0.327

Notes: For each currency, this table reports the standard deviation of daily returns in
percent over the entire subsample and over four evenly spaced subsamples. The Deutsche
mark (DM) series begins on 1 June 1973 and ends on 31 December 1998. The Japanese
yen (JA) and British pound (UK) samples span 1 June 1973 to 31 December 2002. The
Canadian dollar (CA) series begins 1 June 1974 and ends 31 December 2002. The results
show that the variability of return variance is substantial even at very low frequencies.
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FIGURE 3.2. Daily Currency Returns. This figure illustrates the daily log-
returns, in percent, of four exchange rate series. The Japanese yen and British
pound run from 1 June 1973 to 31 December 2002. The Canadian dollar was held
essentially at parity with the U.S. dollar shortly after the demise of the Bretton
Woods system, and our sample therefore starts on 1 June 1974. The Deutsche
mark was replaced by the euro at the beginning of 1999, and the series ends on
31 December 1998.



TABLE 3.2. Maximum Likelihood Results

k̄ = 1 2 3 4 5 6 7 8 9 10

Deutsche Mark/U.S. Dollar

m̂0 1.654 1.590 1.555 1.492 1.462 1.413 1.380 1.353 1.351 1.326
(0.013) (0.012) (0.013) (0.013) (0.012) (0.013) (0.012) (0.011) (0.013) (0.015)

σ̂ 0.682 0.651 0.600 0.572 0.512 0.538 0.547 0.550 0.674 0.643
(0.012) (0.018) (0.014) (0.016) (0.018) (0.026) (0.021) (0.025) (0.035) (0.073)

γ̂k̄ 0.075 0.107 0.672 0.714 0.751 0.858 0.932 0.974 0.966 0.959
(0.011) (0.022) (0.151) (0.096) (0.106) (0.128) (0.071) (0.042) (0.065) (0.066)

b̂ − 8.01 21.91 10.42 7.89 5.16 4.12 3.38 3.29 2.70
(2.58) (7.30) (1.92) (1.31) (0.76) (0.48) (0.36) (0.47) (0.36)

ln L −5920.86 −5782.96 −5731.78 −5715.31 −5708.25 −5706.91 −5704.48 −5704.77 −5704.86 −5705.09

Japanese Yen/U.S. Dollar

m̂0 1.797 1.782 1.693 1.654 1.640 1.573 1.565 1.513 1.475 1.448
(0.011) (0.009) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.011)

σ̂ 0.630 0.538 0.566 0.462 0.709 0.642 0.518 0.514 0.486 0.461
(0.011) (0.009) (0.017) (0.013) (0.023) (0.023) (0.018) (0.020) (0.026) (0.036)

γ̂k̄ 0.199 0.345 0.312 0.697 0.778 0.899 0.897 0.975 0.995 0.998
(0.019) (0.033) (0.054) (0.080) (0.076) (0.060) (0.057) (0.034) (0.010) (0.006)

b̂ − 134.20 12.46 15.58 16.03 8.07 7.46 5.65 4.43 3.76
(48.27) (2.18) (2.67) (2.67) (1.03) (0.89) (0.78) (0.53) (0.45)

ln L −6451.80 −6102.18 −5959.72 −5900.67 −5882.93 −5871.35 −5867.88 −5863.20 −5863.01 −5862.68
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British Pound/U.S. Dollar

m̂0 1.716 1.671 1.648 1.609 1.579 1.534 1.503 1.461 1.428 1.403
(0.012) (0.011) (0.011) (0.011) (0.011) (0.012) (0.012) (0.011) (0.011) (0.009)

σ̂ 0.609 0.590 0.513 0.467 0.421 0.468 0.389 0.384 0.374 0.370
(0.009) (0.011) (0.016) (0.016) (0.017) (0.019) (0.014) (0.015) (0.022) (0.022)

γ̂k̄ 0.110 0.222 0.278 0.645 0.637 0.784 0.811 0.958 0.964 0.982
(0.017) (0.034) (0.052) (0.080) (0.075) (0.078) (0.083) (0.052) (0.043) (0.031)

b̂ − 19.90 14.29 12.51 11.02 8.32 6.72 5.23 4.08 3.45
(5.19) (2.58) (2.00) (1.74) (1.15) (0.91) (0.69) (0.41) (0.32)

ln L −5960.18 −5724.37 −5622.73 −5570.02 −5537.80 −5523.64 −5516.89 −5515.37 −5515.28 −5514.94

Canadian Dollar/U.S. Dollar

m̂0 1.646 1.556 1.474 1.435 1.386 1.374 1.338 1.319 1.296 1.278
(0.012) (0.012) (0.014) (0.015) (0.012) (0.013) (0.012) (0.016) (0.013) (0.012)

σ̂ 0.280 0.278 0.293 0.263 0.251 0.295 0.282 0.262 0.259 0.262
(0.005) (0.006) (0.014) (0.009) (0.010) (0.011) (0.013) (0.017) (0.015) (0.021)

γ̂k̄ 0.064 0.109 0.129 0.171 0.441 0.524 0.593 0.594 0.631 0.644
(0.009) (0.016) (0.040) (0.062) (0.153) (0.128) (0.145) (0.151) (0.155) (0.158)

b̂ − 10.92 4.76 3.95 4.02 4.08 3.11 2.72 2.35 2.11
(3.12) (1.15) (0.83) (0.76) (0.58) (0.39) (0.39) (0.25) (0.18)

ln L −271.01 −129.80 −105.16 −91.32 −88.41 −84.73 −84.03 −83.40 −83.06 −83.00

Notes: This table reports maximum likelihood estimates of binomial MSM for the four exchange rate series. The estimates are based on daily
log returns in percent. Each column corresponds to a given number of components k̄ in the MSM specification. The likelihood function increases
monotonically in the number of volatility components for all currencies except the Deutsche mark, which peaks at k̄ = 7. Asymptotic standard
errors are in parentheses.
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We begin by examining the DM data. The multiplier parameter m̂0 tends
to decline with k̄ because with a larger number of components, less variabil-
ity is required in each Mk,t to match the fluctuations in volatility exhibited
by the data. The estimates of σ̂ vary across k̄ with no particular pattern.
Standard errors of σ̂ increase with k̄, consistent with the idea that long-run
averages are difficult to identify in models permitting long volatility cycles.
We next examine the frequency parameters γ̂k̄ and b̂. When k̄ = 1, the sin-
gle multiplier has a duration slightly lower than two weeks. As k̄ increases,
the switching probability of the highest frequency multiplier increases until
a switch occurs about once a day for large k̄. At the same time, the esti-
mate b̂ decreases steadily with k̄. When k̄ = 10, we infer from (3.2) that
the lowest frequency multiplier has a duration approximately equal to ten
years, or about one-third the sample size. Thus, as k̄ increases, the range
of frequencies spreads out, while the spacing between frequencies becomes
tighter.

The other currencies generate parameter estimates with similar proper-
ties. In all cases, m̂0 tends to decrease with k̄. The values of m̂0, and thus the
importance of stochastic volatility, are largest for JA and UK and smallest
for CA. Variability across k̄ in the estimates of σ̂ is also greatest for JA and
UK and least for CA. As k̄ increases, the most transitory multiplier switches
more often and the spacing between frequencies becomes tighter for all cur-
rencies. The most persistent multiplier has the longest duration for the yen at
approximately three times the sample size and the smallest for the Canadian
dollar at approximately one-tenth the sample size.

For large k̄, the estimated MSM
(
k̄
)

processes generate substantial out-
liers despite having finite moments of every order. For each currency, we
use the estimated process with k̄ = 10 frequencies to generate ten thousand
paths of the same length as the data, and we compute a Hill (1975) tail
index α for each simulated path.5 Basing the index on 100 order statistics,
the empirical tail index and the average α in the simulated samples are,
respectively, equal to 4.74 and 4.34 (DM), 3.91 and 3.75 (JA), 4.59 and 4.03

5
The tail index measures the rate of decline in the extremes of a distribution. For

example, given a Paretian tail satisfying P (X > x) ∼ kx−α for large x, the characteristic
exponent, or tail index, is α, and only moments of order up to α are finite. If Xn1 ≤
Xn2 ≤ . . . ≤ Xnn are the order statistics of {Xt}n

t=1 in ascending order, then Hill’s
(1975) tail estimator is

α̂s =

⎛
⎝1

s

s∑
j=1

ln Xn,n−j+1 − ln Xn,n−s

⎞
⎠

−1

.

This estimator is consistent and asympotically normal (Hall, 1982). Related estimators
of the tail index are proposed by Pickands (1975) and de Haan and Resnick (1980).
Applications in finance and extensions include Gabaix et al. (2003, 2006), Hols and de
Vries (1991), Jansen and de Vries (1991), Kearns and Pagan (1997), Loretan and Phillips
(1994), Quintos, Fan, and Phillips (2001), and Wagner and Marsh (2005).
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(UK), and 4.40 and 4.79 (CA). Furthermore, for all currencies we cannot at
the 10% level reject equality of the simulated and empirical tail statistics.
This result is caused by the variations in volatility in the estimated models.
The distribution of returns in MSM is a mixture of Gaussians, which has
finite moments of every order. With the highest frequency multipliers tak-
ing new values almost daily, this mixture appears to be more than sufficient
to capture the tail characteristics of the data, even in a sample containing
thirty years of daily observations.6

We finally examine the behavior of the log-likelihood function as the
number of frequencies k̄ increases from 1 to 10. For each currency, the
likelihood goes up substantially at low k̄ and in most cases continues to
increase at a decreasing rate. The only exception to the monotonic increase
in likelihood occurs in the DM series, for which the likelihood reaches a peak
at k̄ = 7. In all other cases, the likelihood reaches a maximum at k̄ = 10.
This behavior of the likelihood confirms that fluctuations in volatility occur
with heterogeneous degrees of persistence, and explicitly incorporating a
larger number of frequencies results in a better fit.

3.3.3 Model Selection
We now examine the statistical significance of the differences in likelihoods
across estimated MSM(k̄) processes. Consider two models MSM(k̄) and
MSM(k̄′), k̄ 
= k̄′, with respective densities f and g. The processes are
nonnested and have log-likelihood difference:

√
T (lnLf

T − lnLg
T ) =

1√
T

T∑

t=1

ln
f(rt |r1, . . . , rt−1 )
g(rt |r1, . . . , rt−1 )

.

Consider the null hypothesis that the models have identical unconditional
expected log-likelihoods. When the observations {rt} are i.i.d., Vuong (1989)
shows that the difference ln Lf

T − lnLg
T is asymptotically normal under the

null. In addition, the variance of this difference is consistently estimated by
the sample variance of the addends ln[f(rt |r1, . . . , rt−1 )/g(rt |r1, . . . , rt−1 )].
Since the observations {rt} are typically not i.i.d. in financial applications,
in the Appendix we construct a heteroskedasticity and autocorrelation con-
sistent (HAC) version of the Vuong test. Our discussion is a simplified version
of the broader approach proposed by Rivers and Vuong (2002).

For each k̄ ∈ {1, . . . , 9}, we test in Table 3.3 the null hypothesis that
MSM(k̄) and MSM(10) fit the data equally well. Since HAC-adjusted

6
An extensive literature investigates the close connection between mixtures and fat

tails. For instance, Student and Cauchy distributions can be represented as mixtures of
normals (e.g., Andrews and Mallows, 1974; Blattberg and Gonedes, 1974; Praetz, 1972),
and the distinction between mixtures and Paretian distributions is therefore difficult to
make in practice (e.g., Kon, 1984). Furthermore, MSM mimics long-memory behavior,
which impacts tail index estimation (e.g., Kearns and Pagan, 1997).



TABLE 3.3. MSM Model Selection

k̄ = 1 2 3 4 5 6 7 8 9

A. Vuong (1989) Test

DM −8.655 −5.523 −2.972 −1.858 −0.688 −0.733 0.341 0.204 0.337
(0.000) (0.000) (0.001) (0.032) (0.246) (0.232) (0.633) (0.581) (0.632)

JA −13.067 −8.406 −5.342 −3.154 −2.156 −1.192 −1.108 −0.180 −0.162
(0.000) (0.000) (0.000) (0.001) (0.016) (0.117) (0.134) (0.429) (0.436)

UK −11.810 −8.337 −6.267 −4.360 −2.984 −1.334 −0.408 −0.149 −0.236
(0.000) (0.000) (0.000) (0.000) (0.001) (0.089) (0.342) (0.441) (0.407)

CA −8.475 −4.421 −3.289 −1.795 −2.108 −0.862 −0.825 −0.472 −0.158
(0.000) (0.000) (0.000) (0.036) (0.017) (0.194) (0.205) (0.318) (0.437)

B. HAC-Adjusted Vuong Test

DM −4.285 −3.033 −1.683 −1.101 −0.402 −0.424 0.197 0.120 0.194
(0.000) (0.001) (0.046) (0.135) (0.344) (0.336) (0.578) (0.548) (0.577)

JA −5.219 −4.262 −2.865 −1.645 −1.224 −0.648 −0.663 −0.105 −0.098
(0.000) (0.000) (0.002) (0.050) (0.111) (0.259) (0.254) (0.458) (0.461)

UK −3.788 −2.804 −2.803 −2.195 −1.759 −0.779 −0.242 −0.088 −0.137
(0.000) (0.003) (0.003) (0.014) (0.039) (0.218) (0.404) (0.465) (0.446)

CA −4.237 −2.383 −1.789 −1.019 −1.150 −0.480 −0.445 −0.276 −0.091
(0.000) (0.009) (0.037) (0.154) (0.125) (0.316) (0.328) (0.391) (0.464)

Notes: This table reports t-ratios and one-sided p-values for the log-likelihood difference of the model in each column against MSM with 10
frequencies. Panel A uses the Vuong (1989) methodology, and Panel B adjusts for heteroskedasticity and autocorrelation using Newey and West
(1987, 1994). A low p-value indicates that the corresponding model would be rejected in favor of MSM with 10 frequencies.
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tests tend to perform poorly in small samples,7 we compute t-ratios and
one-sided p-values using both the original and the HAC-adjusted methods.
For k̄ ∈ {1, 2, 3}, the log-likelihood difference is significant at the 1% level
in the nonadjusted case (Table 3.3A) and at the 5% level in the HAC case
(Table 3.3B). This represents strong evidence that MSM(10) significantly
outperforms models with one to three frequencies. For k̄ ∈ {4, 5}, we reject
the null at the 5% (nonadjusted) and 20% (HAC-adjusted) levels in almost
all cases. These results provide substantial evidence that MSM(10) out-
performs models with four or five frequencies. Lower significance levels are
obtained for larger values of k̄, and the overall conclusion is that MSM
works better for larger numbers of frequencies. For this reason and for con-
sistency in the remaining analysis, we henceforth focus on the MSM(k̄ = 10)
process for all currencies.

3.4 Comparison with Alternative Models

We now compare the multifractal model with GARCH(1,1) and Markov-
switching GARCH, which are among the best traditional models for
volatility forecasting. The multifractal is then compared with fractionally
integrated GARCH in order to assess the connection between long memory
and forecasting performance.

The alternative processes have the form rt = h
1/2
t εt, where ht is the

conditional variance of rt at date t − 1, and {εt} are i.i.d. Student innova-
tions with unit variance and ν degrees of freedom. GARCH(1,1) assumes
the recursion ht+1 = ω + αr2

t + βht, as described in Chapter 2. MS-
GARCH combines short-run autoregressive dynamics with low-frequency
regime shifts. A latent state st ∈ {1, 2} follows a first-order Markov process
with transition probabilities

pij = P (st+1 = j| st = i) .

In every period, the econometrician observes the return rt but not the
latent st. For i = {1, 2}, let ht+1(i) = V art(rt+1|st+1 = i) be the variance
of rt+1 conditional on st+1 = i and past returns {rs}t

s=1. The quantity
ht is latent in every period, and the econometrician can similarly define
Et [ht(st) |st+1 = i ] , the expectation of ht conditional on st+1 = i and past
returns. Klaassen (2002) assumes the conditional dynamics:

ht+1(i) = ωi + αir
2
t + βiEt [ht(st) |st+1 = i ] . (3.6)

Klaassen shows that this model provides better forecasts for three of the
exchange rates considered in this chapter (DM, JA, and UK) than the

7
See, for example, Andrews (1991), Andrews and Monahan (1992), and den Haan

and Levin (1997).
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earlier Markov-Switching GARCH formulation of Gray (1996), and also
permits analytical multistep forecasting.

3.4.1 In-Sample Comparison
Table 3.4 presents the ML estimates of GARCH and MS-GARCH. The
coefficient 1/ν is the inverse of the degrees of freedom in the Student dis-
tribution. Each coefficient σi, i = 1, 2, represents the standard deviation of
returns conditional on the volatility state: σ2

i = ωi/(1 − αi − βi).
Table 3.5 shows that MSM has a higher likelihood than GARCH for

all exchange rates, even though both processes have the same number of
parameters. MS-GARCH uses nine parameters as compared to four with
either GARCH or MSM. Using the Schwarz BIC criterion to adjust for this
difference, the multifractal model is indistinguishable from MS-GARCH in
the UK data and is preferred for DM and CA.

As suggested by Vuong (1989), we evaluate the statistical significance
of BIC differences. The last two columns of Table 3.5 test the alterna-
tive models against MSM under this metric.8 We again give p-values for
both the original version of the test and a HAC-adjusted variant. For the
standard test, the in-sample performance of MSM over GARCH is highly
significant for the mark, the yen, and the pound, and somewhat signifi-
cant for the Canadian dollar. The HAC adjustments produce analogous
but slightly weaker results. Overall, the in-sample analysis suggests that
the multifractal matches the performance MS-GARCH and significantly
outperforms GARCH(1,1).

3.4.2 Out-of-Sample Forecasts
We now investigate the out-of-sample performance of the competing models
over forecasting horizons ranging from 1 to 50 days. For each currency, we
estimate the three processes on the beginning of the series, and we use the
last 12 years of data (or approximately half the sample) for out-of-sample
comparison.

In Table 3.6, we report the results for one-day forecasts. The first two
columns correspond to the Mincer–Zarnowitz regressions of squared returns
on their forecasts9:

r2
t = γ0 + γ1Et−1(r2

t ) + ut.

8
A BIC test of GARCH against the multifractal model is identical to a likelihood

test since both have the same number of parameters.
9
The forecasting regressions used by Mincer and Zarnowitz (1969) are common in

the financial econometrics literature. See, for instance, Andersen and Bollerslev (1998a),
Andersen, Bollerslev, Diebold, and Labys (2003), Andersen, Bollerslev, and Meddahi
(2005), Pagan and Schwert (1990), and West and Cho (1995).



TABLE 3.4. Alternative Processes

Regime 1 Regime 2

1/ν σ1 α1 β1 p11 σ2 α2 β2 p22 ln L

Deutsche Mark/U.S. Dollar

GARCH 0.1929 1.5539 0.0879 0.9108 −5730.52
(0.011) (0.405) (0.009) (0.009)

MS-GARCH 0.2041 1.0749 0.2048 0.7896 0.9998 1.3145 0.0718 0.9241 0.9999 −5694.78
(0.011) (0.288) (0.023) (0.024) (0.0003) (0.282) (0.010) (0.011) (0.0002)

Japanese Yen/U.S. Dollar

GARCH 0.2290 0.1638 0.0652 0.9348 −5965.07
(0.0002) (0.059) (0.006) (0.006)

MS-GARCH 0.2632 0.4443 0.3420 0.6500 0.9999 0.9639 0.0650 0.9227 0.9999 −5833.59
(0.012) (0.137) (0.040) (0.040) (0.0002) (0.121) (0.010) (0.013) (0.0002)
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British Pound/U.S. Dollar

GARCH 0.2007 0.2365 0.0681 0.9319 −5562.00
(0.008) (0.070) (0.005) (0.005)

MS-GARCH 0.2202 0.8423 0.3653 0.6051 0.9860 0.9343 0.0587 0.9365 0.9986 −5492.44
(0.009) (0.013) (0.053) (0.056) (0.005) (0.012) (0.008) (0.008) (0.0003)

Canadian Dollar/U.S. Dollar

GARCH 0.1528 0.3108 0.0810 0.9108 −96.03
(0.037) (0.008) (0.008) (0.010)

MS-GARCH 0.1385 0.2046 0.0584 0.9361 0.9896 0.2972 0.2587 0.2925 0.9415 −73.51
(0.011) (0.035) (0.009) (0.010) (0.004) (0.025) (0.074) (0.215) (0.023)

Notes: This table shows maximum likelihood estimation results for alternative processes for the four exchange rate series. Asymptotic standard
errors are in parentheses. For the GARCH(1,1) model, the parameter estimates for the Japanese yen and British pound are on the boundary of
the restriction α + β ≤ 1 − ε, where ε = 10−5.
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TABLE 3.5. In-Sample Model Comparison

No. of BIC p-value
Parameters ln L BIC vs. MSM

Vuong HAC
(1989) Adj

Deutsche Mark/U.S. Dollar

Binomial MSM 4 −5705.09 1.7830
GARCH 4 −5730.52 1.7910 0.005 0.071
MS-GARCH 9 −5694.78 1.7866 0.140 0.248

Japanese Yen/U.S. Dollar

Binomial MSM 4 −5862.68 1.6115
GARCH 4 −5965.07 1.6396 0.000 0.008
MS-GARCH 9 −5833.59 1.6097 0.619 0.572

British Pound/U.S. Dollar

Binomial MSM 4 −5514.94 1.5162
GARCH 4 −5562.00 1.5291 0.004 0.070
MS-GARCH 9 −5492.44 1.5162 0.505 0.503

Canadian Dollar/U.S. Dollar

Binomial MSM 4 −83.00 0.0286
GARCH 4 −96.03 0.0323 0.072 0.200
MS-GARCH 9 −73.51 0.0322 0.092 0.235

Notes: This table summarizes information about in-sample goodness of fit for the three
models. The Bayesian Information Criterion is given by BIC = T −1(−2 ln L+NP ln T ),
where NP is the number of free parameters in the specification. The sample lengths T
are 6,419 for the Deutsche mark, 7,298 for the Japanese yen and British pound, and
7,048 for the Canadian dollar. The last two columns give p-values from a test that the
corresponding model dominates MSM by the BIC criterion. The first value uses the
Vuong (1989) methodology, and the second value adjusts the test for heteroskedasticity
and autocorrelation. A low p-value indicates that the corresponding model would be
rejected in favor of MSM.

Unbiased forecasts would imply γ0 = 0 and γ1 = 1. We adjust standard
errors for parameter uncertainty as in West and McCracken (1998), and for
HAC effects using the weighting and lag selection methodology of Newey
and West (1987, 1994).

With the multifractal process, the estimated intercept γ̂0 is slightly pos-
itive and the slope γ̂1 is slightly lower than unity for all currencies. These
differences, however, are not statistically significant. In particular, the
hypothesis γ0 = 0 is accepted at the 5% confidence level for all currencies,
and γ1 = 1 is accepted at the 5% level for the yen and the Canadian dollar,
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TABLE 3.6. One-Day Forecasts

Restricted
Mincer–Zarnowitz γ0 = 0, γ1 = 1

γ0 γ1 MSE R2

Deutsche Mark/U.S. Dollar

Binomial MSM 0.098 0.703 0.7263 0.041
(0.072) (0.126)

GARCH 0.153 0.622 0.7304 0.035
(0.061) (0.105)

MS-GARCH 0.042 0.740 0.7296 0.037
(0.080) (0.130)

Japanese Yen/U.S. Dollar

Binomial MSM 0.028 0.772 1.6053 0.053
(0.090) (0.117)

GARCH 0.172 0.668 1.6137 0.048
(0.075) (0.105)

MS-GARCH 0.080 0.709 1.6141 0.048
(0.084) (0.109)

British Pound/U.S. Dollar

Binomial MSM 0.053 0.715 0.5081 0.057
(0.049) (0.100)

GARCH 0.085 0.751 0.4980 0.076
(0.044) (0.098)

MS-GARCH 0.017 0.814 0.4997 0.072
(0.051) (0.108)

Canadian Dollar/U.S. Dollar

Binomial MSM 0.015 0.905 0.0345 0.051
(0.016) (0.156)

GARCH 0.033 0.679 0.0348 0.042
(0.012) (0.111)

MS-GARCH 0.025 0.785 0.0344 0.055
(0.013) (0.124)

Notes: This table gives out-of-sample forecasting results for the three models at a one-day
horizon. The first two columns correspond to parameter estimates from the Mincer-
Zarnowitz OLS regression r2

t = γ0 + γ1Et−1(r2
t ) + ut. Asymptotic standard errors in

parentheses are corrected for heteroskedasticity and autocorrelation using the method
of Newey and West (1987, 1994) and for parameter uncertainty using the method of
West and McCracken (1998). MSE is the mean squared forecast error, and R2 is one less
the MSE divided by the sum of squared demeaned squared returns in the out-of-sample
period.



40 3. The Markov-Switching Multifractal (MSM) in Discrete Time

and at the 1% level for the mark and the pound. The Mincer–Zarnowitz
regressions show little evidence of bias in MSM forecasts.

The regression coefficients are slightly worse with GARCH(1,1). Inter-
cepts are further away from zero for all currencies, and slopes are further
away from unity for three currencies. These biases are statistically signifi-
cant. The hypotheses γ0 = 0 and γ1 = 1 are rejected at the 5% level in seven
out of eight cases. Since 0 < γ̂1 < 1, these results suggest that GARCH
forecasts are too variable and can be improved by the linear smoothing rule
γ̂0 + γ̂1Et−1(r2

t ).
Markov-switching GARCH improves on the out-of-sample performance

of GARCH(1,1). We accept that γ0 = 0 at the 5% confidence level for all
currencies and that γ1 = 1 at the 1% level for DM, UK, and CA. Further-
more, the regression estimates are best with MS-GARCH for two currencies
(DM and UK) and with the multifractal for the other two. We also report in
Table 3.6 two standard measures of goodness of fit: the mean squared error
(MSE) and the restricted R2 coefficient.10 The multifractal produces the
best forecasting R2 for the mark and the yen. On the other hand, GARCH
produces better results for the pound and MS-GARCH for the Canadian
dollar. To summarize the one-day forecast results, binomial MSM appears
to slightly dominate GARCH(1,1) and to produce results comparable to
MS-GARCH.

Multistep forecasts provide stronger empirical differences between the
three models. Following Andersen and Bollerslev (1998a), the depen-
dent variable is the sum of squared daily returns over n days, RVt,n =∑t

s=t−n+1 r2
s . In Table 3.7, we report the results of the Mincer–Zarnowitz

regression:

RVt,n = γ0 + γ1Et−n (RVt,n) + ut

for n = 20 days. Because the average size of returns increases with the
sampling interval, the estimated intercepts γ̂0 are larger in Table 3.7 than
in Table 3.6. For each currency, the multifractal produces point estimates
of γ0 and γ1 that are closest to their preferred values. We also accept the
hypotheses γ0 = 0 and γ1 = 1 in all cases at the 5% confidence level.
In contrast, for the other models each currency leads to a strong rejec-
tion of either one hypothesis (MS-GARCH) or both (GARCH) at the 5%
confidence level. The reported MSE and R2 further confirm that the multi-
fractal provides the best 20-day forecasts for all currencies. The difference
is particularly large in the case of the DM and JA. The R2 coefficient is

10
The mean squared error (MSE) quantifies the forecast errors in the out-of-sample

period: MSE = K−1 ∑T
t=T−K+1

(
r2
t − Et−1r2

t

)2, where K is the number of days
in the out-of-sample period. The out-of-sample coefficient of determination is R2 =
1 − MSE/TSS, where TSS is the out-of-sample variance of squared returns: TSS =

K−1 ∑T
t=T−K+1

(
r2
t −

∑T
i=T−K+1 r2

i /K
)2

.
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TABLE 3.7. Twenty-Day Forecasts

Restricted
Mincer–Zarnowitz γ0 = 0, γ1 = 1

γ0 γ1 MSE R2

Deutsche Mark/U.S. Dollar

Binomial MSM 1.749 0.706 37.12 0.135
(1.649) (0.150)

GARCH 4.474 0.443 49.24 −0.147
(1.108) (0.092)

MS-GARCH 1.934 0.568 50.66 −0.180
(1.577) (0.118)

Japanese Yen/U.S. Dollar

Binomial MSM −1.248 0.909 76.95 0.205
(2.160) (0.155)

GARCH 5.311 0.488 99.15 −0.024
(1.233) (0.086)

MS-GARCH 2.148 0.573 103.29 −0.067
(1.776) (0.108)

British Pound/U.S. Dollar

Binomial MSM 0.330 0.792 27.35 0.250
(1.114) (0.120)

GARCH 2.702 0.606 29.61 0.188
(0.760) (0.085)

MS-GARCH 0.641 0.730 29.08 0.203
(1.021) (0.105)

Canadian Dollar/U.S. Dollar

Binomial MSM −0.038 1.179 1.6339 0.217
(0.385) (0.221)

GARCH 0.676 0.707 1.6615 0.204
(0.243) (0.121)

MS-GARCH 0.630 0.754 1.6719 0.199
(0.270) (0.140)

Notes: This table gives out-of-sample forecasting results for the three models at a
twenty-day horizon. The first two columns correspond to parameter estimates from the
Mincer-Zarnowitz OLS regression RVt,20 = γ0 + γ1Et−20(RVt,20) + ut, where RVt,n =∑t

s=t−n+1 r2
s . Asymptotic standard errors in parentheses are corrected for heteroskedas-

ticity and autocorrelation using the method of Newey and West (1987, 1994) and for
parameter uncertainty using the method of West and McCracken (1998). MSE is the
mean squared forecast error, and R2 is one less the MSE divided by the sum of squared
demeaned squared returns in the out-of-sample period.
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13.5% and 20.5% respectively for DM and JA with the multifractal, while
GARCH and MS-GARCH produce negative values.11

Table 3.8 reports summary forecasting results and significance tests for
horizons of 1, 5, 10, 20, and 50 days. Panel A shows the forecasting R2 for
each model. For the mark and the yen, binomial MSM dominates at the
five-day horizon and increasingly outperforms the other models at longer
horizons. For the pound and the Canadian dollar, binomial MSM is more
accurate at horizons of 20 days and higher. Panel B analyzes the statistical
significance of these results. At horizons of 50 days, the multifractal model
outperforms the other models very significantly for the mark, the pound,
and the yen, and with marginal significance for the Canadian dollar. The
superior forecasts of the multifractal are also highly significant at horizons
of 10 and 20 days for DM, and somewhat strong at the 20-day horizons for
the yen and the pound.

These results show the power of the multifractal model. GARCH(1,1) is
often viewed as a standard benchmark that is very difficult to outperform
in forecasting exercises. Our results show that MSM matches or slightly
improves on GARCH and MS-GARCH at short horizons, and substantially
dominates these models at longer horizons.

3.4.3 Comparison with FIGARCH
The out-of-sample results suggest that MSM accurately captures the depen-
dence structure of volatility at long horizons. It is natural to next investigate
whether a fractionally integrated GARCH (FIGARCH) volatility process
also provides good long-range forecasts. We consider the FIGARCH(1, d, 0)
specification of Baillie, Bollerslev, and Mikkelsen (1996).12 The return pro-
cess is given by rt = h

1/2
t εt, where {εt} are i.i.d. Student innovations with

unit variance and ν degrees of freedom. The conditional variance ht satisfies

ht+1 = ω + β(ht − r2
t ) + [1 − (1 − L)d]r2

t ,

where L denotes the lag operator and d ∈ [0, 1] the long-memory parameter.
FIGARCH is well-defined, strictly stationary, and ergodic when ω ≥ 0 and
|β| < 1. For every d > 0, the process is not covariance stationary because

11
Binomial MSM produces a higher R2 for 20-day returns than for daily returns. This

stems from the fact that our measure of 20-day volatility is a sum of daily squared
returns. As in Andersen and Bollerslev (1998a), reduced noise in the volatility measure
leads to an increase in explanatory power.

12
In unreported work, FIGARCH(1, d, 0) was not rejected in favor of more general

FIGARCH(p, d, q) specifications for any of the exchange rate series.
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TABLE 3.8. Forecast Summary, Multiple Horizons

Horizon (Days)

1 5 10 20 50

A. Restricted R2

Deutsche Mark/U.S. Dollar

Binomial MSM 0.041 0.124 0.160 0.135 0.038
GARCH 0.035 0.069 0.033 −0.147 −0.761
MS-GARCH 0.039 0.072 0.030 −0.180 −1.137

Japanese Yen/U.S. Dollar

Binomial MSM 0.053 0.113 0.142 0.205 0.213
GARCH 0.048 0.054 0.011 −0.024 −0.358
MS-GARCH 0.048 0.044 −0.009 −0.067 −0.569

British Pound/U.S. Dollar

Binomial MSM 0.057 0.165 0.235 0.250 0.273
GARCH 0.076 0.191 0.244 0.188 −0.026
MS-GARCH 0.072 0.165 0.238 0.203 0.038

Canadian Dollar/U.S. Dollar

Binomial MSM 0.051 0.172 0.221 0.217 0.111
GARCH 0.042 0.154 0.205 0.204 0.070
MS-GARCH 0.055 0.181 0.229 0.199 0.036

B. Mean Squared Error Test vs. MSM (p-value)

Deutsche Mark/U.S. Dollar

GARCH 0.307 0.040 0.009 0.001 0.000
MS-GARCH 0.314 0.004 0.000 0.000 0.000

Japanese Yen/U.S. Dollar

GARCH 0.426 0.208 0.144 0.117 0.063
MS-GARCH 0.415 0.143 0.071 0.021 0.000

British Pound/U.S. Dollar

GARCH 0.906 0.824 0.606 0.156 0.016
MS-GARCH 0.857 0.499 0.547 0.108 0.000

(continued)
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TABLE 3.8. (continued)

Horizon (Days)

1 5 10 20 50

Canadian Dollar/U.S. Dollar

GARCH 0.294 0.3590 0.410 0.447 0.292
MS-GARCH 0.597 0.603 0.565 0.380 0.065

Notes: This table summarizes out-of-sample forecasting results across multiple hori-
zons. Panel A gives the restricted forecasting R2 for each model and horizon. Panel
B gives p-values from testing that the corresponding model has a lower out-of-
sample forecasting mean squared error than binomial MSM. The tests are corrected
for autocorrelation and heteroskedasticity using Newey and West (1987, 1994). A
low p-value indicates that forecasts from the corresponding model would be rejected
in favor of binomial MSM forecasts.

the unconditional variance is infinite, as discussed in Baillie, Bollerslev, and
Mikkelsen (1996).

We estimate FIGARCH by maximum likelihood and report the cor-
responding results in Table 3.9A.13 For every currency, FIGARCH has
the lowest in-sample likelihood of all estimated models. In particular, the
reported p-values indicate a difference in likelihood relative to MSM that
is statistically significant at the 1% level for JA and at the 10% level for
the other currencies. MSM thus outperforms FIGARCH in-sample.

Table 3.9B shows that out-of-sample forecasts also favor the multifractal
model at all horizons. Binomial MSM dominates at short horizons (1 and 5
days) for DM, JA, and CA, and at long horizons (10, 20, and 50 days) for
DM, JA, and UK. Despite its long memory, FIGARCH performs especially
poorly at 50-day horizons. The corresponding R2 are negative for DM, JA,
and UK. The p-values of the MSEs confirm the statistical significance of
these results. At the 10% confidence level, nine of the sixteen MSM forecasts
significantly outperform FIGARCH, while none of the FIGARCH forecasts
significantly improves on MSM.

We check the robustness of these results to inference methods that
account for potential long memory. For each series of log-likelihood

13
For JA, the estimated value of ω = 0 is on the boundary. Under standard GARCH,

this parameter determines the unconditional volatility, but in FIGARCH unconditional
volatility is infinite and hence interpretation of this result is more problematic. We can
view the reported estimates for JA as corresponding to an earlier specification with
ω = 0 introduced by Robinson (1991).
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TABLE 3.9. Comparison with FIGARCH

A. In-Sample

Parameter Estimates p-val

ω β d 1/ν ln L vs. MSM

DM 0.003 0.906 0.994 0.195 −5731.93 0.056
(0.001) (0.028) (0.045) (0.011)

JA 0 0.930 1.000 0.228 −5974.64 0.006
( – ) (0.006) ( – ) (0.008)

UK 0.000 0.931 1.000 0.202 −5567.80 0.053
(0.000) (0.005) ( – ) (0.008)

CA 0.005 0.236 0.347 0.148 −105.96 0.062
(0.001) (0.034) (0.028) (0.011)

B. Out-of-Sample

Horizon (Days)

1 5 10 20 50

Restricted R2

DM 0.022 0.065 0.080 0.028 −0.167
JA 0.042 0.009 −0.076 −0.153 −0.588
UK 0.074 0.183 0.231 0.167 −0.071
CA 0.030 0.152 0.232 0.246 0.142

MSE Test vs. Multifractal (p-value)

DM 0.125 0.050 0.056 0.046 0.014
JA 0.350 0.127 0.087 0.073 0.044
UK 0.882 0.716 0.462 0.102 0.011
CA 0.047 0.275 0.609 0.703 0.738

Notes: This table reports FIGARCH estimation results and compares in- and out-of-
sample results with MSM. In Panel A, the first four columns give parameter estimates
for FIGARCH(1, d, 0). In all cases, this specification could not be rejected in favor of
more general FIGARCH(p, d, q). Asymptotic standard errors are in parentheses. For
both the Japanese yen and British pound, the estimated value of d is on the bound-
ary of 1 − ε where ε = 10−5. For the yen, the estimated value of ω is on the boundary
ω = 0, corresponding to a long-memory volatility process suggested by Robinson (1991).
We also report the value of the log-likelihood and a p-value from a test of whether the
FIGARCH likelihood dominates MSM. The test corresponds to Vuong (1989) adjusted
for heteroskedasticity and autocorrelation. In Panel B, we report out-of-sample forecast-
ing R2 statistics and their associated p-values, HAC adjusted. For all tests, a low p-value
indicates that FIGARCH would be rejected in favor of MSM.
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differences, we calculate local Whittle estimates14 of d and obtain values of
approximately −0.08 for DM, 0.08 for JA, −0.05 for UK and 0.09 for CA.15

These statistics are insignificant or marginally significant. We then use the
memory autocorrelation consistent (MAC) estimation method developed
by Peter Robinson (2005) to calculate alternative variance estimates for
the log-likelihood differences and assess statistical significance.16 These
p-values are respectively equal to 0.0001 (DM), 0.015 (JA), 0.01 (UK)
and 0.077 (CA), again suggesting that the MSM outperforms FIGARCH
in-sample. We similarly check robustness of the MSE difference tests
reported in Panel B to MAC adjustment, and find moderate attenuation of
t-statistics and movement of p-values toward 0.5 for long horizons. Overall,
the results reported in this section support the good performance of MSM
relative to FIGARCH both in- and out-of-sample.

3.5 Discussion

This chapter presents the Markov-Switching Multifractal, which suggests
an expanded role for regime-switching in volatility modeling. Traditional
regime-switching approaches such as MS-GARCH augment low-frequency
switches with midrange GARCH transitions and a thick-tailed conditional
distribution of returns. By contrast, MSM effectively captures the rele-
vant empirical features of financial data at all horizons with the single
mechanism of multifrequency regime-switching.

The original research on which this chapter is based showed for the
first time how to use standard econometric tools to estimate multifrac-
tal processes with confidence intervals on parameters, test hypotheses, and
conduct multistep volatility forecasting. We compare the performance of
the multifractal model with leading volatility models such as GARCH,
MS-GARCH, and FIGARCH. Like MSM, these models conveniently per-
mit maximum likelihood estimation and analytical forecasting. In-sample,
binomial MSM has significantly higher likelihood than either GARCH or
FIGARCH even though these processes have the same number of param-
eters. Out-of-sample, MSM matches or outperforms all three comparison

14
The local Whittle estimator of d was proposed and developed by Künsch (1987) and

Robinson (1995b). Additional contributions on the asymptotic properties of the estima-
tor, modifications, and discussions of robustness under alternative specifications of long
memory include Hurvich and Chen (2000), Phillips (1999), Phillips and Shimotsu (2004),
Shimotsu and Phillips (2005, 2006), and Velasco (1999). The long-memory parameter d
may also be estimated by log periodogram regression (Geweke and Porter-Hudak, 1983;
Robinson, 1995a; Hurvich, Deo, and Brodsky, 1998; Andrews and Guggenberger, 2003).

15
We use a bandwidth equal to T 0.6 in all of our estimates.

16
Abadir, Distaso, and Giraitis (2008) provide a detailed assessment of the asymptotic

properties and robustness of the MAC estimator.
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models at short horizons and substantially dominates at 20- to 50-day
horizons. The recent study by Lux (2008) confirms many of these findings.

Researchers often focus on applications of immediate practical value
when assessing statistical models. Correspondingly, this chapter has shown
that MSM performs well by several standard metrics. In the remainder of
this book, we show that MSM extends easily to multivariate applications,
generalizes naturally to continuous time while capturing the power varia-
tions exhibited by many financial series, and incorporates productively into
existing asset pricing frameworks in both discrete and continuous time.



4
Multivariate MSM

Joint movements in volatility across asset markets influence the distribution
of returns at the portfolio level and therefore play an important role in risk
management, portfolio selection, and derivative pricing. Comovements in
volatility also help our understanding of financial markets and shed light
on issues such as contagion and the transmission of shocks through the
financial system (e.g., Engle, Ito, and Lin, 1990).

This chapter begins by investigating possible linkages between the MSM
volatility components of three currencies and several macroeconomic and
financial indicators over the 1973–2003 period. We find no robust pattern
between MSM components and variables such as inflation, money supply,
interest rates, industrial production, and stock market volatility. On the
other hand, oil and gold prices both correlate positively with currency
volatility over the past three decades, consistent with the view that these
commodities may act as proxies for global economic and political risk.

Across currency pairs, volatility components from different series with
similar frequencies tend to move together, while components with very
different frequencies display less correlation. These findings motivate the
construction of a bivariate model of volatility. This specification, called
bivariate MSM, is parsimonious as the number of parameters is independent
of k̄. Positive semidefiniteness of the covariance matrix is guaranteed by
construction. Furthermore, the likelihood function can be written in closed
form, and maximum likelihood estimation can be implemented for relatively
small state spaces. To accommodate a large number of frequencies, we
develop a particle filter that permits convenient inference and forecasting
using simulations. Monte Carlo experiments confirm the good performance
of this approach, which broadens the range of computationally tractable
MSM specifications.

We estimate the bivariate model by maximum likelihood, and we verify
that the goodness of fit increases with the number of volatility components.
Likelihood ratio tests also confirm that the main assumptions of the model
are empirically valid. Bivariate MSM compares favorably to constant cor-
relation GARCH (CC-GARCH) in-sample. Out-of-sample, bivariate MSM
captures well the conditional distribution of a variety of currency portfolios
and provides reasonable measures of value-at-risk.

This chapter is based on an earlier paper: “Volatility Comovement: A Multifrequency
Approach” (with A. Fisher and S. Thompson), Journal of Econometrics, 131: 179–215,
March 2006.
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4.1 Comovement of Univariate Volatility
Components

4.1.1 Comovement of Exchange Rate Volatility
The empirical analysis investigates daily returns on the Deutsche mark
(DM), Japanese yen (JA), and British pound (UK), all against the
U.S. dollar. As in Chapter 3, the returns are imputed from noon daily
prices reported by the Federal Reserve Bank of New York. The Deutsche
mark is spliced with the euro at the beginning of 1999. Each series runs
between 1 June 1973 and 30 October 2003, and contains 7,635 observations.

For each currency, we estimate MSM by maximum likelihood on the
entire sample, and we report the results in Table 4.1. These univariate
results are similar to those reported in Chapter 3 even though the sample
used for ML estimation is slightly longer.

Using the ML estimates, we compute for each currency the smoothed
state probabilities P

(
Mt = mj |r1, . . . , rT

)
as in Kim (1994).1 We also cal-

culate the expectation of the individual multipliers conditional on the entire
sample:

M̂k,t = E(Mk,t|r1, . . . , rT ) (4.1)

and report in Table 4.2 the correlations of the smoothed components M̂k,t.
The first panel shows that different components of the DM series are
moderately correlated, and correlation decreases in the distance between
frequencies.2 Untabulated results for the pound and yen series are similar.
The second and third panels of Table 4.2 show comovement of the mark
components with the yen and the pound. Correlation between the smoothed
beliefs M̂α

k,t and M̂β
k′,t of two currencies tends to be high when k and

k′ are close, and low otherwise. This suggests that the volatility compo-
nents of two exchange rates are most correlated when their frequencies are
similar.

The interpretation is slightly complicated by the fact that the set of
volatility frequencies is not identical across currencies. To address this issue,
we introduce a simple bivariate model in which currencies are statistically
independent but have identical frequency parameters b and γk̄. The log-
likelihood of the two series is

L(rα
t ;mα

0 , σ̄α, b, γk̄) + L(rβ
t ;mβ

0 , σ̄β , b, γk̄), (4.2)

1
The smoothed state probabilities (4.1) are conditioned on all available data, while

the filtered probabilities given in equation (3.4) are based only on information available
up to date t. See Hamilton (1994) for further discussion.

2
Since the econometrician does not directly observe the multipliers, correlation in

smoothed beliefs is not inconsistent with the assumed independence of the unobserved
components Mk,t and Mk′,t, k �= k′.



TABLE 4.1. Univariate ML Estimation

k = 1 2 3 4 5 6 7 8

Deutsche Mark

m̂0 1.617 1.556 1.535 1.472 1.445 1.396 1.365 1.338
(0.019) (0.015) (0.012) (0.012) (0.013) (0.012) (0.011) (0.011)

σ̂ 0.672 0.649 0.594 0.567 0.504 0.537 0.549 0.552
(0.012) (0.017) (0.013) (0.015) (0.016) (0.027) (0.020) (0.021)

γ̂k̄ 0.074 0.086 0.841 0.779 0.812 0.909 0.979 0.998
(0.002) (0.018) (0.096) (0.082) (0.083) (0.103) (0.036) (0.008)

b̂ — 6.85 34.31 11.86 9.02 5.83 4.67 3.82
(2.44) (10.55) (1.99) (1.24) (0.82) (0.60) (0.49)

ln L −7121.92 −6975.92 −6916.81 −6900.06 −6891.67 −6888.91 −6885.60 −6885.90

Japanese Yen

m̂0 1.783 1.774 1.688 1.644 1.579 1.567 1.559 1.508
(0.011) (0.009) (0.011) (0.011) (0.010) (0.010) (0.010) (0.010)

σ̂ 0.632 0.537 0.568 0.473 0.473 0.634 0.514 0.508
(0.011) (0.009) (0.019) (0.017) (0.023) (0.023) (0.019) (0.017)

γ̂k̄ 0.208 0.358 0.276 0.713 0.861 0.894 0.894 0.977
(0.022) (0.038) (0.048) (0.082) (0.053) (0.060) (0.058) (0.030)

b̂ — 147.47 11.76 15.73 9.13 8.22 7.60 5.88
(59.61) (2.02) (2.67) (1.18) (0.99) (0.87) (0.74)

ln L −6776.19 −6421.01 −6279.02 −6216.85 −6196.55 −6184.90 −6181.29 −6174.96
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TABLE 4.1. (continued)

k = 1 2 3 4 5 6 7 8

British Pound

m̂0 1.708 1.666 1.640 1.612 1.574 1.529 1.498 1.457
(0.013) (0.013) (0.011) (0.014) (0.011) (0.012) (0.011) (0.010)

σ̂ 0.606 0.580 0.523 0.516 0.431 0.455 0.385 0.380
(0.009) (0.018) (0.018) (0.016) (0.015) (0.017) (0.013) (0.014)

γ̂k̄ 0.113 0.213 0.271 0.549 0.617 0.782 0.817 0.959
(0.016) (0.036) (0.065) (0.086) (0.074) (0.078) (0.083) (0.001)

b̂ — 18.69 13.92 14.39 11.59 8.49 6.83 5.33
(4.84) (2.68) (2.67) (1.84) (1.16) (0.87) (0.04)

ln L −6220.55 −5987.37 −5882.60 −5826.92 −5792.97 −5778.58 −5771.92 −5770.20

Notes: This table shows maximum likelihood estimation results for binomial MSM on three currencies. The estimates are based on daily log
returns in percent for data spanning 1 June 1973 to 30 October 2003. Each column corresponds to a given number of components k̄ in the MSM
specification. Asymptotic standard errors are in parentheses.
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TABLE 4.2. Correlation of Smoothed Univariate MSM Volatility Components

DM1 DM2 DM3 DM4 DM5 DM6 DM7 DM8 |rDM| r2
DM

DM1 1.000 0.762 0.377 0.174 0.099 0.066 0.031 0.020 0.189 0.115
DM2 0.762 1.000 0.600 0.328 0.151 0.093 0.043 0.028 0.255 0.174
DM3 0.377 0.600 1.000 0.603 0.307 0.168 0.077 0.052 0.312 0.245
DM4 0.174 0.328 0.603 1.000 0.738 0.432 0.201 0.137 0.374 0.295
DM5 0.099 0.151 0.307 0.738 1.000 0.792 0.420 0.297 0.463 0.373
DM6 0.066 0.093 0.168 0.432 0.792 1.000 0.770 0.610 0.667 0.539
DM7 0.031 0.043 0.077 0.201 0.420 0.770 1.000 0.961 0.887 0.713
DM8 0.020 0.028 0.052 0.137 0.297 0.610 0.961 1.000 0.894 0.716
|rDM| 0.189 0.255 0.312 0.374 0.463 0.667 0.887 0.894 1.000 0.872
r2
DM 0.115 0.174 0.245 0.295 0.373 0.539 0.713 0.716 0.872 1.000

JA1 0.590 0.287 0.036 0.020 0.036 0.032 0.012 0.007 0.051 0.002
JA2 0.611 0.302 0.048 0.023 0.038 0.034 0.013 0.008 0.056 0.006
JA3 0.788 0.440 0.172 0.063 0.065 0.048 0.021 0.013 0.104 0.048
JA4 0.368 0.185 0.162 0.064 0.030 0.036 0.020 0.013 0.073 0.062
JA5 0.157 0.177 0.150 0.231 0.169 0.109 0.053 0.036 0.103 0.084
JA6 0.058 0.062 0.127 0.279 0.349 0.284 0.155 0.111 0.192 0.174
JA7 0.029 0.023 0.032 0.106 0.206 0.321 0.312 0.267 0.284 0.258
JA8 0.012 0.008 0.011 0.043 0.095 0.209 0.339 0.353 0.333 0.303
|rJA| 0.187 0.108 0.092 0.134 0.177 0.256 0.328 0.327 0.363 0.346
r2
JA 0.091 0.048 0.065 0.101 0.142 0.209 0.261 0.256 0.297 0.344

(continued)
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TABLE 4.2. (continued)

DM1 DM2 DM3 DM4 DM5 DM6 DM7 DM8 |rDM| r2
DM

UK1 0.819 0.525 0.170 0.081 0.052 0.042 0.018 0.011 0.114 0.054
UK2 0.730 0.558 0.246 0.165 0.094 0.062 0.028 0.018 0.134 0.073
UK3 0.464 0.526 0.254 0.163 0.072 0.050 0.023 0.015 0.128 0.086
UK4 0.251 0.505 0.308 0.195 0.075 0.049 0.021 0.014 0.143 0.111
UK5 0.070 0.131 0.516 0.571 0.365 0.200 0.091 0.062 0.213 0.169
UK6 0.149 0.162 0.239 0.440 0.536 0.423 0.228 0.162 0.291 0.242
UK7 0.082 0.079 0.092 0.185 0.319 0.463 0.431 0.362 0.407 0.354
UK8 0.030 0.030 0.035 0.074 0.145 0.301 0.473 0.488 0.471 0.409
|rUK| 0.168 0.213 0.221 0.254 0.273 0.360 0.462 0.462 0.564 0.524
r2
UK 0.081 0.135 0.178 0.213 0.234 0.305 0.390 0.391 0.508 0.571

Notes: This table shows correlations from a frequency decomposition of binomial MSM with k̄ = 8 components for the univariate DM series with
itself, JA, and UK. The sample consists of daily log returns from 1 June 1973 to 30 October 2003. For each series, the smoothed components M̂k,t =
E(Mk,t|r1, . . . , rT ) of different volatility states are calculated. We denote these probabilities by DM1, . . . ,DM8, JA1, . . . ,JA8, UK1, . . . ,UK8. The
table then shows correlations of the DM decomposition with decompositions from all three series. Correlations are generally strongest near the
diagonal.
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4.1 Comovement of Univariate Volatility Components 55

where L denotes the log-likelihood of univariate MSM. This specification,
called the combined univariate, is an important building block of the
bivariate model introduced in the next section.

In Table 4.3, we report empirical results for the combined univariate.
Panel A shows ML estimates for the mark and yen series. Some parame-
ter estimates differ noticeably from the unrestricted univariate results in
Table 4.1, but substantial discrepancies only seem to occur for low values
of k̄. For instance, with k̄ = 8, we compare the likelihood of −13063.11
with the sum of unrestricted likelihoods, that is, −6885.90 − 6174.96 =
−13060.86, finding a difference of 2.25. Under the combined univariate, the
likelihood ratio (LR) statistic, 2 × 2.25, is asymptotically distributed as a
chi-squared with two degrees of freedom. This test statistic is not signifi-
cant at conventional levels, confirming that the frequency restrictions are
reasonable. The second part of Panel A reports more generally the p-values
of the LR tests corresponding to each frequency and currency combination.
When k̄ = 8, the frequency restrictions are not rejected for any currency
combination.

Panel B of Table 4.3 shows correlations between smoothed volatility
components for the mark and yen series under the combined univariate
model. With frequencies identical across currencies, we expect results to
be stronger than in Table 4.2, and this is confirmed. Results for other cur-
rency pairs are similar. We conclude that (i) restricting frequencies to be
identical across currencies is reasonable, and (ii) components of similar
frequencies tend to move together while components with very different
frequencies do not. These findings are helpful to develop a bivariate MSM
specification.

4.1.2 Currency Volatility and Macroeconomic Indicators
We now investigate whether currency volatility comovement relates to other
macroeconomic and financial variables. Earlier research leads us to be rela-
tively pessimistic. For instance, the first moments of exchange rates are
weakly linked to fundamentals (e.g., Meese and Rogoff, 1983; Andersen
and Bollerslev, 1998b; Rogoff, 1999; Sarno and Taylor, 2002).3 Variances
are also difficult to explain, at least in stock market data (e.g., Schwert,
1989). We examine whether the new MSM multifrequency decomposition
confirms these negative results.

We consider monthly macroeconomic data from the International Mon-
etary Fund for the 1973–2000 period, including monetary aggregates (M1,
M2 and M3), short and long interest rates, producer price index, consumer
price index, wages, and growth rate of industrial production. We compute

3
See also Lyons (2001) for evidence at higher-frequency.



TABLE 4.3. Combined Univariate MSM Results

A. MLE Estimation

k = 1 2 3 4 5 6 7 8

DM–JA Parameter Estimates

m̂DM
0 1.643 1.618 1.515 1.474 1.445 1.405 1.397 1.367

(0.013) (0.014) (0.013) (0.013) (0.011) (0.013) (0.012) (0.011)
m̂JA

0 1.775 1.757 1.687 1.638 1.578 1.565 1.522 1.488
(0.018) (0.010) (0.010) (0.011) (0.010) (0.010) (0.010) (0.014)

σ̂DM 0.669 0.577 0.597 0.569 0.504 0.565 0.449 0.472
(0.010) (0.011) (0.015) (0.018) (0.015) (0.021) (0.018) (0.018)

σ̂JA 0.613 0.544 0.565 0.487 0.476 0.632 0.384 0.532
(0.016) (0.010) (0.018) (0.018) (0.023) (0.024) (0.016) (0.027)

γ̂k̄ 0.129 0.257 0.301 0.756 0.844 0.872 0.959 0.982
(0.013) (0.026) (0.068) (0.057) (0.055) (0.054) (0.036) (0.022)

b̂ — 69.57 11.97 13.21 9.14 7.16 6.16 4.93
(21.57) (2.04) (1.61) (0.95) (0.65) (0.57) (0.45)

In L −13913.86 −13424.24 −13203.13 −13119.07 −13088.39 −13077.02 −13072.22 −13063.11

LR Tests Against Unrestricted Univariate

DM–JA 0.000 0.000 0.001 0.116 0.849 0.040 0.005 0.106
DM–UK 0.136 0.002 0.000 0.037 0.004 0.004 0.004 0.111
JA–UK 0.004 0.000 0.701 0.361 0.017 0.237 0.754 0.863
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B. Correlation of Smoothed Volatility Component Beliefs

DM1 DM2 DM3 DM4 DM5 DM6 DM7 DM8 |rDM| r2
DM

JA1 0.628 0.714 0.349 0.072 0.009 0.038 0.020 0.007 0.081 0.028
JA2 0.690 0.774 0.405 0.135 0.016 0.048 0.027 0.011 0.101 0.043
JA3 0.595 0.686 0.228 0.140 0.018 0.049 0.028 0.012 0.078 0.033
JA4 0.306 0.234 0.147 0.114 0.036 0.022 0.027 0.013 0.065 0.065
JA5 −0.019 −0.034 0.052 0.113 0.302 0.227 0.116 0.056 0.117 0.102
JA6 0.028 0.023 0.040 0.084 0.255 0.352 0.258 0.145 0.206 0.186
JA7 0.008 0.009 0.007 0.021 0.103 0.224 0.342 0.294 0.299 0.274
JA8 0.004 0.004 0.002 0.009 0.048 0.123 0.287 0.353 0.333 0.304
|rJA| 0.177 0.191 0.093 0.088 0.128 0.193 0.301 0.326 0.363 0.346
r2
JA 0.087 0.094 0.039 0.066 0.100 0.156 0.243 0.254 0.297 0.344

Notes: Panel A shows maximum likelihood estimation results for the combined univariate MSM specification, which for two series α and β has
likelihood L(rα

t ; mα
0 , σ̄α, b, γk̄)+L(rβ

t ; mβ
0 , σ̄β , b, γk̄). This corresponds to the likelihood of two statistically independent univariate MSM processes

constrained to have the same frequency parameters b and γk̄. The sample consists of daily log returns from 1 June 1973 to 30 October 2003.
Columns of the table correspond to the number of frequencies k̄ in the estimated model. Estimation results with asymptotic standard errors in
parentheses are presented for the DM-JA currency pair only. The second part of Panel A shows p-values from a likelihood ratio test of combined
univariate MSM against two unrestricted MSM processes. A low p-value indicates rejection of the restriction that frequency parameters are
identical across currencies. Panel B then shows correlations from a frequency decomposition of the DM-JA combined univariate model with eight
components. For each series, the smoothed components M̂k,t = E(Mk,t|r1, . . . , rT ) of volatility states are calculated. For convenience, we denote
these probabilities by DM1, . . . ,DM8, JA1, . . . ,JA8.
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58 4. Multivariate MSM

the correlation between monthly volatility and the macroeconomic variables
of each country, their difference and the absolute value of their difference.
We use several measures of volatility, such as the absolute value of the
monthly return, realized monthly volatility, and MSM volatility compo-
nents. In untabulated results using a variety of lag structures, we find no
robust link between currency volatility and these variables. These findings
are consistent with results in Andersen and Bollerslev (1998b), who show
that macroeconomic announcements induce volatility shocks that are of
comparable magnitude to daily volatility. It is thus not surprising that
little impact is found at the monthly frequency.

Economic theory suggests that exchange rates might be more strongly
linked to equity markets, since both classes of instruments incorporate
forward-looking information about rates of return, national economic con-
ditions and corporate profits. In Table 4.4, we investigate the comovement
of each currency with volatility in local and U.S. stock markets. Daily
returns are imputed from the Center for Research in Security Prices
(CRSP) value-weighted index of U.S. stocks, the German composite DAX
index, the UK Financial Times-Actuaries All Share index and the Japanese
Nikkei 225 stock average. Realized monthly stock volatility (RV) is com-
puted as the sum of squared daily returns. We compare it with the
currency return, absolute return, realized volatility and MSM frequency-
specific components. We obtain no robust link between currency and equity
volatility.

Oil prices are often viewed as proxies for global economic and political
uncertainty (e.g., Hamilton, 2003). As seen in Table 4.4, the dollar price
of oil correlates positively with the realized volatility of the mark and the
pound exchange rates,4 and the MSM decomposition further reveals that
this is primarily a low-frequency phenomenon. The results become more
intriguing for the yen. While the raw oil price shows little correlation with
the RV of the yen, it is again strongly correlated with low-frequency MSM
components. The MSM decomposition thus finds evidence of a regular-
ity that direct analysis of realized volatility would not uncover. Similar
results are obtained with gold, further suggesting that currency volatility
and certain commodity prices may be linked at low frequencies through an
unidentified global risk factor.

The link between exchange rates and fundamentals remains an open
area of research (e.g., Engel and West, 2005). The finding that volatility
components of similar frequencies are strongly correlated across currencies
motivates the development of multivariate MSM.

4
We use the domestic first purchase price of crude oil expressed in dollars per barrel

provided by Global Insight/Data Resources Inc.



TABLE 4.4. Correlation of Exchange Rates with Other Financial Prices

MSM Volatility Component Beliefs

rt |rt| RV k = 1 2 3 4 5 6 7 8

Deutsche Mark

CRSP RV −0.0849 0.1712 0.0904 0.0930 0.0360 0.0316 0.1964 0.1421 0.0678 −0.0056 −0.0479
DAX RV −0.1515 0.0916 0.1205 0.2087 0.1296 0.1086 0.1541 0.1041 0.0111 −0.0363 −0.0395
Oil 0.1142 0.0235 0.2138 0.5254 0.4859 0.2685 0.1649 0.0241 −0.0178 −0.1062 −0.1137
Gold 0.0774 0.0652 0.1642 0.7378 0.4979 0.1334 0.0571 −0.0104 −0.0613 −0.0755 −0.0497

Japanese Yen

CRSP RV −0.0969 0.1696 0.2097 −0.1841 −0.1924 −0.2137 −0.1439 −0.0920 0.0011 −0.0136 0.0221
NIKKEI RV −0.0280 0.1155 0.2291 0.3069 0.3013 0.2764 −0.3071 −0.0965 −0.0526 −0.0781 −0.0400
Oil 0.0465 0.0429 0.0046 0.2803 0.2858 0.2838 0.1306 −0.1608 0.0335 −0.0422 0.0052
Gold −0.0135 0.1323 0.1444 0.5233 0.5306 0.5332 0.2071 0.0586 0.0417 −0.0633 −0.1053

British Pound

US CRSP RV 0.0480 0.0590 −0.0746 −0.0299 0.0907 0.0496 −0.0597 0.0291 0.0570 −0.0342 −0.0405
FTSE RV 0.0113 0.0390 −0.0986 −0.4642 −0.2036 −0.0865 −0.1638 0.1450 0.0405 −0.0329 −0.0518
Oil −0.0900 0.0864 0.2583 0.5495 0.3972 0.2652 0.2846 0.2087 0.0766 −0.0175 −0.0455
Gold 0.0396 0.0837 0.1466 0.6963 0.5087 0.4084 0.2824 −0.1019 0.0658 0.0083 −0.0243

Notes: This table investigates for each country the comovement between exchange rates and four financial variables: the monthly realized volatility
(RV) on the U.S. and local stock market, the oil price (in U.S. dollars per barrel), and the gold price (in U.S. dollars per ounce). Monthly realized
volatilities are imputed as the sum of squared daily returns. Correlation between currency and equity RV is positive for the mark and the yen,
but negative for the pound. Oil and gold prices are positively correlated to exchange rate volatility for all countries, and the MSM decomposition
reveals that this result is primarily a low-frequency phenomenon.
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60 4. Multivariate MSM

4.2 A Bivariate Multifrequency Model

4.2.1 The Stochastic Volatility Specification
We consider two financial series α and β defined on the regular grid t =
0, 1, 2, . . . ,∞. Their log-returns rα

t and rβ
t in period t are stacked into the

column vector

rt =

[
rα
t

rβ
t

]
∈ R

2.

As in univariate MSM, volatility is stochastic and is hit by shocks of het-
erogeneous frequencies indexed by k ∈ {1, . . . , k̄}. For every frequency k,
the currencies have volatility components Mα

k,t and Mβ
k,t. Consider

Mk,t =

[
Mα

k,t

Mβ
k,t

]
∈ R

2
+.

The period-t volatility column vectors Mk,t are stacked into the 2 × k̄
matrix

Mt = (M1,t;M2,t; . . . ;Mk̄,t).

Each row of the matrix Mt contains the volatility components of a partic-
ular currency, while each column corresponds to a particular frequency. As
in univariate MSM, we assume that M1,t, M2,t . . . Mk̄,t at a given time t are
statistically independent. The main task is to choose appropriate dynamics
for each vector Mk,t.

Economic intuition suggests that volatility arrivals are correlated but
not necessarily simultaneous across currency markets. For this reason, we
allow arrivals across series to be characterized by a correlation coefficient λ.
Assume that the volatility vector associated with the kth frequency has
been constructed up to date t − 1. In period t, each series c ∈ {α, β} is
hit by an arrival with probability γk. Let 1c

k,t denote the indicator function
equal to 1 if there is an arrival on M c

k,t, and equal to 0 otherwise. The
arrival vector 1k,t = (1α

k,t, 1
β
k,t) is specified to be i.i.d., and its uncondi-

tional distribution is defined by three conditions. First, the arrival vector is
symmetrically distributed: (1β

k,t, 1
α
k,t)

d= (1α
k,t, 1

β
k,t). Second, the switching

probability of a series is equal to an exogenous constant:

P(1α
k,t = 1) = γk.
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Third, there exists λ ∈ [0, 1] such that

P(1β
k,t = 1|1α

k,t = 1) = (1 − λ)γk + λ.

As shown in the Appendix, these three conditions define a unique distribu-
tion for 1k,t. Arrivals are independent if λ = 0 and simultaneous if λ = 1.

More generally, λ is the unconditional correlation between 1α
k,t and 1β

k,t.
Given the realization of the arrival vector 1k,t, the construction of the

volatility component is based on a bivariate distribution M = (Mα, Mβ) ∈
R

2
+. We assume for now that M is defined by two parameters mα

0 and mβ
0 ,

and that each of its components has a unit mean: E(M) = 1. If arrivals
hit both series (1α

k,t = 1β
k,t = 1), the state vector Mk,t is drawn from M .

If only series c ∈ {α, β} receives an arrival, the new component M c
k,t is

sampled from the marginal M c of the bivariate distribution M. Finally,
Mk,t = Mk,t−1 if there is no arrival.

Consistent with previous notation, let

σα(Mt) ≡ σ̄α(Mα
1,tM

α
2,t . . . Mα

k̄,t)
1/2,

σβ(Mt) ≡ σ̄β(Mβ
1,tM

β
2,t . . . Mβ

k̄,t
)1/2,

where σ̄α, σ̄β > 0. Individual returns satisfy

rα
t = σα(Mt)εα

t ,

rβ
t = σβ(Mt)ε

β
t .

The vector εt ≡ (εα
t , εβ

t ) ∈ R
2 is i.i.d. Gaussian N (0,Σ), where

Σ =
[

1 ρε

ρε 1

]
.

The construction permits correlation in volatility through the bivariate
distribution M and correlation in returns through the Gaussian vector εt.
As in the univariate case, the transition probabilities are defined by

γk = 1 − (1 − γk̄)(bk−k̄), (4.3)

where γk̄ ∈(0, 1) and b∈(1,∞). This completes the specification of bivariate
MSM.

Under bivariate MSM, univariate dynamics coincide with the univariate
model presented in Chapter 3. The parameter σ̄c is again the unconditional
standard deviation of each univariate series c ∈ {α, β}, and other univariate
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parameters have similar equivalents. The complete specification of bivariate
MSM is given by eight parameters:

ψ ≡ (σ̄α, σ̄β , mα
0 , mβ

0 , b, γk̄, ρε, λ).

Focusing on the simple specification where each Mk,t is drawn from
a bivariate binomial distribution M = (Mα, Mβ)′, the first element Mα

takes values mα
0 ∈ [1, 2] and mα

1 = 2 − mα
0 ∈ [0, 1] with equal probability.

Similarly, Mβ is a binomial taking values mβ
0 ∈ [1, 2] and mβ

1 = 2 − mβ
0

with equal probability. Consequently, the random vector M has four pos-
sible values, whose unconditional probabilities are given by the matrix
(pi,j) = (P{M = (mα

i , mβ
j )})0≤i,j≤1. The conditions P(Mα = mα

0 ) = 1/2
and P(Mβ = mβ

0 ) = 1/2 impose that

[
p00 p01
p10 p11

]
=

1
4

[
1 + ρ∗

m 1 − ρ∗
m

1 − ρ∗
m 1 + ρ∗

m

]

for some ρ∗
m ∈ [−1, 1], where ρ∗

m is the correlation between components
Mα and Mβ under the distribution M .

4.2.2 Properties
Each component Mk,t has a unique ergodic distribution Π̄k, as shown in
the Appendix. Since different components are statistically independent,
the ergodic distribution of the volatility state Mt is the product measure
Π̄ = Π̄1 ⊗ . . . ⊗ Π̄k̄.

The return series have correlation coefficient

Corr(rα
t ; rβ

t ) = ρε

∏k̄

k=1
E[(Mα

k,tM
β
k,t)

1/2], (4.4)

which is lower than ρε by the Cauchy-Schwarz inequality. Uncorrelated
changes in volatility represent additional sources of noise that reduce the
correlation of asset returns.

The econometrician observes the set of past returns Rt ≡ {rs}t
s=1.

Returns are unpredictable under this information set: E(rt |Rt−1 ) = 0,
and bivariate MSM is thus consistent with some standard forms of market
efficiency.5 Comovement is quantified by the conditional correlation

Corrt(rα
t+n; rβ

t+n) = ρε

∏k̄

k=1

Et[(Mα
k,t+nMβ

k,t+n)1/2]

[(EtMα
k,t+n)(EtM

β
k,t+n)]1/2

≤ ρε, (4.5)

5
See Campbell, Lo, and MacKinlay (1997, Chapter 2) for a discussion.
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which is large when the volatility components of the currencies are high.
Similarly, provided ρ∗

m > 0 the correlation between absolute returns is high
in periods of high volatility.6

4.3 Inference

Bayesian updating and the likelihood function are available in closed
form, and ML estimation is practical with a moderate number of volatil-
ity components. Alternative computational methods are designed for
high-dimensional state spaces.

4.3.1 Closed-Form Likelihood
Since each frequency vector Mk,t is drawn from a bivariate binomial, the
volatility state Mt takes d = 4k̄ possible values m1, . . . , md ∈ R

k̄
+. Its

dynamics are characterized by the transition matrix A = (ai,j)1≤i,j≤d with
components aij = P(Mt+1 = mj

∣∣ Mt = mi).
The econometrician observes the set of past returns Rt ≡ {rs}t

s=1. As in
Chapter 3, the conditional probabilities Πj

t = P
(
Mt = mj |Rt

)
are com-

puted recursively by Bayesian updating. Let Πt =
(
Π1

t , . . . ,Π
d
t

)
∈ R

d
+. In

the next period, state Mt+1 is drawn, and the econometrician observes the
return vector rt+1. By Bayes’ rule, the updated probability is

Πt+1 ∝ f (rt+1) ∗ ΠtA, (4.6)

where f(r) is the vector of conditional densities (frt+1(rt+1|Mt+1 = mi))i.
In empirical applications, the initial vector Π0 is chosen equal to the ergodic
distribution Π̄ of the Markov chain. The log-likelihood has the closed-form
expression:

lnL (r1, . . . , rT ;ψ) =
T∑

t=1

ln[f(rt) · (Πt−1A)].

4.3.2 Particle Filter
The transition matrix contains 4k̄ × 4k̄ elements and thus grows quickly
with k̄. For instance, with eight frequencies, the transition matrix has
cardinality 232 ≈ 4 × 109, and is computationally expensive to use.

6
When k̄ is large, the formula is:

Corrt(|rα
t+n|; |rβ

t+n|) ∼ Cε

∏k̄

k=1

Et[(Mα
k,t+nMβ

k,t+n)1/2]

[(EtMα
k,t+n)(EtM

β
k,t+n)]1/2

,

where Cε = E(|εα
1 εβ

1 |).
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Following the literature on Markov chains,7 we now propose a simulation-
based inference methodology based on a particle filter, a recursive algorithm
that generates independent draws

M
(1)
t , . . . , M

(B)
t

from the conditional distribution Πt.
We begin at t = 0 by drawing B states from the ergodic distribution

Π̄. For any t ≥ 0, assume that M
(1)
t , . . . , M

(B)
t have been independently

sampled from Πt. Given a new return rt+1, we rewrite the updating formula
(4.6) as

Πj
t+1 ∝ frt+1

(
rt+1|Mt+1 = mj

) d∑

i=1

P
(
Mt+1 = mj |Mt = mi

)
Πi

t.

We obtain M
(1)
t+1, . . . , M

(B)
t+1 by simulating each M

(b)
t one-step forward and

reweighting using an importance sampler. Specifically:

1. Simulate the Markov chain one-step ahead to obtain M̂
(1)
t+1 given

M
(1)
t . Repeat B times to generate B draws M̂

(1)
t+1, . . . , M̂

(B)
t+1 . This prelim-

inary step only uses information available at date t and must therefore be
adjusted to account for the new return.

2. Draw a random number q from 1 to B with probability

P(q = b) ≡
frt+1(rt+1|Mt+1 = M̂

(b)
t+1)∑B

b′=1 frt+1(rt+1|Mt+1 = M̂
(b′)
t+1)

.

The vector M
(1)
t+1 = M̂

(q)
t+1 is a draw from Πt+1. Repeat B times to obtain

B draws M
(1)
t+1, . . . , M

(B)
t+1 .

This recursive procedure provides a discrete approximation to Bayesian
updating, which is computationally convenient in large state spaces.

4.3.3 Simulated Likelihood
We can use the particle filter to compute the likelihood function.
Each one-step ahead density satisfies f(rt|Rt−1) =

∑d
i=1 f(rt|Mt = mi)

7
See, for instance, Chib, Nardari, and Shephard (2002), Jacquier, Polson, and Rossi

(1994), and Pitt and Shephard (1999).
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P(Mt = mi|Rt−1). Given simulated draws M̂
(b)
t from Mt|Rt−1, the Monte

Carlo estimate of the conditional density is defined as

f̂(rt|Rt−1) ≡ 1
B

B∑

b=1

f(rt|Mt = M̂
(b)
t ),

and the log-likelihood is approximated by
∑T

t=1 ln f̂(rt|Rt−1). We can use
these calculations to carry out simulated likelihood estimation. In prac-
tice, an arbitrarily close approximation can be achieved by increasing B.
Larger state spaces require more draws to achieve the same degree of
precision.

Table 4.5 presents a Monte Carlo assessment of this method. We focus
on the univariate specification with k̄ = 8 components. Using the particle
filter, we generate 500 approximations of the log-likelihood of the univariate
DM series at the optimized ML estimates from Table 4.1. Each calculation
uses independent sets of Monte Carlo draws. We then compare the mean,
standard deviation, and quantiles of the estimates with the exact value
obtained in Table 4.1 by analytical Bayesian updating. All particle filter
evaluations use B = 10, 000 random draws. The particle filter estimate of
the log-likelihood has a relatively small standard deviation, and the average
across simulations, −6887.3, is close to the true value of −6885.9. The
quantiles are tightly clustered as well. The table also shows particle filter
estimates of the forecast variance, which are accurate and approximately

TABLE 4.5. Evaluation of Particle Filter

Et

∑n
j=1 r2

t+j

ln L n = 1 5 10 20 50

True value −6885.9 0.432 2.194 4.442 8.991 22.66
Simulation average −6887.3 0.431 2.187 4.426 8.953 22.54
Standard deviation 1.851 0.012 0.064 0.142 0.325 0.983
1% quantile −6892.1 0.405 2.036 4.076 8.103 19.79
25% quantile −6888.4 0.423 2.147 4.338 8.747 21.97
50% quantile −6887.3 0.431 2.191 4.435 8.957 22.66
75% quantile −6886.2 0.439 2.231 4.525 9.179 23.23
99% quantile −6883.3 0.458 2.330 4.739 9.633 24.42

Notes: This table compares values generated by the particle filter with their true values
generated by exact Bayesian updating. ln L is the value of the log-likelihood function
for the Deutsche mark series with k̄ = 8 evaluated at the maximum likelihood estimates
in Table 4.1. The forecasted variance of the series is denoted Et

∑n
j=1 r2

t+j . For each
quantity, the table provides the true value along with the average, standard deviation,
and quantiles over 500 particle filter approximations using independent sets of random
draws. Each approximation uses B = 10, 000 random draws.
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unbiased. These results confirm that the particle filter produces reason-
able estimates of the likelihood and moments of the series for problems of
reasonable size.

The particle filter extends the range of computationally feasible multi-
fractal specifications. In Chapter 3, we have used ten binomial components,
or 210 states. While this gives good results in the univariate case, multivari-
ate models require a correspondingly larger number of state variables. We
show in the empirical section that the particle filter produces good results
in a bivariate model with k̄ = 8 components, or 216 states.

4.3.4 Two-Step Estimation
Two-step estimation offers additional computational benefits, permitting
the econometrician to decompose inference into a sequence of lower-
dimensional optimization problems. In the bivariate multifractal, each
series c ∈ {α, β} follows a univariate MSM with parameters mc

0, σ̄c, b and
γk̄. This implies that we can estimate six of the eight parameters using
the likelihood and smaller state space of the univariate model. This moti-
vates us to develop the two-step method described below. The Appendix
shows that this procedure is a special case of generalized method of mom-
ents (GMM), implying consistency and asymptotic normality of the
estimator.

In the first stage, we obtain the parameters (mα
0 , mβ

0 , σ̄α, σ̄β , b, γk̄) by
optimizing the sum of the two univariate log-likelihoods, as in (4.2). Intu-
itively, this gives consistent estimates for all parameters since the gradient
of this sum with respect to the true parameters is zero. Because this objec-
tive function coincides with the likelihood of the combined univariate, the
first step has already been completed in Section 4.1.

The second stage gives estimates for the remaining three parameters,
(ρε, ρ

∗
m, λ), which are unique to the bivariate model. Our empirical work

focuses on the specification ρ∗
m = 1, which in untabulated results is

never rejected in the currency data. When the state space is not too
large (k̄ ≤ 5), we maximize the analytical bivariate likelihood condi-
tional on the first-stage estimates. For higher-dimensional specifications,
(k̄ = 6, 7, 8), we instead use the particle filter to optimize the simulated
likelihood.8

8
Simulated likelihood is appealing for intermediate values of k̄ because it potentially

entails a small loss in efficiency. As discussed in Chapter 8, moment-based estimation
can further reduce computational requirements, which is especially helpful for large
problems.
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4.4 Empirical Results

4.4.1 Bivariate MSM Estimates
Table 4.6 reports ML results for k̄ ≤ 5 and exchange rate pairs (DM,JA),
(DM,UK) and (JA,UK). The estimates are obtained by maximizing the full
likelihood of bivariate MSM, as described in Section 4.3. As in univariate
MSM, m̂0 declines with k̄, while the standard deviations σ̂α and σ̂β tend
to vary with k̄, with no apparent trend. The correlation between Gaus-
sian innovations ρ̂ε is positive and roughly constant across k̄. The arrival
correlation λ̂ is also large and approximately invariant to the number of
volatility components. The two parameters specific to the bivariate spec-
ification, ρ̂ε and λ̂, thus seem precisely estimated. Finally, the estimated
λ̂ is highest when ρ̂ε is highest and lowest when ρ̂ε is lowest. We infer
that correlation in volatility is higher for currencies with more correlated
returns.

The likelihood functions sharply increase with the number of frequen-
cies. For instance, with the mark and the yen series, the log-likelihood
increases by more than 800 when k̄ goes from 1 to 5. Since the models are
nonnested and specified by the same number of parameters, this is a sub-
stantial increase of fit in-sample. We also compare the goodness of fit to the
independent case in Table 4.3, and we find that for the mark and the yen
with k̄ = 5, the gain in likelihood is over 1300 points. Results are similar

TABLE 4.6. Bivariate MSM: Maximum Likelihood Estimation

k = 1 2 3 4 5

DM and JA

m̂DM
0 1.637 1.589 1.543 1.484 1.447

(0.011) (0.013) (0.013) (0.013) (0.011)
m̂JA

0 1.718 1.701 1.667 1.621 1.573
(0.011) (0.009) (0.010) (0.010) (0.010)

σ̂DM 0.679 0.621 0.575 0.559 0.524
(0.009) (0.011) (0.014) (0.017) (0.015)

σ̂JA 0.683 0.649 0.577 0.573 0.509
(0.011) (0.014) (0.017) (0.018) (0.024)

γ̂k̄ 0.122 0.217 0.732 0.828 0.905
(0.013) (0.022) (0.066) (0.049) (0.038)

b̂ — 16.23 23.71 13.60 8.70
(3.09) (4.54) (1.48) (0.83)

ρ̂ε 0.580 0.589 0.576 0.580 0.580
(0.008) (0.009) (0.010) (0.009) (0.009)

λ̂ 0.647 0.641 0.589 0.634 0.637
(0.041) (0.039) (0.056) (0.048) (0.049)

ln L −12519.99 −12001.70 −11797.05 −11688.44 −11655.80

(continued)
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TABLE 4.6. (continued)

k = 1 2 3 4 5

DM and UK

m̂DM
0 1.651 1.570 1.522 1.492 1.484

(0.012) (0.010) (0.012) (0.012) (0.011)
m̂JA

0 1.731 1.656 1.624 1.588 1.564
(0.010) (0.010) (0.009) (0.017) (0.010)

σ̂DM 0.681 0.706 0.626 0.560 0.498
(0.009) (0.014) (0.011) (0.031) (0.012)

σ̂JA 0.629 0.658 0.573 0.506 0.458
(0.009) (0.015) (0.012) (0.042) (0.015)

γ̂k̄ 0.227 0.422 0.746 0.791 0.864
(0.021) (0.052) (0.057) (0.067) (0.040)

b̂ — 13.29 15.24 11.71 10.83
(2.28) (2.26) (1.68) (1.35)

ρ̂ε 0.707 0.714 0.707 0.708 0.710
(0.007) (0.007) (0.007) (0.007) (0.007)

λ̂ 0.837 0.852 0.833 0.822 0.827
(0.023) (0.023) (0.026) (0.027) (0.025)

ln L −10894.41 −10513.18 −10335.82 −10270.90 −10240.51

JA and UK

m̂DM
0 1.764 1.718 1.693 1.629 1.608

(0.014) (0.008) (0.009) (0.010) (0.010)
m̂UK

0 1.729 1.661 1.633 1.595 1.571
(0.005) (0.012) (0.012) (0.011) (0.010)

σ̂DM 0.655 0.619 0.531 0.489 0.709
(0.008) (0.014) (0.015) (0.014) (0.021)

σ̂UK 0.603 0.578 0.514 0.474 0.385
(0.006) (0.012) (0.018) (0.011) (0.009)

γ̂k̄ 0.219 0.304 0.449 0.748 0.791
(0.011) (0.027) (0.054) (0.046) (0.043)

b̂ — 21.50 15.08 13.21 11.91
(4.32) (2.08) (1.43) (1.40)

ρ̂ε 0.447 0.453 0.449 0.438 0.440
(0.007) (0.004) (0.011) (0.012) (0.011)

λ̂ 0.499 0.565 0.560 0.544 0.535
(0.048) (0.047) (0.054) (0.056) (0.059)

ln L −12247.45 −11647.36 −11404.09 −11266.91 −11211.52

Notes: This table shows maximum likelihood estimation results for bivariate MSM. The
results reported are based on daily log returns in percent over the sample period 1 June
1973 to 30 October 2003. Each column corresponds to a given number of components k̄
in the MSM model. Asymptotic standard errors are in parentheses.
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for other currencies, demonstrating that the bivariate model improves over
independent univariate models.

In Table 4.7, we reestimate bivariate MSM with the two-step procedure
of Subsection 4.3. The second stage uses the analytical bivariate likelihood
for k̄ ≤ 5 and the particle filter for k̄ ∈ {6, 7, 8}. When k̄ ≤ 5, the two-step
parameter estimates are comparable to the full ML results, demonstrating
that the two-step procedure works well. For k̄ ∈ {6, 7, 8}, the results appear
consistent with the univariate ML estimates of Table 4.1 as well as the
estimates of the lower dimensional bivariate models. The particle filter is
effective in extending the range of tractable models.

We compare bivariate MSM with the constant correlation GARCH (CC-
GARCH) of Bollerslev (1990), which is a standard benchmark in the
multivariate volatility literature. CC-GARCH returns are specified as

rα
t =

√
hα

t εα
t and rβ

t =
√

hβ
t εβ

t ,

where εα
t and εβ

t are two standard normals with correlation ρε. The
conditional variances hα

t and hβ
t satisfy the familiar GARCH recursions:

hc
t+1 = ωc+ac(εc

t)
2+bch

c
t for each c ∈ {α, β}. CC-GARCH is thus specified

by seven parameters as compared to eight with bivariate MSM.

TABLE 4.7. Bivariate MSM: Two-Step Estimation

k = 1 2 3 4 5 6 7 8

DM and JA

m̂DM
0 1.643 1.618 1.515 1.474 1.445 1.405 1.397 1.367

(0.020) (0.019) (0.022) (0.023) (0.022) (0.022) (0.022) (0.022)
m̂JA

0 1.775 1.757 1.687 1.638 1.578 1.565 1.522 1.488
(0.013) (0.012) (0.016) (0.017) (0.020) (0.018) (0.019) (0.021)

σ̂DM 0.669 0.577 0.597 0.569 0.504 0.565 0.449 0.472
(0.014) (0.011) (0.019) (0.020) (0.021) (0.018) (0.027) (0.035)

σ̂JA 0.613 0.544 0.565 0.487 0.476 0.632 0.384 0.532
(0.010) (0.010) (0.018) (0.016) (0.021) (0.017) (0.022) (0.041)

γ̂k̄ 0.129 0.257 0.301 0.756 0.844 0.872 0.959 0.982
(0.014) (0.024) (0.037) (0.072) (0.075) (0.081) (0.047) (0.027)

b̂ — 69.57 11.97 13.21 9.14 7.16 6.16 4.93
(21.80) (2.20) (2.11) (1.32) (1.29) (0.86) (0.56)

ρ̂ε 0.566 0.570 0.581 0.574 0.578 0.581 0.581 0.618
(0.013) (0.014) (0.016) (0.017) (0.017) (0.049) (0.009) (0.010)

λ̂ 0.587 0.544 0.646 0.585 0.624 0.633 0.659 0.633
(0.065) (0.067) (0.064) (0.082) (0.080) (0.032) (0.038) (0.023)

(continued)
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TABLE 4.7. (continued)

k = 1 2 3 4 5 6 7 8

DM and UK

m̂DM
0 1.626 1.565 1.519 1.473 1.452 1.406 1.401 1.370

(0.020) (0.021) (0.022) (0.023) (0.022) (0.022) (0.023) (0.022)
m̂UK

0 1.697 1.657 1.641 1.602 1.573 1.521 1.492 1.454
(0.016) (0.017) (0.019) (0.021) (0.022) (0.022) (0.022) (0.022)

σ̂DM 0.671 0.645 0.599 0.568 0.493 0.563 0.471 0.474
(0.013) (0.017) (0.018) (0.021) (0.018) (0.018) (0.028) (0.033)

σ̂UK 0.605 0.588 0.515 0.468 0.422 0.457 0.391 0.385
(0.011) (0.015) (0.015) (0.016) (0.017) (0.020) (0.019) (0.026)

γ̂k̄ 0.090 0.151 0.388 0.683 0.672 0.798 0.844 0.969
(0.011) (0.019) (0.052) (0.082) (0.087) (0.093) (0.092) (0.043)

b̂ — 12.33 15.25 11.97 10.09 6.97 6.23 5.02
(3.38) (3.02) (2.07) (1.68) (1.48) (0.88) (0.65)

ρ̂ε 0.697 0.703 0.704 0.709 0.711 0.700 0.689 0.704
(0.010) (0.011) (0.012) (0.013) (0.012) (0.011) (0.012) (0.010)

λ̂ 0.814 0.818 0.826 0.802 0.820 0.790 0.844 0.800
(0.041) (0.037) (0.042) (0.048) (0.045) (0.050) (0.022) (0.027)

JA and UK

m̂JA
0 1.776 1.762 1.688 1.645 1.631 1.568 1.558 1.507

(0.062) (0.031) (0.032) (0.025) (0.024) (0.024) (0.021) (0.023)
m̂UK

0 1.728 1.680 1.640 1.607 1.575 1.525 1.499 1.458
(0.016) (0.016) (0.019) (0.020) (0.021) (0.022) (0.021) (0.021)

σ̂JA 0.624 0.546 0.569 0.471 0.702 0.631 0.514 0.509
(0.011) (0.011) (0.017) (0.014) (0.028) (0.030) (0.025) (0.031)

σ̂UK 0.606 0.561 0.522 0.508 0.432 0.457 0.384 0.379
(0.012) (0.012) (0.015) (0.015) (0.016) (0.021) (0.018) (0.023)

γ̂k̄ 0.161 0.303 0.275 0.635 0.697 0.847 0.864 0.970
(0.015) (0.027) (0.030) (0.062) (0.068) (0.064) (0.067) (0.034)

b̂ — 43.46 12.73 14.55 13.60 8.22 7.24 5.60
(10.62) (2.27) (2.14) (2.08) (1.04) (0.91) (0.70)

ρ̂ε 0.439 0.439 0.448 0.439 0.439 0.436 0.414 0.436
(0.017) (0.018) (0.019) (0.021) (0.021) (0.010) (0.018) (0.017)

λ̂ 0.494 0.519 0.570 0.549 0.524 0.575 0.625 0.561
(0.068) (0.071) (0.063) (0.076) (0.080) (0.049) (0.027) (0.015)

Notes: This table shows two-step estimates for bivariate MSM. The results are based on
daily log returns in percent over the sample period 1 June 1973 to 30 October 2003. Each
column corresponds to a given number of components k̄ in the MSM model. First-stage
estimates are obtained by optimizing the combined univariate likelihood as in Panel A
of Table 4.3. As described in the Appendix, this provides consistent estimates for the
parameters (mα

0 , mβ
0 , σ̄α, σ̄β , b, γk̄). For k̄ ≤ 5, the second stage optimizes the analyti-

cally calculated bivariate MSM likelihood conditional on the first-stage estimates. For
k̄ = 6, 7, 8, the optimization of the likelihood is numerically implemented using the par-
ticle filter approximation. Standard errors in parentheses are calculated by recasting the
optimization in a GMM context, as described in the Appendix, and are HAC-adjusted
using Newey and West (1987).



4.4 Empirical Results 71

Table 4.8 reports an in-sample comparison of CC-GARCH against bivari-
ate MSM with k̄ = 5 components. It is immediately clear that MSM gives
much higher likelihoods, although it has only one additional parameter. For
all three pairs of exchange rates, the difference in log-likelihood exceeds
1000 points. The same results hold whether comparing full ML results
from the two models, or the likelihoods obtained under two-step esti-
mation. To account for the difference in the number of parameters, we
compute the BIC statistic for each model, and test the significance of the
difference using the original method suggested by Vuong (1989) and the
HAC-adjusted version explained in Chapter 3. In all cases, the p-value
from the test that CC-GARCH has a superior BIC statistic to multivariate
MSM is substantially less than 1%. In-sample evidence thus strongly favors
bivariate MSM.

4.4.2 Specification Tests
In-sample comparisons have shown that bivariate MSM performs well rela-
tive to CC-GARCH. It is now natural to investigate whether, in an absolute
sense, the restrictions imposed by the model are supported by the data. We
weaken one assumption at a time, and we assess improvement in fit by like-
lihood ratio (LR) tests. When a restriction applies equally to the univariate
and bivariate models, we choose to test on the univariate series. This allows
us to distinguish between misspecifications originating in univariate MSM
and those unique to the bivariate approach.

Heterogeneity in volatility persistence is made parsimonious by the fre-
quency parameterization (4.3). We focus on univariate models with k̄ = 8
components. For each currency, we consider the restricted univariate ML
estimates in Table 4.1 and denote by Lr the corresponding likelihood. In
contrast, we call unrestricted model k ∈ {1, . . . , k̄} the extension in which
frequency parameter γk is free and all other frequencies satisfy (4.3). We
estimate the kth unrestricted model and denote by Lu(k) the corresponding
likelihood. Under the restricted model, 2[Lu(k) − Lr] converges to χ2 (1)
as T → ∞. This methodology generates eight LR statistics for each of the
three currencies. We report salient features of the analysis in the text.
For DM, none of the tests provides evidence against the MSM frequency
restrictions at the 1% level. One statistic (k = 6) is significant for JA, and
two tests (k = 6, 7) are significant for UK. Evidence against the frequency
specification is thus limited to 3 of the 24 tests.

We similarly assess on univariate series whether volatility components
have identical distributions across frequencies. Unrestricted specification
k permits component Mk,t to have its own distribution parameter m0(k).
Results are mixed. For DM, only two of the eight tests (k = 1, 6) are sig-
nificant at the 1% level. For JA, the first five tests suggest a value of
m0(k) larger than for the other components. Similarly for the UK series,
LR tests of the first 4 components suggest stronger shocks at low than
at high-frequency. Overall, the DM data seems to match the MSM model
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TABLE 4.8. In-Sample Bivariate Model Comparison

BIC p-value
vs. Multifractral

No. of Vuong HAC
Parameters ln L BIC (1989) Adj

A. Maximum Likelihood Estimates

DM and JA

Bivariate MSM 8 −11655.80 3.0626
CC GARCH 7 −12825.63 3.3679 < 0.001 < 0.001

DM and UK

Bivariate MSM 8 −10240.51 2.6919
CC GARCH 7 −11331.00 2.9764 < 0.001 < 0.001

JA and UK

Bivariate MSM 8 −11211.52 2.9462
CC GARCH 7 −12550.49 3.2958 < 0.001 < 0.001

B. Two-Step Estimates

DM and JA

Bivariate MSM 8 −11658.89 3.0634
CC GARCH 7 −12830.98 3.3693 < 0.001 < 0.001

DM and UK

Bivariate MSM 8 −10262.05 2.6975
CC GARCH 7 −11434.17 3.0034 < 0.001 < 0.001

JA and UK

Bivariate MSM 8 −11233.59 2.9521
CC GARCH 7 −12559.72 3.2982 < 0.001 < 0.001

Notes: This table summarizes information about in-sample goodness of fit. The Bayesian
Information Criterion is given by BIC = T −1(−2 ln L + NP ln T ), where NP is the
number of free parameters in the specification. The last two columns give p-values from
a test that the corresponding model dominates bivariate MSM by the BIC criterion. The
first value uses the Vuong (1989) methodology, and the second value adjusts the test
for heteroskedasticity and autocorrelation as described in the Appendix to Chapter 3.
A low p-value indicates that the CC GARCH model would be rejected in favor of the
multifractal model. Panel A presents the results when both models have been estimated
by Full MLE. Panel B presents results where both models are estimated by two-step
procedures.
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remarkably well, while JA and UK appear to prefer stronger low-frequency
variation.

We finally test the restrictions imposed by bivariate MSM on volatil-
ity comovement. For each currency pair, the restricted model is given by
the full ML estimates with k̄ = 5 in Table 4.6. Unrestricted model k per-
mits that component k may have its own unique arrival correlation λk.
We report no rejections at the 1% level for JA-UK, one significant test
(k = 5) for the DM-UK pair, and two significant statistics (k = 2, 5) for
the DM-JA pair. Overall, MSM incorporates empirically reasonable restric-
tions that permit parsimonious specification of bivariate multifrequency
volatility.

4.4.3 Out-of-Sample Diagnostics
We now perform out-of-sample diagnostics with probability integral trans-
forms, as suggested by Rosenblatt (1952) and implemented in a financial
econometrics context by Diebold, Gunther, and Tay (1998) and Elerian,
Chib, and Shephard (2001). In all remaining empirical work, we con-
sider bivariate MSM with k̄ = 5 components. We first estimate MSM
and CC-GARCH on the 1973–1989 subsample. The out-of-sample eval-
uations are based on the 3473 daily observations from 1990 to 2003. Let
yt,n ≡

∑n
i=1 rt+i denote the forward-looking n-period return at time t. MSM

and CC-GARCH each generate a conditional forecast distribution

Ft,n(y) ≡ P(yt,n ≤ y|r1, . . . , rt).

Under correct specification, the random variables Ut,n = Ft,n(yt,n) are
uniformly distributed on [0, 1]; they are also independent if n = 1.

In Figure 4.1, we compare histograms of selected integral transforms
{Ut,n} for the two models. Histograms are shown for n = 1 and n = 5
days using the following portfolios: DM, JA, an equal-weighted position
in the two currencies, and a hedge portfolio with weights (1, −1).9 We see
that MSM provides approximately uniform histograms. In contrast, CC-
GARCH generates tent-shaped plots, with a large concentration of values
around 0 and 1. These feature are symptomatic of tails that are too thin in
the estimated CC-GARCH process. Similar results are obtained with other
currencies.

9
The random variables Ut are constructed as follows. In every period, we use the

particle filter to draw B values y
(1)
t,n, . . . , y

(B)
t,n from the conditional distribution of

yt,n given r1, . . . , rt. We then approximate Ft,n(y) by the empirical c.d.f. F̂t,n(y) =
1
B

∑B
b=1 1{y

(b)
t,n ≤ y}. Sensitivity tests indicate that B = 10, 000 draws are more than

sufficient to provide a good approximation.
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FIGURE 4.1. Probability Integral Transforms. These figures show his-
tograms of the probability integral transforms {Ut,n} for horizons (in rows) of
n = 1 and n = 5 days and portfolios (in columns) of DM, JA, an equal-weighted
portfolio of the two currencies, and a hedge portfolio with weights (1, −1). The
models considered are bivariate MSM with k̄ = 5 components and CC-GARCH.
Under correct specification, the integral transforms are uniformly distributed.

The Cramér-von Mises criterion, which measures the goodness of fit of a
probability distribution, confirms these graphical results.10 We report the
criterion in Table 4.9 for all currencies and portfolios. At the 1% level, we

10
Let T ∗ denote the number of out-of-sample periods, and F̂U the empirical distri-

bution of the transforms Ut,1. As T ∗ → ∞, the Cramér-von Mises criterion T ∗ ∫ 1
0 [y −

F̂U (y)]2dy weakly converges to a weighted series of independent χ2 random variables:

T ∗
∫ 1

0
[y − F̂U (y)]2dx ⇒

∞∑
j=1

(
zj

jπ

)2

where the {zj} are IID N (0, 1). See Shorack and Wellner (1986) for further details.
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TABLE 4.9. Goodness of Fit One-Day Forecasts

Bivariate MSM CC GARCH

DM, JA DM, UK JA, UK DM, JA DM, UK JA, UK

Currency α 0.22 0.16 0.54 1.07 1.07 1.70
Currency β 0.47 0.51 0.29 1.70 2.57 2.56
Equal-weight 0.67 0.05 0.23 2.48 1.06 2.51
Hedge 2.27 0.59 1.06 0.56 5.93 0.52

Notes: This table shows the Cramer-von Mises distance between a uniform distribution
and the empirical distribution of the probability integral transform of the corresponding
model forecast. The bivariate MSM specification uses k̄ = 5 components. Currency α
and β correspond, respectively, to the first and second currency in each pair. Equal-
weight is an equal-weighted portfolio, in which a U.S. investor allocates 50% of the
fund’s dollar value to currency α and 50% to currency β. Hedge is a portfolio consisting
of a long position in α and a short position in β with an initial net investment of zero.
Under correct specification, the reported statistics are greater than 0.73 in about 1%
of samples. A high value of the statistic thus indicates rejection of the corresponding
model. Rejections at the 1% level are indicated by boldface.

reject MSM in only 2 out of 12 cases, while CC-GARCH is rejected in 10
out of 12 cases.11 The Cramér-von Mises statistics thus confirm that the
conditional density forecasts of MSM are broadly consistent with exchange
rate data.

4.4.4 Value-at-Risk
The tail properties of financial series are of direct interest for risk man-
agement and financial regulation. Value-at-risk (VaR) is a particularly
widespread method that summarizes the expected maximum loss over a
target horizon within a given confidence interval. Given a confidence level
p, we define the value-at-risk of a portfolio to be the 1− pth quantile of the
conditional return distribution:

V aRt,n (p) ≡ F−1
t,n (1 − p).

With probability p, we expect to lose no more than V aRt,n (p) over the
next n days.

The accuracy of a value-at-risk model is most easily verified by recording
the failure rate, that is, the number of times VaR is exceeded in a given
sample (e.g., Kupiec, 1995; Jorion, 1997).12 Table 4.10 reports the failure

11
We do not adjust the critical values for estimation error. Earlier work (e.g.,

Thompson, 2000) suggests that such adjustments would only have small effects.
12

The failure rate is thus the proportion of out-of-sample days in which rt+1 + · · · +
rt+n < V aRt,n (p) .
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rates of MSM and CC-GARCH for portfolios held for n = 1 and 5 days and
confidence levels of 1%, 5%, and 10%. As described in the Appendix, we
forecast for each bivariate process the value-at-risk of individual currencies,
equal-weighted portfolios, and hedge portfolios.

The results in Table 4.10 show that MSM is more conservative in estimat-
ing value-at-risk than CC-GARCH. For example, under a one-day predicted
failure rate of 1%, actual portfolio losses exceed the MSM VaR forecast
more than 1% of the time for 3 out of 12 portfolios, whereas actual losses
exceed the 1% CC-GARCH quantile more than 1% of the time in 11 out
of 12 portfolios.

Of course, an excessively conservative model does not necessarily lead
to superior risk management. Statistical tests suggest that MSM is not
overly conservative. For each portfolio and VaR quantile we test the null
hypothesis that the empirical failure rate is equal to the expected failure

TABLE 4.10. Failure Rates of Value-at-Risk Forecasts

Bivariate MSM CC GARCH

1% 5% 10% 1% 5% 10%

A. One-Day Horizon

DM and JA

Currency α 0.69 4.35 9.10 1.81 5.13 9.01
Currency β 0.95 4.81 9.56 2.30 5.38 9.10
Equal-Weight 0.86 3.92 8.32 1.30 4.66 8.21
Hedge 0.69 5.64 12.21 2.25 6.68 11.81

DM and UK

Currency α 0.92 4.92 10.14 1.81 5.13 9.01
Currency β 0.72 5.27 10.68 1.44 4.61 8.29
Equal-Weight 1.07 4.69 10.28 1.87 5.18 8.98
Hedge 0.55 4.72 9.13 0.92 4.00 7.00

JA and UK

Currency α 1.01 5.04 9.88 2.30 5.38 9.10
Currency β 0.60 4.41 9.70 1.44 4.61 8.29
Equal-Weight 0.84 4.55 8.78 1.64 4.69 8.03
Hedge 1.15 5.64 11.37 2.25 6.25 10.34

B. Five-Day Horizon

DM and JA

Currency α 0.78 4.21 9.57 1.61 5.48 10.72
Currency β 1.07 5.30 10.55 2.31 7.06 11.62
Equal-Weight 0.72 4.44 8.50 1.64 5.25 9.14
Hedge 0.92 5.42 12.16 3.29 8.39 13.46

(continued)
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TABLE 4.10. (continued)

Bivariate MSM CC GARCH

1% 5% 10% 1% 5% 10%

DM and UK
Currency α 0.95 5.13 10.35 1.64 5.51 10.72
Currency β 0.75 5.28 11.01 0.98 4.79 9.77
Equal-Weight 0.84 5.07 10.93 1.27 5.94 10.61
Hedge 0.69 4.01 8.76 0.86 3.86 8.48

JA and UK
Currency α 1.21 5.53 10.75 2.36 6.86 11.70
Currency β 0.46 4.67 9.02 1.53 4.93 9.57
Equal-Weight 0.84 4.12 9.02 1.53 4.93 9.57
Hedge 1.73 6.40 11.24 1.76 6.34 11.53

Notes: This table displays the frequency of returns that exceed the value-at-risk fore-
casted by the model. The bivariate MSM specification uses k̄ = 5 components. For
quantile p the number reported is the frequency of portfolio returns below quantile p
predicted by the model. If the VaR forecast is correct, the observed failure rate should
be close to the prediction. Boldface numbers are statistically different from α at the
1% level. Panel A shows results for a one-day horizon, while Panel B shows a five-day
horizon. Currency α and β refer to the first currency and second currency in each pair.
Equal-Weight is an equal-weighted portfolio, in which a U.S. investor allocates 50% of
the fund’s dollar value to currency α and 50% to currency β. Hedge is a portfolio con-
sisting of a long position in α and a short position in β with an initial net investment
of zero. Standard errors in Panel A are computed by p(1 − p)/3473, where 3473 is the
number of out-of-sample observations. Standard errors in Panel B are computed using
Newey and West (1987).

rate. For the MSM model, the failure rates are statistically different from
the 1% prediction for only 1 out of 12 portfolios. The CC-GARCH failure
rates are statistically different from 1% in 11 out of 12 portfolios. MSM
thus provides more accurate quantile forecasts than CC-GARCH.

4.5 Discussion

This chapter uses MSM to implement a univariate frequency decomposition
of volatility in several exchange rate series. We find that the estimated
components are generally difficult to relate to standard macroeconomic
variables. Low-frequency volatility components from all currencies covary
positively with oil and gold prices, suggesting that these commodities may
act as proxies for global economic risk.

Across exchange rate pairs, volatility components tend to have high cor-
relation when their durations are similar and low correlations otherwise.
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This finding motivates the development of bivariate MSM, a multifrequency
model of comovement in stochastic volatility and covariation in financial
prices. The model permits a parsimonious specification of bivariate shocks
with heterogeneous durations, capturing the economic intuition that shared
fundamentals may have different innovation frequencies. Bayesian updat-
ing and the likelihood function are always available in closed form, but
are practical only when the state space is of moderate size. We develop
a particle filter suitable for larger state spaces, and demonstrate its good
performance in inference and forecasting. Bivariate MSM performs well
in- and out-of-sample relative to a standard benchmark, CC-GARCH. Like-
lihood ratio tests also confirm some of the principal restrictions of the
model. The bivariate MSM framework permits us to conduct inference
and forecasting for good-performing pure regime-switching models with
216 states and only eight parameters.

The bivariate MSM model investigated in this Chapter generalizes to
the multivariate case with many assets, as is discussed in the Appendix.
We can consider either an arbitrary arrival correlation matrix across asset
markets, which might be useful for applications with a relatively small
number of assets. Alternatively, we propose a factor model of multifre-
quency stochastic volatility, which is specified by a number of volatility
parameters that grows linearly in the number of assets. Estimation can be
conducted by maximizing the closed-form likelihood or by implementing
the particle filter methodology.



5
Background: Continuous-Time
Volatility Modeling, Fractal Processes,
and Multifractal Measures

This chapter provides background material for the continuous-time
multifractal volatility models that are fully developed in the remainder
of Part II (Chapters 6–8), and in Chapter 10 of Part III. Our goal is not
to survey the literature in any area, but to provide a brief introduction to
the continuous-time concepts employed in the rest of the book.

Much of the background information given here is directly useful to
understanding the first multifractal diffusion, the MMAR. Specifically, time
deformation and multifractal measures are critical building blocks for the
MMAR. The less directly related but nonetheless important self-similar
processes, which have a long history in finance, are cousins of the multi-
fractal diffusions considered in the remainder of Part II. The MMAR is
discussed in Chapter 6.

Chapter 7 takes an alternative path to generating a multifractal diffu-
sion by following continuous-time versions of the MSM processes developed
in Chapter 3 to their weak limit. This approach bypasses the need to
work with combinatorial multifractal measures constructed on a fixed grid.
Continuous-time MSM has the same moment-scaling properties as the
MMAR, and Chapter 8 confirms these predictions in currency and equity
data.

In this background review, we also briefly discuss jump-diffusion models
of financial prices. Jump-diffusions are particularly relevant in Chapter 10,
where we obtain endogenous discontinuities in prices and other appealing
features by using equilibrium valuation.
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5.1 Continuous-Time Models of Asset Prices

5.1.1 Brownian Motion, Time Deformation,
and Jump-Diffusions

The Brownian motion (Bachelier, 1900) is the workhorse of continuous-
time finance theory.1 Among many examples, Black and Scholes (1973)
and Merton (1973) specify the log-price of a financial asset as a Brownian
motion with constant drift and volatility. While highly tractable in theore-
tical applications, the Brownian motion representation assumes inde-
pendent Gaussian increments and thus cannot capture the outliers and
volatility cycles exhibited by typical financial returns.

The Brownian motion is conveniently extended by considering deforma-
tions of clock time, as suggested by Bochner (1949):

Definition 5.1 (Time deformation and compound process) Let
{B(t)} be a stochastic process, and θ(t) an increasing function of clock
time t. We call

X(t) ≡ B[θ(t)]

a compound process, and θ(t) the trading time or time-deformation
process.

When the process B is a martingale, innovations in trading time may speed
up or slow down the process X(t) without influencing its direction. Com-
pounding can thus separate the direction and the size of price movements,
and has been used to model the unobserved natural time scale of eco-
nomic series (Clark, 1973; Mandelbrot and Taylor, 1967; Stock, 1987, 1988).
In Chapters 6 and 7, we show how compounding can be used to define
multifractal diffusions.

To account for thick tails in asset returns and the corresponding implied
volatility smiles in near-maturity options, another approach used in con-
tinuous time is to incorporate jumps in financial prices.2 For example,
Merton (1976) assumes that the stock price follows an exogenous

1We refer the reader to Baxter and Rennie (1996), Bjork (2004), Cochrane (2005),
Cont and Tankov (2003), Dana and Jeanblanc (2007), Dothan (1990), Duffie (1988,
2001), Hunt and Kennedy (2004), Ingersoll (1987), Karatzas and Shreve (2001), Merton
(1990), Musiela and Rutkowski (2007), Neftci (2000), Nielsen (1999), Shreve (2005), and
Wilmott (2006), among others, for excellent book length treatments of the continuous-
time finance literature.

2Numerous studies provide evidence for jumps in the valuation of stocks and other
financial securities, based on the series of either the assets themselves or their derivative
claims, against increasingly broad diffusion alternatives. See, for example, Ait-Sahalia
(2002), Ait-Sahalia and Jacod (2008), Andersen, Benzoni, and Lund (2002), Andersen,
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jump-diffusion with constant volatility. Subsequent research considers
econometric refinements such as stochastic volatility, priced jumps, jumps
in volatility, correlation between jumps in returns and volatility, and infinite
activity.3 Among numerous contributions, Bakshi, Cao, and Chen (1997)
and Bates (2000) investigate price processes with exogenous jumps and
stochastic volatility, and conclude that additional discontinuities in volatil-
ity are necessary to match option valuations. Duffie, Pan, and Singleton
(2000) analyze an extension with discrete volatility changes while exoge-
nously specifying the relation between volatility and returns. A related line
of research (e.g., Madan, Carr, and Chang, 1998) considers pure jump pro-
cesses characterized by infinite activity with many small events and fewer
large discontinuities. In all of this literature, jumps in valuations and their
relation to volatility are exogenously specified.4 In Chapter 10, we use equi-
librium valuation to generate price jumps linked endogenously to volatility
changes, and derive an inverse relation between the size and frequency of
price discontinuities in a multifrequency environment.

5.1.2 Self-Similar (Fractal) Processes
The French mathematician Benôıt Mandelbrot has long recommended
departing from Itô diffusions in favor of adopting fat-tailed “fractal” pro-
cesses. This alternative modeling approach builds on the concept of scale
invariance. In a 1963 publication, Mandelbrot suggested that the shape
of the distribution of returns should be invariant when the time scale is
changed:

Definition 5.2 (Self-similar process) A random process {X(t)} that
satisfies

{X(ct1), . . . , X (ctk)} d=
{
cHX(t1), . . . , cHX(tk)

}

for some H > 0 and all c, k, t1, . . . , tk ≥ 0, is called self-similar or
self-affine. The number H is the self-similarity index, or scaling exponent,
of the process {X(t)}.

Bollerslev, and Diebold (2007), Ball and Torous (1985), Barndorff-Nielsen and Shephard
(2004, 2006), Bates (1996, 2000), Carr, Geman, Madan, and Yor (2002), Carr and Wu
(2003), Eraker (2004), Eraker, Johannes, and Polson (2003), Huang and Tauchen (2005),
Jarrow and Rosenfeld (1984), Jorion (1988), Maheu and McCurdy (2004), and Press
(1967).

3Jump processes are classified as having finite or infinite activity depending on
whether the number of jumps in a bounded time interval is finite or infinite.

4Other applications of jump processes in finance include Barndorff-Nielsen (1998),
Eberlein, Keller, and Prause (1998), Liu, Pan, and Wang (2005), Naik and Lee (1990),
and Pan (2002).
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The Brownian motion is self-similar with H = 1/2. Besides the Brownian
motion, the Lévy-stable process and the fractional Brownian motion are the
main examples of self-similar processes in finance. Embrechts and Maejima
(2002), Mandelbrot (1997), and Samorodnitsky and Taqqu (1994) provide
thorough discussions of self-similar processes in finance and the natural
sciences, and we briefly review two important examples.

The stable processes of Paul Lévy (1924) are characterized by fat tails in
the unconditional distribution of returns. They have been widely applied
in financial econometrics to model a variety of commodity, equity and cur-
rency prices (e.g., Blattberg and Gonedes, 1974; Fama, 1963, 1965; Fama
and Roll, 1971; Fielitz, 1976; Granger and Morgenstern, 1970; Koedijk and
Kool, 1992; Mandelbrot, 1963, 1967; Officer, 1972; Phillips, McFarland, and
McMahon, 1996; Samuelson, 1967, 1976). A problem with Lévy-stable pro-
cesses in financial applications is that they imply infinite variance, which
appears to be empirically inaccurate in typical financial data. Moreover,
the Lévy-stable model assumes that increments are independent through
time, which is at odds with substantial empirical evidence of time-varying
volatility.

The fractional Brownian motion (FBM), introduced by Kolmogorov
(1940) and Mandelbrot (1965a), has continuous sample paths as well
as Gaussian and possibly dependent increments. A fractional Brownian
motion BH (t) is an ordinary Brownian motion for H = 1/2, is antiper-
sistent when 0 < H < 1/2, and persistent with long memory in returns
when 1/2 < H < 1. The FBM has been widely used in hydrology and
climatology, as reviewed in Samorodnitsky and Taqqu (1994). Applications
in finance are limited by the fact that the FBM does not disentangle long
memory in volatility from long memory in returns. Chapters 6 and 7 show
that multifractal volatility modeling resolves this difficulty.

Empirical evidence suggests that many financial series are not self-
similar, but instead have thinner tails and become less peaked in the bells
when the sampling interval increases (e.g., Campbell, Lo, and MacKinlay,
1996, Chapter 1). The volatility models in Chapters 6 and 7 capture this
nonlinearity, as well as thick tails and long-memory volatility persistence,
by building on a generalized form of scaling that has been developed in the
multifractal literature.

5.2 Multifractal Measures

The history of multifractals begins in the natural sciences, where
multifractal measures have proven useful in numerous applications.5 We

5The literature on applications of multifractals includes wide-ranging contributions
across many areas of study. A survey is beyond the scope of this book, but examples
include agronomy (Kravchenko, Bullock, and Boast, 2000; Zeleke and Si, 2004), astronomy
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now review the simplest multifractal, the binomial measure on a compact
interval, which generalizes to random multiplicative measures.

5.2.1 The Binomial Measure
Fractals are sets that can be constructed by iterating a simple transfor-
mation. Well-known examples include the Cantor set, which is constructed
by recursively eliminating the middle third of intervals, or the Koch flake,
which is obtained by recursively transforming segments into tent-shaped
curves. Mandelbrot (1982) provides a classic exposition of fractals and their
applications in the natural sciences.

Analogous to fractal sets, multifractal measures are built by iterating
a simple transformation. The binomial measure6 on [0, 1] provides a sim-
ple example, and is easily derived as the limit of a multiplicative cascade.
Consider the uniform probability measure μ0 on the unit interval and two
positive numbers m0 and m1 adding up to 1. In the first step of the cas-
cade, we define a measure μ1 by uniformly spreading the mass m0 on the
left subinterval [0, 1/2], and the mass m1 on the right subinterval [1/2, 1].
The density of μ1 is a step function, as illustrated in Figure 5.1a.

In the second stage of the cascade, we split the interval [0, 1/2] into
two subintervals of equal length. The left subinterval [0, 1/4] is allocated
a fraction m0 of μ1[0, 1/2], while the right subinterval [1/4, 1/2] receives a
fraction m1. Applying a similar procedure to [1/2, 1], we obtain a measure

(Borgani, 1995; Jones et al., 1988, 2004; Martinez, 1999; Pietronero, 1987; Valdarnini,
Borgani, and Provenzale, 1992), ecology (Borda-de-Agua, Hubbell, and MacAllister,
2002; Drake and Weishampel, 2001; Kirkpatrick and Weishampel, 2005), geology and
geochemistry (Agterberg, 2007; Cheng, 1999; Cheng and Agterberg, 1995; de Wijs,
1951; Goncalves, 2001; Paredes and Elorza, 1999; Xie and Bao, 2004), genetics (Gutier-
rez, Rodriguez, and Abramson, 2001; Tino, 2002; Yu, Anh, and Lao, 2003), hydrology
(Boufadel et al., 2000; Koscielny-Bunde et al., 2006; Labat, Mangin, and Ababou, 2002;
Liu and Moltz, 1997; Pandey, Lovejoy, and Schertzer, 1998), meteorology (Carvalho,
Lavallee, and Jones, 2002; Deidda, 2000; Lilley et al., 2006; Lovejoy and Schertzer, 2006;
Olsson and Niemczynowicz, 1996; Schertzer and Lovejoy, 1987; Tessier, Lovejoy, and
Schertzer, 1994), biology and medicine (Cornforth and Jelinek, 2008; Fernandez et al.,
1999; Oprisan, Ardelean, and Frangopol, 2000; Smith, Lange, and Marks, 1996; Stojic,
Reljin, and Reljin, 2006; Takahashi et al., 2004), network traffic modeling (Atzori, Aste,
and Isola, 2006; Gilbert, Willinger, and Feldmann, 1999; Krishna, Gadre, and Desai,
2003; Riedi et al., 1999), seismology (Geilikman, Golubeva, and Pisarenko, 1990; Godano
and Caruso, 1995; Nakaya and Hashimoto, 2002; Molchan and Kronrod, 2007; Sornette
and Ouillon, 2005), soil science (Dathe, Tarquis, and Perrier, 2006; Folorunso et al.,
1994; Grout, Tarquis, and Wiesner, 1998; Martin and Montero, 2002; Posadas et al.,
2003), and turbulence (Frisch and Parisi, 1985; Kolmogorov, 1962; Mandelbrot 1972,
1974; Meneveau and Sreenivasan, 1987, 1991; Muzy, Bacry, and Arneodo, 1991; Yaglom,
1966). For further discussion of some of these areas, see Davis et al. (1994), Mandelbrot
(1989, 1999), Sornette (2004), and Stanley and Meakin (1988).

6The binomial is sometimes called the Bernoulli or Besicovitch measure.
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μ2 such that:

μ2[0, 1/4] = m0m0, μ2[1/4, 1/2] = m0m1,
μ2[1/2, 3/4] = m1m0, μ2[3/4, 1] = m1m1.

Iteration of this procedure generates an infinite sequence of measures (μk)
that weakly converges to the binomial measure μ. Figure 5.1b illustrates
the density of the measure μ4 obtained after k = 4 steps of the recursion.

Since m0 + m1 = 1, each stage of the construction preserves the
mass of split dyadic intervals.7 Consider the interval [t, t + 2−k], where
t =

∑k
i=1 ηi2−i and η1, . . . , ηk ∈ {0, 1}, and let ϕ0 and ϕ1 denote the rel-

ative frequencies of 0s and 1s in (η1, . . . , ηk). The measure of the dyadic
interval is then

μ[t, t + 2−k] = mkϕ0
0 mkϕ1

1 .

Its values range between mk
1 and mk

0 , which illustrates that the construction
creates large and increasing heterogeneity in the allocation of mass. As a
result, the binomial is a continuous but singular probability measure that
has no density and no point mass.

5.2.2 Random Multiplicative Cascades
The binomial construction is easily generalized. First, we can uniformly
split intervals into an arbitrary number b ≥ 2 of cells at each stage of
the cascade. The corresponding subintervals are indexed from left to right
by β ∈ {0, . . . , b − 1}. Second, and more importantly, we can random-
ize the allocation of mass between subintervals. The multiplier of each
cell is specified by a random variable Mβ . Assume for parsimony that the

multipliers have identical marginal distributions (Mβ
d= M ∀β) and that

multipliers defined at different stages of the construction are independent.
Under general assumptions, the recursion converges to a limit random
multiplicative measure μ (Mandelbrot, 1974, 1989).

The construction can accommodate various hypotheses about the joint
distribution of the multipliers (M0, . . . , Mb−1) at each stage. When mass
is conserved exactly:

∑
Mβ ≡ 1, the limit measure is called conservative

and the limit mass of the unit interval is equal to unity. The limit mea-
sure μ is instead called canonical when mass is preserved only on average:
E(

∑
Mβ) = 1 or equivalently E(M) = 1/b. A canonical measure can for

instance be constructed by using independent multipliers M0, . . . , Mb−1.
Figure 5.1c shows the conservative random density obtained after k =

10 iterations of the random binomial measure with parameters b = 2 and

7A number t ∈ [0, 1] is called dyadic if t = 1 or t = η12−1 + · · · + ηk2−k for a finite
k and η1, . . . , ηk ∈ {0, 1}. A dyadic interval has dyadic endpoints.
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FIGURE 5.1. Construction of the Binomial Measure. In Panels (a) and
(b), the construction is deterministic with the fraction m0 = 0.6 of the mass
always allocated to the left and fraction m1 = 0.4 always allocated to the right.
Panel (c) shows a randomized binomial measure after k = 10 stages. The masses
m0 and m1 each have equal probabilities of going to the left or right. The final
panel shows the fractal character of “cuts” of various sizes. Each cut shows the
set of instants at which the random measure in Panel (c) exceeds a given level.
The clustering of these sets has a self-similar structure, and the extreme bursts
of volatility are intermittent, as discussed in the Appendix.
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m0 = 0.6. This density begins to show the properties we desire in modeling
financial volatility. Larger allocations of density correspond to occasional
bursts of volatility, which can generate thick tails. Because the reshuffling of
mass follows the same rule at each stage of the cascade, volatility clustering
is present at all time scales.

Multiplicative measures exhibit distinctive moment-scaling properties.
Consider, for instance, the generating cascade of a conservative mea-
sure μ. The measure of a cell with starting point t =

∑k
i=1 ηib

−i and length
Δt = b−k is the product μ(Δt) = Mη1Mη1,η2 . . . Mη1,...,ηk

. Since multipliers
defined at different stages of the cascade are independent, we infer that
E [μ(Δt)q] = [E(Mq)]k, or equivalently

E [μ(Δt)q] = (Δt)τ(q)+1, (5.1)

where

τ(q) = − logb E(Mq) − 1. (5.2)

The moment of an interval’s measure is thus a power functions of its length.
The scaling relation (5.1) easily generalizes to a canonical measure μ.

The mass of the unit interval is then a random variable

Ω = μ[0, 1] ≥ 0.

More generally, the measure of a b-adic cell8 satisfies

μ(Δt) = Mη1Mη1,η2 . . . Mη1,...,ηk
Ωη1,...,ηk

, (5.3)

where Ωη1,...,ηk
has the same distribution as Ω. This directly implies the

scaling relationship

E [μ(Δt)q] = E(Ωq) (Δt)τ(q)+1, (5.4)

which generalizes (5.1).
The right tail of the measure μ(Δt) is determined by the way mass is

preserved at each stage of the construction. When μ is conservative, the
cell’s mass is bounded above by the mass of the unit interval: 0 ≤ μ(Δt) ≤
μ[0, 1] = 1, and therefore has finite moments of every order. Consider now
a canonical measure generated by independent multipliers Mβ . Guivarc’h
(1987) assumes multipliers with finite moments of every order, E(Mq) < ∞
for every q ≥ 0, and shows that if the multipliers take values greater than

8A b-adic interval has endpoints of the form t = 1 or t = η1b−1 + · · · + ηkb−k for a
finite k and η1, . . . , ηk ∈ {0, 1}.
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unity with positive probability, then the mass of the unit interval has a
Paretian right tail:

P{Ω > ω} ∼ C ω−qcrit as ω → +∞,

where C is a positive constant, and the critical moment qcrit is finite and
larger than unity:

1 < qcrit < ∞.

In the above equation and throughout the rest of the book, we write f(ω) ∼
g(ω) to designate that two functions f and g satisfy f(ω)/g(ω) → 1. The
condition qcrit > 1 guarantees that the mass of a cell has a well-defined
mean, and that E [μ(Δt)] = Δt. By (5.3), the mass of every cell has the
same critical moment as the random variable Ω, and the critical moment
qcrit is therefore independent of Δt.9

The multiplicative measures constructed so far are grid-bound, in the
sense that the scaling rule (5.4) holds only on b-adic intervals. Let D denote
the set of instants and increments (t, Δt) satisfying scaling rule (5.4). As is
shown in the Appendix, the closure of D contains [0, 1] × {0}. That is, the
scaling relation holds “in the neighborhood of any instant.” Alternatively,
we can consider grid-free random measures that are fully stationary and
satisfy scaling rule (5.4) asymptotically as Δt converges to zero. This leads
to the following:

Definition 5.3 (Multifractal measure) A random measure μ defined
on [0, 1] is called multifractal if it satisfies for all q ∈ Q:

E (μ[t, t + Δt]q) ∼ c (q)(Δt)τ(q)+1 as Δt → 0,

where Q is an interval containing [0, 1], and τ(q) and c (q) are deterministic
functions defined on Q.

Initial studies of multifractal diffusions focus on grid-bound constructions
(Chapter 6), while subsequent developments have led to grid-free models
(Chapter 7).

5.2.3 Local Scales and the Multifractal Spectrum
Multifractal measures are characterized by rich local properties that are
described by the local Hölder exponent, a concept borrowed from real
analysis.

9The cascade construction also implies that Ω satisfies the invariance relation∑b
i=1 MiΩi

d= Ω, where M1, . . . , Mb, Ω1, . . . , Ωb are independent copies of the random
variables M and Ω.
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Definition 5.4 (Local Hölder exponent) Let g be a function defined
on the neighborhood of a given date t. The number

α(t) = Sup {β ≥ 0 : |g(t + 
t) − g(t)| = O(|
t|β) as 
t → 0}

is called the local Hölder exponent or local scale of g at t.

The Hölder exponent describes the local variability of the function at a
point in time. Heuristically, we can express the infinitesimal variations of
the function as being of order |dg| ≈ (dt)α(t) around instant t. Lower values
of α(t) correspond to more abrupt variations. The exponent α(t) is non-
negative when the function g is bounded around t, as is always the case in
this book. The definition readily extends to measures on the real line. At
a given date t, a measure simply has the local exponent of its cumulative
distribution function.

We can compute Hölder exponents for many functions and processes.
For instance, the local scale of a function is 0 at points of discontinuity
and 1 at (nonsingular) differentiable points. On the other hand, the unique
scale α(t) = 1/2 is observed on the jagged sample paths of a Brownian
motion or of a continuous Itô diffusion.10 Similarly, a fractional Brownian
BH(t) is characterized by a unique exponent α(t) = H. Thus, the continuous
processes typically used in finance each have a unique Hölder exponent. In
contrast, multifractal measures contain a continuum of local scales.

The mathematics literature has developed a convenient representation for
the distribution of Hölder exponents in a multifractal. From Definition 5.4,
the Hölder exponent α(t) is the limit inferior of the ratio

ln |g(t,
t)|/ ln(
t) as 
t → 0,

where g(t,
t) ≡ g(t+
t)−g(t). This suggests estimating the distribution
of the local scale α(t) at a random instant. For increasing k ≥ 1, we parti-
tion the unit interval into bk subintervals [ti, ti + Δt] of length 
t = b−k,
and calculate for each subinterval the coarse Hölder exponent

αk(ti) ≡ ln |g(ti,
t)|/ ln
t.

This operation generates a set {αk(ti)} of bk observations.
We divide the range of α’s into small intervals of length 
α, and denote

by Nk(α) the number of coarse exponents contained between α and α+
α.
It would then seem natural to calculate a histogram with the relative
frequencies Nk(α)/bk, which converge as k → ∞ to the probability that a

10More precisely, the set {t : α(t) �= 1/2} of instants with a local scale different from
1/2 has a Hausdorff-Besicovitch measure (and therefore a Lebesgue measure) equal to
zero. This set can thus be neglected in our analysis. See Kahane (1997) for a survey of
this topic.
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random instant t has Hölder exponent α. Using this method, the histogram
would degenerate into a spike because multifractals typically have a dom-
inant exponent α0, in the sense that α(t) = α0 at almost every instant.
Mandelbrot (1974, 1989) instead suggested

Definition 5.5 (Multifractal spectrum) The limit

f(α) ≡ lim
(

lnNk(α)
ln bk

)
as k → ∞ (5.5)

represents a renormalized probability distribution of local Hölder exponents,
and is called the multifractal spectrum.

For instance if b = 3 and Nk(α) = 2k, the frequency Nk(α)/bk = (2/3)k

converges to zero as k → ∞, while the ratio lnNk(α)/ ln bk = ln 2/ ln 3 is a
positive constant. The multifractal spectrum helps to identify events that
happen many times in the construction but at a vanishing frequency.

The quantity f(α) coincides with the fractal (or Hausdorff-Besicovitch)
dimension of the set of instants having local Hölder exponent α, T (α) =
{t : α(t) = α}, as was shown by Frisch and Parisi (1985) and Halsey et al.
(1986). For various levels of α, Figure 5.1d illustrates the subintervals with
coarse exponent αk(ti) < α. When the number of iterations k is sufficiently
large, these “cuts” display a self-similar structure. The Appendix provides
a more detailed discussion of this interpretation.

5.2.4 The Spectrum of Multiplicative Measures
Large Deviation Theory can be used to derive closed-form expressions for
the multifractal spectrum of multiplicative measures. Let μ denote a con-
servative measure on the unit interval. The mass of a b-adic subinterval of
length Δt = b−k is the product μ[t, t + Δt] = Mη1Mη1,η2 . . . Mη1,...,ηk

. The
coarse exponent αk(t) = lnμ[t, t + Δt]/ ln Δt can therefore be written as
the equal-weighted average

αk =
1
k

k∑

i=1

Vi, (5.6)

where Vi ≡ − logb Mη1,...,ηi . We interpret coarse Hölder exponents as draws
of the random variable αk.

By the Strong Law of Large Numbers, αk converges almost surely to11

α0 = E(V1) = −E( logb M) > 1. (5.7)

11The relation −E ( logb M) > 1 follows from Jensen’s inequality and E (M) = 1/b.
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As k → ∞, almost all coarse exponents are contained in a small neigh-
borhood of α0. Although the standard histogram Nk(α)/bk collapses to a
spike at α0, the other coarse exponents are nonetheless important. In fact,
most of the mass concentrates on intervals with Hölder exponents that are
bounded away from α0.12 Information on these “rare events” is contained
in the tail of the random variable αk.

Tail behavior is the object of Large Deviation Theory. In 1938, Harald
Cramér established the following theorem under conditions that were
gradually weakened.

Proposition 2 (Cramér’s theorem) Let {Vk} denote a sequence of i.i.d.
random variables. Then as k → ∞,

1
k

ln P

{
1
k

k∑

i=1

Vi > α

}
→ inf

q

(
ln

[
E eq(α−V1)

])
, (5.8)

for any α > E(V1).

Proofs can be found in Billingsley (1979), Dembo and Zeitouni (1998), and
van der Vaart (1998).

Cramér’s theorem provides information about the tail behavior of coarse
Hölder exponents. We can apply (5.8) to (5.6), and infer that the tail distri-
bution satisfies

1
k

logb P (αk > α) → inf
q

[αq + logb E(Mq)].

As discussed in the Appendix, this limiting result implies:

Proposition 3 (Multifractal spectrum and scaling function) The
multifractal spectrum f(α) is the Legendre transform

f(α) = inf
q

[αq − τ(q)] (5.9)

of the scaling function τ(q).

This result holds for both conservative and canonical measures.
The proposition leads immediately to explicit formulas for the spec-

trum. For instance, assume the multiplier distribution M is lognormal

12Let Tk denote the set of b-adic cells with local exponents greater than (1 + α0)/2.
When k is large, Tk contains “almost all” cells, but its mass:

∑
t∈Tk

(Δt)αk(t) ≤ bk(Δt)(α0+1)/2 = b−k(α0−1)/2

converges to zero as k goes to infinity.
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TABLE 5.1. Examples of Multifractal Spectra

Distribution of V Multifractal Spectrum fθ(α)

Normal(λ, σ2) 1 − (α − λ)2/[4(λ − 1)]

Binomial 1 − logb(2) − αmax−α

αmax−αmin
logb

(
αmax−α

αmax−αmin

)
− α−αmin

αmax−αmin

logb

(
α−αmin

αmax−αmin

)

Poisson(γ) 1 − γ/ ln b + α logb(γe/α)

Gamma(β, γ) 1 + γ logb(αβ/γ) + (γ − αβ)/ ln b

Notes: This table shows the multifractal spectrum of a multiplicative measure and its
corresponding trading time when the random variable V = − logb M is, respectively,
(1) a Gaussian density of mean λ and variance σ2, (2) a binomial distribution taking
discrete values αmin = − logb(m0) and αmax = − logb(m1) with equal probability, (3)
a discrete Poisson distribution p(x) = e−γγx/x!, and (4) a Gamma distribution with
density p(x) = βγxγ−1e−βx/Γ (γ).

− logb M ∼ N (λ, σ2), and let the multiplicative cascade structure described
above generate the random measure μ and its cumulative distribution
function θ. Following the requirements outlined previously, we impose con-
servation of mass at each step of the cascade, which requires E(M) = 1/b
or, equivalently σ2 = 2(λ − 1)/(ln b). Straightforward calculations show
that the scaling function (5.2) has the closed-form expression τ(q) =
λq − 1 − q2σ2(ln b)/2. Applying Proposition 3 then gives the multifractal
spectrum as the quadratic function

fθ(α) = 1 − (α − λ)2 /[4(λ − 1)], (5.10)

parameterized by the unique real number λ > 1. Table 5.1 provides addi-
tional examples where the random variable V = − logb M is binomial,
Poisson, or Gamma. These results provide a foundation for the empirical
work developed in Chapter 8, where an estimation procedure for the scaling
function τ(q) is obtained and the Legendre transform yields an estimate of
the multifractal spectrum f(α).



6
Multifractal Diffusions Through
Time Deformation and the MMAR

This chapter shows that multifractal diffusions can be created by
compounding a standard Brownian motion with a multifractal time defor-
mation. The resulting price process is a semimartingale with a finite
variance, which precludes investors from making arbitrage profits in the
sense of Harrison and Kreps (1979). The multifractal time deformation
also implies that the moments of returns scale as a power function of
the frequency of observation, a property that has been extensively docu-
mented in many financial time series. The time deformation approach was
used to define the first multifractal diffusion with uncorrelated increments,
the Multifractal Model of Asset Returns (“MMAR,” Calvet, Fisher, and
Mandelbrot, 1997), which is also reviewed in this chapter. We will discuss
in Chapter 7 another leading example, continuous-time MSM.

In the MMAR, the multifractal time deformation is the cumulative
distribution function (c.d.f.) of a random multiplicative cascade. The
construction produces the moment-scaling, thick tails, and long-memory
volatility persistence exhibited by many financial time series. The MMAR
substantially improves on traditional fractal specifications. In addition to
the semimartingale property, the MMAR accommodates flexible tail behav-
iors with the highest finite moment taking any value greater than two. The
model also captures the nonlinear changes in the unconditional distribution
of returns at various sampling frequencies, while retaining the parsimony
and tractability of fractal approaches.

The MMAR provides a fundamentally new class of stochastic processes
for financial applications. In particular, the multifractal model is a diffusion
that lies outside the class of Itô processes. While the sample paths of Itô
diffusions vary locally as (dt)1/2, the MMAR generates the richer class
(dt)α(t) with the local scale α(t) taking a continuum of values in any finite
interval.

6.1 Multifractal Processes

Consistent with the definition of multifractal measures, we can define a
multifractal process by its moment-scaling properties:

This chapter is based on an earlier paper: “Multifractality in Asset Returns: Theory and
Evidence” (with A. Fisher), Review of Economics and Statistics, 84: 381–406, August 2002.
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Definition 6.1 (Multifractal process) A stochastic process {X(t)} is
called multifractal if it has stationary increments and satisfies the moment
scaling rule

E (|X(t + Δt) − X(t)|q) ∼ cX(q) (Δt)τX(q)+1 (6.1)

as Δt converges to zero.

The function τX(q) is called the scaling function. Setting q = 0 in condition
(6.1), we see that all scaling functions have the same intercept τX(0) = −1.
We verify in the Appendix that the scaling function τX(q) is weakly concave,
a direct implication of Hölder’s inequality.

A self-similar process has a linear scaling function τX(q). The invariance
condition X(t) d= tHX(1) implies E (|X(t)|q) = tHq

E (|X(1)|q), and the
scaling rule (6.1) therefore holds with

τX(q) = Hq − 1.

Since the intercept τX(0) =−1 is fixed, a linear scaling function is fully
determined by its slope H. For this reason, self-similar processes are often
called uniscaling or unifractal. As discussed in Chapter 5, self-similar pro-
cesses do not capture the changing distribution of returns at different
horizons that is typical of most financial data. In this book, we focus on mul-
tiscaling processes, which have a nonlinear and therefore strictly concave
scaling function τX(q).

6.2 Multifractal Time Deformation

We now show how multiscaling multifractal processes can be obtained
through time deformation. Consider the price of a financial asset P (t) on
a bounded interval [0, T ], and define the log-price process

X(t) ≡ lnP (t) − lnP (0).

We model X(t) by compounding a Brownian motion with a multifractal
trading time:

Condition 1 X(t) is a compound process

X(t) ≡ B[θ(t)],

where B(t) is a Brownian motion, and θ(t) is a stochastic time deformation.

Condition 2 The time deformation θ(t) is the cumulative distribution
function (c.d.f.) of a multifractal measure μ defined on [0, T ].
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Condition 3 The processes {B(t)} and {θ(t)} are independent.

Condition 1 can be easily generalized to permit time deformation of the
fractional Brownian motion BH(t), as we show in Section 6.4. Condition 2
specifies trading time θ(t) = μ[0, t] as the c.d.f. of a multifractal measure.
This is a general condition that nests a variety of specifications including
the MMAR (Section 6.3) and continuous-time MSM (Chapter 7). By defi-
nition of a multifractal measure (see Chapter 5), the critical moment of
trading time qcrit(θ) is greater than unity:

qcrit(θ) > 1.

Condition 3 ensures that the unconditional distribution of returns is
symmetric. Weakening this assumption could allow correlation between
volatility and returns, as in EGARCH (Nelson, 1991) and Glosten,
Jagannathan, and Runkle (1993). In Part III, we pursue an alternative
approach to generating a link between volatility and prices by using
equilibrium valuation.

Under Conditions 1–3, the moments of the compound process are
given by:

E [|X(t)|q] = E[θ(t)q/2]E [|B(1)|q]. (6.2)

By Definition 5.3, the trading time θ satisfies the relation E[θ(t)q]∼ cθ(q)
tτθ(q)+1. Return moments therefore scale as a power function of the
frequency of observation:

E [|X(t)|q] ∼ cX(q)tτX(q)+1 as t → 0, (6.3)

where τX(q) = τθ(q/2) and cX(q) = cθ(q/2)E [|B(1)|q]. These results are
summarized by:

Proposition 4 (Multifractality of price process) The time-deformed
log-price X(t) is a multifractal process with scaling function τX(q) ≡
τθ(q/2).

We note that the multifractal trading time θ controls the tails of the
price and return processes. By (6.2), the q-th moment of the log-price
exists if and only if the time deformation has a moment of order q/2,
implying that

qcrit(X) = 2qcrit(θ) > 2.

Multifractal diffusions obtained as time-deformed Brownian motions thus
have finite variance, but are otherwise consistent with a wide range of
potential tail behaviors as we will observe in the examples below.
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A multifractal diffusion resulting from Conditions 1–3 also has an
appealing autocorrelation structure:

Proposition 5 (Martingale property) The price {P (t)} is a semi-
martingale with respect to its natural filtration, and the process {X(t)}
is a martingale with finite variance and uncorrelated increments.

The assumptions thus imply that asset returns have a white spectrum,
a property that has been extensively discussed in the market efficiency
literature.1

Since the price P (t) is a semimartingale, stochastic integration can be
used to calculate the gains from trading multifractal assets. Consider, for
instance, the two-asset economy consisting of the multifractal security with
price P (t), and a riskless bond with constant rate of return r. Follow-
ing Harrison and Kreps (1979), we can analyze if arbitrage profits can be
made by frequently rebalancing a portfolio of these two securities. The
semimartingale property of Proposition 5 directly implies

Proposition 6 (No arbitrage) There are no arbitrage opportunities in
the two-asset economy.

Thus, multifractal diffusions can be embedded in standard economies
and are consistent with the basic requirements of equilibrium valuation.
Part III of this book considers equilibrium valuation in greater detail.

6.3 The Multifractal Model of Asset Returns

The Multifractal Model of Asset Returns (MMAR) is obtained as a special
case of the time-deformation conditions above. Specifically, we narrow the
second condition:

Condition 2 ’ (The MMAR) The trading time θ (t) is the cumulative
distribution function of a random multiplicative cascade μ.

The MMAR specification was developed and empirically investigated in
Calvet, Fisher, and Mandelbrot (1997) and Calvet and Fisher (2002a). We
now discuss some of its additional properties.

6.3.1 Unconditional Distribution of Returns
Tail behavior is controlled by the multiplicative cascade. If μ is conservative,
trading time is bounded and the log-price has finite moments of every

1
See Campbell, Lo, and MacKinlay (1997) for a discussion of these concepts.
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order: qcrit(X) = +∞. If instead the measure is canonical, the total mass
θ(T ) ≡ μ[0, T ] has a Paretian right tail and a finite critical moment larger
than unity under the conditions mentioned in Chapter 5. The log-price and
returns then have a finite critical moment, 2 < qcrit(X) < +∞, which is
appealing for some financial applications.

We next analyze how the unconditional distribution of returns varies
with the time horizon. For instance, when the measure is conservative, trad-
ing time at the final instant T is deterministic, and the random variable
X(T ) = B[θ(T )] is normally distributed. As we move to smaller horizons,
the allocation of mass becomes increasingly heterogeneous and tails become
thicker. If μ is a binomial, the mass of a dyadic cell can be written as
mkϕ0

0 m
k(1−ϕ0)
1 , which can take very extreme values. At the same time, the

law of large numbers implies that draws of ϕ0 concentrate increasingly in
the neighborhood of 1/2, implying that the bell of the distribution becomes
thicker as well. The distribution of X(t) accumulates more mass in the tails
and in the bell as the time horizon decreases, while the middle of the dis-
tribution becomes thinner. These features of the MMAR are qualitatively
consistent with the properties of financial data. Lux (2001) confirms that
the MMAR does indeed capture the nonlinear deformation of the uncondi-
tional return distribution in a variety of equity, commodity, and currency
series.

6.3.2 Long Memory in Volatility
We now consider persistence in the size of price changes. The concept of long
memory is often defined by a hyperbolic decline in the autocovariance of a
process as the lag between observations goes to infinity. However since the
MMAR is defined only on a bounded time range, asymptotic dependence
needs to be defined slightly differently. For any stochastic process Z with
stationary increments Z(a,Δt) ≡ Z(a + Δt) − Z(t), the autocovariance in
levels

δZ(t, q) = Cov(|Z(a,Δt)|q, |Z(a + t, Δt)|q)

quantifies the dependence in the size of the process’s increments. It is
well defined when E

(
|Z(a,Δt)|2q

)
is finite. For a fixed q > 0, we say

that the process has long memory in the size of increments if the auto-
covariance in levels is hyperbolic in t when t/Δt → ∞. That is, we can
define long memory by letting the step size Δt go to zero. We show in the
Appendix:

Proposition 7 (Long memory) When μ is a multiplicative measure,
trading time θ(t) and log-price X(t) have long memory in the size of
increments for 0 < q < qcrit(X)/2.
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Simulated Multifractal Process
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FIGURE 6.1. MMAR Simulation. This figure shows the log returns of an
MMAR simulation obtained by compounding a standard Brownian motion with
a binomial trading time. The simulation displays volatility clustering at all time
scales and intermittent large fluctuations.

This result can be illustrated graphically. Figure 6.1 shows simulated first
differences of the multifractal model when θ(t) is the c.d.f. of a random-
ized binomial measure with multiplier m0 = 0.6. The simulated returns
display marked temporal heterogeneity at all time scales and intermittent
large fluctuations. The MMAR is thus a flexible continuous-time framework
that accommodates long memory in volatility, a variety of tail behaviors,
unpredictability in returns, and volatility persistence at all frequencies.

6.3.3 Sample Paths
We next examine the geometric properties of MMAR sample paths. The
infinitesimal variation in price around a date t is heuristically of the form

| lnP (t + dt) − lnP (t)| ≈ Ct(dt)α(t).

The MMAR contains a continuum of local scales α(t) within any finite time
interval. Denoting by fZ(α) the spectrum of a process Z(t), we show:

Proposition 8 (Multifractal spectrum of price process) The price
P (t) and the log-price X(t) have identical multifractal spectra: fP (α) ≡
fX(α) ≡ fθ(2α).

Thus, multifractal processes are not continuous Itô diffusions and cannot
be generated by standard techniques. Fractal geometry imposes that in the
MMAR, the instants {t : α(t) < α} with local scale less than α cluster in
clock time, which accounts for the concentration of outliers in the model.
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Let α0(Z) denote the most probable exponent of a process Z. Since
α0(θ) > 1, the log-price has a local scale α0(X) ≡ α0(θ)/2 larger than 1/2
at almost every instant. Despite their apparent irregularity, the MMAR’s
sample paths are almost everywhere smoother than the paths of a Brownian
motion.

The standard deviation of returns is of order (Δt)1/2:
√

E

{
[X(t + Δt) − X(t)]2

}
= cX(2)1/2

√
Δt. (6.4)

This property is a direct consequence of Proposition 4 and the fact that
τX(2) = τθ(1) = 1. The rare exponents α < α0(X) appear frequently enough
to alter the scaling properties of the variance. This contrasts with the com-
mon view that a standard deviation in (Δt)1/2 implies that most shocks
are of the same order. While jump-diffusions permit negligible sets to
contribute to the total variation, multifractal processes are notable for
combining continuous paths with variations dominated by rare events.

6.4 An Extension with Autocorrelated Returns

The multifractal model presented in the previous section is characterized
by long memory in volatility, but the absence of correlation in returns.
While there is little evidence of fractional integration in stock returns (Lo,
1991), long memory has been identified in the first differences of many
economic series,2 including aggregate output (Adelman, 1965; Diebold and
Rudebusch, 1989; Sowell, 1992), the Beveridge (1925) Wheat Price Index,
the U.S. Consumer Price Index (Baillie, Chung, and Tieslau, 1996), and
interest rates (Backus and Zin, 1993). This has led authors to model these
series with the fractional Brownian motion or discrete-time autoregressive
fractionally integrated specifications.

The volatility patterns of these economic series may be closer to the
multifractal model than to the fractional Brownian motion. This suggests
modeling a fractional Brownian motion in multifractal time:

X(t) ≡ BH [θ(t)],

maintaining the multifractality of trading time (Condition 2) and the inde-
pendence of the processes BH(t) and θ(t) (Condition 3). The generalization
coincides with the martingale specification in Section 6.2 if H = 1/2. For
other values of H, the increments of X(t) are antipersistent (H < 1/2) or
have positive autocorrelations and long memory (H > 1/2).

2
Maheswaran and Sims (1993) suggest potential applications in finance for processes

lying outside the class of semimartingales.
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The self-similarity of BH(t) implies that the process X(t) is multifractal
and has scaling function τX(q) = τθ(Hq). We observe that

τX(1/H) = τθ(1) = 0,

which allows the estimation of the index H in empirical work. We easily
check that the multifractal spectrum of the compound process is fX(α) =
fθ(α/H). The self-similarity parameter H thus renormalizes the scaling
function and multifractal spectrum.

6.5 Connection with Related Work

The MMAR implies that the return moments E(|X(Δt)|q) vary as power
functions of the horizon Δt. Scaling of the second moment (q = 2) with
the time horizon Δt has been studied extensively in the variance ratio
literature (e.g., Campbell and Mankiw, 1987; Lo and MacKinlay, 1988).
Müller et al. (1990) also report scaling of absolute returns (q = 1) for
four exchange rates. For higher moments, early visual evidence of mul-
tiscaling in financial data was reported in Vassilicos, Demos, and Tata
(1993), Ghashghaie et al. (1996), and Galluccio et al. (1997). The study by
Ghashghaie et al. investigated the unconditional distribution of exchange
rate differences3 P (t + Δt) − P (t) at different timescales, but did not
attempt to derive a complete dynamic specification for financial prices or
returns. This study suggested an analogy between exchange rate differences
and the velocity differences of two points in a turbulent flow. Arneodo et al.
(1996) and Mantegna and Stanley (1996) criticized the proposed analogy,
pointing out that financial returns are approximately uncorrelated over
the relevant range of intermediate horizons larger than a few minutes,
whereas velocities in a turbulent field show strong correlations over many
orders of magnitude. Arneodo et al. (1996) correctly pointed out that such
strong correlations, if present in financial markets, would imply easy profit
opportunities.4

The development of the MMAR in 1997 resolved the apparent tension in
choosing between multifractal moment-scaling and uncorrelated returns.
In particular, the complete dynamic specification of a Brownian motion
in a multifractal trading time produced martingale log-price dynamics
with long-memory features in volatility, thick tails in returns, and the

3
The properties of price differences P (t + Δt) − P (t) are not commonly the object

of direct empirical investigation. Attention more often focuses on relative price changes
(returns) or log price differences (continuously compounded returns).

4
Arneodo et al. (1996) and Mantegna and Stanley (1996) both advocate the use

of a truncated Lévy law. This alternative approach permits uncorrelated increments
and flexible modeling of the unconditional distribution of returns, but does not capture
volatility clustering and other higher order dependencies.



6.6 Discussion 103

moment-scaling properties that characterize multifractals. Furthermore,
this definition of a multifractal price process permitted the recovery of
a realistic stochastic generating mechanism that was simulated and com-
pared with other competing models of returns. These informal Monte
Carlo tests were made rigorous in Calvet and Fisher (2002a) by using a
global test statistic based on simulated moments, as will be discussed in
Chapter 8.

6.6 Discussion

Time deformation provides a powerful tool to construct multifractal pro-
cesses out of general multifractal measures. The first example of this
technique in the literature is the Multifractal Model of Asset Returns,
which incorporates the outliers and volatility persistence exhibited by
many financial time series, as well as a rich pattern of local variations
and moment-scaling properties.

The MMAR provides a fundamentally new class of diffusions to both
finance and mathematics. These diffusions have potentially uncorrelated
increments and continuous sample paths but lie outside the Itô class.
Whereas standard processes can be characterized by a single local scale that
describes the local growth rate of variation, sample paths of multifractal
processes contain a continuum of local Hölder exponents within any time
interval.

The main drawback of the MMAR is that the construction of trading
time on a grid results in a nonstationary model, which creates an obsta-
cle for typical financial applications such as volatility forecasting. The
next chapter corrects this difficulty by randomizing the instants at which
volatility components change.
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Continuous-Time MSM

This chapter develops the Markov-Switching Multifractal in continuous
time. Consistent with the discrete-time construction in Chapter 3, we
specify volatility at a given instant t as the multiplicative product of a
finite number of random components. A Poisson process of fixed intensity
γk can trigger switches in a given volatility component k, and heteroge-
neous frequencies are parsimoniously incorporated into the construction by
assuming that the arrival intensities γk follow a tight geometric progres-
sion. Continuous-time MSM is naturally defined on an unbounded time
domain, which is a substantial improvement over the MMAR. It also gen-
erates volatility clustering on a wide frequency range, corresponding to the
intuition that economic factors such as technology shocks, business and
earnings cycles, and liquidity shocks have different time scales.

When the number of components goes to infinity, the limiting price pro-
cess displays complex features. Local volatility becomes degenerate, but
the time-deformation process is a positive martingale that has a nonde-
generate quadratic variation over finite intervals. As in the MMAR, the
limit multifractal time deformation generates continuous sample paths with
clustering and long memory in volatility. Furthermore, continuous-time
MSM improves on the MMAR by producing strictly stationary increments,
which is crucial to facilitate estimation and forecasting in common financial
applications.

We complete the link with the discrete-time MSM processes developed
in Chapter 3 by showing that an appropriately chosen sequence of discrete
processes weakly converges to continuous-time MSM as the grid step size
goes to zero. This ensures that the discrete model provides a consistent set
of filters for continuous-time MSM. The chapter thus demonstrates that
the Markov-switching approach works equally well in discrete time and in
continuous time, and that it is straightforward to go back and forth between
the two formulations.

We close the chapter by discussing the link between MSM and recent
related stochastic volatility approaches that have been developed in the
physics, mathematics, and econometrics literatures.

This chapter is based on an earlier paper: “Forecasting Multifractal Volatility” (with
A. Fisher), Econometrics, 105: 27–58, November 2006.
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7.1 MSM with Finitely Many Components

This section introduces a grid-free multifrequency diffusion. Analogous to
the approach discussed in Chapter 3, the continuous-time construction is
based on the Markov state vector

Mt = (M1,t;M2,t; . . . ;Mk̄,t) ∈ R
k̄
+, t ∈ [0,+∞).

Given the Markov state Mt at date t, the dynamics over an infinitesimal
interval are defined as follows. For each k ∈ {1, . . . , k̄}, a change in Mk,t

may be triggered by a Poisson arrival with intensity γk:

Mk,t+dt drawn from distribution M with probability γkdt
Mk,t+dt = Mk,t with probability 1 − γkdt.

The Poisson arrivals and new draws from M are independent across k and
t. As with any process driven by Poisson arrivals, the sample paths of a
component Mk,t are cadlag, that is, are right-continuous and have a limit
point to the left of any instant.1 The construction can accommodate any
distribution M with unit mean and positive support.

The arrival intensities follow the geometric progression:

γk = γ1b
k−1, k ∈ {1, . . . , k̄}. (7.1)

The parameter γ1 determines the persistence of the lowest frequency com-
ponent, and b > 1 the spacing between component frequencies. The inten-
sity sequence is thus exactly geometric in continuous time, and in the
Appendix we show that its discretization on a time grid leads to the
discrete-time definition (3.2).

The log-price X (t) = lnP (t) − lnP (0) has a constant drift ḡ and
stochastic volatility

σ(Mt) ≡ σ̄

⎛

⎝
k̄∏

k=1

Mk,t

⎞

⎠
1/2

, (7.2)

where σ̄ is a positive constant. The process X(t) is formally defined as

Xt ≡ ḡt +
∫ t

0
σ(Ms)dZ(s),

where Z is a standard Brownian. The stochastic integral exists since
E

[∫ t

0 σ2(Ms)ds
]

= σ̄2t < ∞. Equivalently, the log-price satisfies the

1
Cadlag is a French acronym for continue à droite, limites à gauche. We refer the

reader to Billingsley (1999) for further details.
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stochastic differential equation

dXt ≡ ḡdt + σ(Mt)dZ(t). (7.3)

Continuous-time MSM is fully specified by the distribution M and the
parameters (ḡ, σ̄, γ1, b). It has strictly stationary increments, and thus
resolves the grid-bound nonstationarity of the MMAR. Continuous-time
MSM can be easily integrated into an equilibrium framework, as will be
shown in Chapter 10.

Figure 7.1 illustrates the construction when the distribution M is a
binomial. The top panel shows the lowest frequency component M1,t, the
second panel shows the product M1,tM2,t, and the third panel, σ2(Mt) ≡
σ̄2M1,tM2,t . . . Mk̄,t, where σ̄ = 1 and k̄ = 12. The fourth and fifth panels
display the corresponding returns and prices. The returns show pronounced
peaks and intermittent bursts of volatility, accommodating a broad range
of long-run, medium-run, and short-run dynamics.

Continuous-time MSM provides a parsimonious diffusion with Markov-
switching volatility and multiple frequencies. The model fits naturally
within the finance literature on Itô diffusions and regime-switching when
the number of frequencies is finite. In particular, we can then apply to
MSM all the tools that have been developed for general Markov processes
(e.g., Ethier and Kurtz, 1986; Rogers and Williams, 2000). The model also
easily extends to the multivariate case, as is discussed in the Appendix.

7.2 MSM with Countably Many Components

In this section, we investigate how the price diffusion evolves as k̄ → ∞
and components of increasingly high frequency are added into the state
vector. Two apparently contradictory observations can be made. On the
one hand, Figure 7.1 suggests that the volatility process σ(Mt) exhibits
increasingly extreme behavior as k̄ increases. On the other hand, the price
process appears relatively insensitive to higher-frequency components. We
now show how these two observations can be reconciled by deriving the
limit behavior of the price dynamics.

7.2.1 Limiting Time Deformation
Let Mt = (Mk,t)∞

k=1 ∈ R
∞
+ be an MSM state process with countably many

frequencies, parameters (ḡ, σ̄, γ1, b), and fixed multiplier distribution M .
The process Mt is defined for t ∈ [0,∞), and has mutually independent
components. Each component Mk,t is characterized by the arrival intensity
γk = γ1b

k−1. For a finite k̄, stochastic volatility is the product of the first
k̄ components of the state vector: σk̄(Mt) ≡ σ̄(M1,tM2,t . . . Mk̄,t)1/2.
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Stage One

Stage Two

Stage Twelve

Log Returns

Log Prices

FIGURE 7.1. Construction of Continuous-Time MSM. The top three pan-
els illustrate the construction of a continuous-time MSM process. Multipliers
are drawn from a lognormal distribution − logb M ∼ N (λ − 1, 2(λ − 1)/ ln b)
with parameters λ = 1.09 and b = 2. The bottom two panels illustrate the
corresponding log returns and log prices. The return series shows long-memory
volatility clustering and outliers that are produced by intermittent bursts of
extreme volatility. The construction fully randomizes the timing of volatility
innovations, and the resulting return process is strictly stationary.
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Since instantaneous volatility σk̄(Mt) depends on an increasing number
of components, the differential representation (7.3) becomes unwieldy
as k̄ → ∞. We instead characterize dividend dynamics by the time
deformation

θk̄(t) ≡
∫ t

0
σ2

k̄(Ms)ds. (7.4)

Given a fixed instant t, the sequence {θk̄(t)}∞
k̄=1 is a positive martingale

with bounded expectation. By the martingale convergence theorem, the
random variable θk̄(t) converges to a limit distribution when k̄ → ∞.
A similar argument applies to any vector sequence {θk̄(t1); . . . ; θk̄(td)},
guaranteeing that the stochastic process θk̄ has at most one limit point.

We verify that a limit process does indeed exist by checking that the
sequence (θk̄)k̄ is tight2 on any bounded time interval [0, T ]. Intuitively,
tightness prevents the process from oscillating too wildly as k̄ → ∞. We
assume

Condition 4 E(M2) < b.

which restricts fluctuations in the time deformation by requiring that
volatility shocks be sufficiently small or have durations decreasing suffi-
ciently fast. In the Appendix we prove:

Proposition 9 (Time deformation with countably many
frequencies) Under Condition 4, the sequence (θk̄)k̄ weakly converges to
a process θ∞ in the space of continuous functions on [0, T ]. Furthermore,
supk E

[
θ2

k(t)
]

< ∞ for every fixed t.

Additional intuition is gained by considering why we work with the time-
deformation process θ∞ rather than attempt to take the pointwise limit
of the integrand σ2

k̄
(Mt) in Equation (7.4). By the Law of Large Numbers,

σ2
k̄
(Ms) = exp (

∑
k lnMk,s) converges almost surely to zero as k̄→∞, which

might suggest that the limit trading time θ∞ degenerates to zero. In fact,
the limit trading time θ∞ is not zero, which can be confirmed by noting
that for every fixed t > 0, E [θk̄(t)] = σ̄2t, supk̄ E

[
θ2

k̄
(t)

]
< ∞, and therefore

E [θ∞(t)] = σ̄2t > 0.

To understand why the trading time θ∞ remains positive even though
volatility σk̄(Mt) goes to zero almost surely as k̄ → ∞, consider the
importance of rare events. On any finite interval, large realizations of

2
We refer the reader to Billingsley (1999), Pollard (1984), and Davidson (1994) for

book-length treatments of the weak convergence of stochatic processes.
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volatility σk̄(Mt) appear sufficiently frequently to guarantee that the inte-
gral (7.4) does not vanish. The trading time of continuous-time MSM thus
provides an example in which the Lebesgue dominated convergence theo-
rem does not apply. The importance of rare events for the trading time
θ∞ will have natural consequences for the local variations of MSM sample
paths, as we will discuss in the next subsection.

Trading time θ∞(t) exhibits moment-scaling for small values of t. We
prove in the Appendix:

Proposition 10 (Moment scaling) The qth moment of trading time
satisfies

E {[θ∞(t)q]} ∼ cqt
τθ(q)+1 as t → 0

where τθ(q) = − logb [E(Mq)] + q − 1 and cq is a positive constant.

The scaling function τθ(q) is concave by Hölder’s inequality.3

Trading time is easily extended to the infinite time domain [0,∞). Con-
sider the space D[0,∞) of cadlag functions defined on [0,∞), and let d◦

∞
denote the Skorohod distance. Proposition 9 then directly leads to:

Corollary 1 (Unbounded time domain) If E(M2) < b, the sequence
(θk̄)k̄ weakly converges as k̄ → ∞ to a measure θ∞ defined on the metric
space (D[0,∞), d◦

∞). The sample paths of θ∞ are continuous almost surely.

The ability to define trading time over an unbounded interval is a sub-
stantial advantage of the Markov construction over the MMAR.

7.2.2 Multifractal Price Diffusion
As components of increasingly high frequencies are added into the state
vector, the MSM diffusions considered in Section 7.1 converge to a weak
limit, which can be represented by X(t) ≡ ḡt + B[θ∞(t)]. The processes
{B(t)} and {θ∞(t)} are again independent, and:

Condition 2” (Continuous-time MSM) The trading time θ∞ is an
MSM time deformation with countably many frequencies.

The limiting MSM diffusion X(t) improves on the MMAR in two related
ways. First, the new model is a grid-free process in which volatility compo-
nents switch at random instants and not at predetermined points of time.
Second, X(t) can be interpreted as a stochastic volatility model with a
Markov latent state defined on an unbounded time domain.

3
The multiplier satisfies the normalization conditions E(M) = 1/b in the MMAR and

E(M) = 1 in MSM. This leads to slightly different relations between τθ(q) and E(Mq).
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In addition to these improvements, the limiting MSM diffusion shares
many of the appealing properties of the MMAR. The compound process
B[θ∞(t)] is a martingale because the increments of the Brownian motion
B have unpredictable signs. The price process P (t) = exp[X(t)] is then
a semimartingale, which precludes arbitrage in the presence of a risk-free
bond. The scaling properties of trading time given in Proposition 10 imply
that returns satisfy asymptotic moment scaling:

E [|X(t)|q] ∼ Cqt
τX(q)+1 as t → 0, (7.5)

where τX(q) ≡ τθ(q/2).4 Figure 7.2 uses Monte Carlo simulations to show
that this property also holds remarkably well for finite time increments.
In the next chapter, we show that many financial time series, including
exchange rates and equities, exhibit moment-scaling.

Another important feature captured by MSM is long memory in volatil-
ity. In Chapter 6, we introduced a quantitative description of long memory
for a continuous-time process defined on a bounded time interval. Con-
sistent with this approach, we show in Figure 7.3 that autocovariances of
squared returns decline hyperbolically in simulated MSM data.

Finally, following the discussion of the importance of rare events to
trading time in the previous subsection, the local variations of MSM are
almost everywhere smoother than the (dt)1/2 variations of an Itô process.
Furthermore, despite continuity of the sample paths most of the varia-
tion within any finite interval occurs on a set of instants with Lebesgue
measure zero. Thus, analogous to the quadratic variations (6.4) of the
MMAR discussed previously, “rare events” are important to understanding
the variations of continuous-time MSM.

7.2.3 Connection between Discrete-Time and
Continuous-Time Versions of MSM

We now analyze how continuous-time MSM relates to the discrete-time
model presented in Chapter 3. Specifically, we establish that a rescaled
version of discrete-time MSM converges to continuous-time MSM when
the number of frequencies goes to infinity.

Consider the following definitions:

Continuous-Time Construction. We continue to denote by θ∞ an MSM
trading time defined on a bounded interval [0, T ]. It is specified by (σ̄, γ1, b)
and a fixed distribution M. We also assume that there exists q > 0 such
that τθ(q) > 0.5

4
If the drift ḡ differs from zero, the scaling rule holds if τ(q) + 1 < q. Violations

of this inequality occur on an interval [0, q̄], q̄ < 2, when the distribution M satisfies
E(logb M) < −1.

5
This property holds under Condition 4 because one can easily check that τθ(q) is

strictly positive for q = 2 if and only if E(M2) < b. More generally, since τθ(1) = 0, the
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FIGURE 7.2. Moment-Scaling in Continuous-Time MSM. This figure
illustrates the scaling of moments q = 1, 2, 3, 5 for a continuous-time MSM
process. Multipliers are drawn from a lognormal distribution − logb M ∼ N (λ −
1, 2(λ − 1)/ ln b) with parameters λ = 1.09 and b = 2. The vertical axis corre-
sponds to the logarithm of the sample moment times the number of increments
with size Δt in a sample of length 20,000. The solid line shows these moments
averaged over 500 independent simulations of length 20,000. The twentieth and
eightieth percentiles are plotted in dotted lines. For convenience, each line is ver-
tically displaced to begin at zero. All of the moments demonstrate the predicted
asymptotic scaling.

Discrete-Time Construction. Consider the regular grid s = 0, 1, . . . , ck̄,
where c > 1 is a fixed integer. The discrete-time MSM volatility θ∗∗

k̄
(s)

is defined on the grid by M , σ̄, and transition probabilities γk,k̄ = 1 −
exp(−γ1b

k−1T/ck̄). We then use linear interpolation to extend the domain
of θ∗∗

k̄
(s) to the continuous interval [0, ck̄].

scaling function takes strictly positive values on a neighborhood of q = 1 if τ ′
θ(1) > 0,

or equivalently E [M ln(M)] < ln(b).
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FIGURE 7.3. Long-Memory Features in the Squared Returns of
Continuous-Time MSM. Each panel is based on 300 independent simulations
of a continuous-time MSM process. Multipliers are drawn from a lognormal dis-
tribution − logb M ∼ N (λ−1, 2(λ−1)/ ln b) with parameters λ = 1.09 and b = 2.
Each simulation has a length of 10,000 increments. The average over all 300 sim-
ulations is shown in bold in each panel, and the tenth and ninetieth percentiles
are shown as dotted lines. In the top panel, the autocorrelation functions were
calculated after demeaning each simulated series by its sample mean. In the sec-
ond panel, each series is demeaned by the estimated unconditional expectation,
which was obtained by averaging the sample means across the 300 independent
paths. The difference in the two panels is caused by low-frequency variations in
multifractal volatility. The sample mean of squared returns slowly converges to
its unconditional expectation. As a result, while both panels show hyperbolic
decay, the second panel appears to show greater persistence at long lags. This is
because low-frequency volatility components are partially filtered out when we
demean the squared returns series by their sample means rather than the true
population mean.
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Rescaled Version. The discretized trading time θ∗
k̄

is defined on the time
interval [0, T ] by

θ∗
k̄(t) = θ∗∗

k̄ (tck̄/T ).

The process θ∗
k̄

is continuous and piecewise linear.

We provide two alternative conditions under which the sequence of
trading times {θ∗

k̄
}∞

k̄=1 weakly converge to the process θ∞.

Condition 5 b < c.

Condition 6 E(M2)b < c2.

Condition 5 requires that the number of grid points grows faster than the
volatility frequencies, whereas Condition 6 allows the grid size to grow at
an identical or slower rate than the volatility frequencies. When b = c,
this assumption reduces to E(M2) < b, which was used in the proof of
Proposition 9. In the Appendix we show:

Proposition 11 (Weak convergence) Under Condition 5 or Condition
6, the sequence {θ∗

k̄
}∞

k̄=1 of discretized trading times weakly converges to the
continuous-time process θ∞.

The weak convergence of the discretized trading times to θ∞ implies that
discrete-time MSM can be used to forecast volatility, as in Chapter 3, and
the forecast will be consistent for the continuous-time version of the model
under an appropriate sequence of increasingly refined discretizations. This
result is appealing as it implies that researchers may easily move back and
forth between discrete time, where applied work is often more natural, and
continuous time, where theory is sometimes more convenient.

7.3 MSM with Dependent Arrivals

The MSM formulations considered thus far assume that arrivals and mul-
tipliers are independent across frequencies. We have also used in Calvet
and Fisher (1999, 2001) a related construction that permits dependence in
the arrival times of different components. Specifically, we assumed that if
an arrival occurs in component k at instant t, then arrivals are triggered
in all higher-frequency components k′ > k. Weak convergence of this
“dependent” construction also holds under Conditions 5 and 6.

This variant might be useful in economic settings in which a lower-
frequency arrival may impact higher-frequency components. For instance, a
terrorist attack or unexpected military offensive may simultaneously trigger
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switches in volatility components of different durations. We further discuss
this “dependent” construction in the Appendix.

7.4 Connection with Related Work

The development of the MMAR (Calvet, Fisher, and Mandelbrot, 1997)
prompted researchers to construct multifractal processes that satisfy sta-
tionarity of increments, which is a useful property for financial applications.
We correspondingly developed continuous-time MSM in Calvet and Fisher
(1999), which was presented at the of National Bureau of Economic Res-
earch Summer Institute in 1999 and later appeared in the special issue
of Journal of Econometrics from that conference. In this subsection we
review alternative approaches that have been developed in the physics,
mathematics and econometrics literatures.

Multifractal literature

Emmanuel Bacry, Jean Delour, and Jean-François Muzy introduced
a model they label the “Multifractal Random Walk” (MRW) in a series of
physics publications (e.g., Muzy, Delour, and Bacry, 2000; Bacry, Delour,
and Muzy, 2001; Muzy and Bacry, 2002). Given a finite grid of instants with
step size Δ, the MRW XΔ(t) is the step-wise constant stochastic process:

XΔ(t) = σ̄
√

Δ
[tΔ−1]∑

i=0

eωΔ(iΔ)εi (7.6)

where [x] denotes the greatest integer smaller than x, εi is a Gaussian white
noise N (0, 1), and ωΔ(t) is a Gaussian process. The random variables ωΔ(t)
are identically distributed, with mean

E (ωΔ(t)) = −λ2 ln
(

T1

Δ

)
, (7.7)

and covariance

Cov (ωΔ(t);ωΔ(t + τ)) =

⎧
⎨

⎩

λ2 (ln (T1/Δ) + 1 − τ/Δ) if τ ≤ Δ,
λ2 ln (T1/τ) if Δ ≤ τ ≤ T1,
0 if τ > T1.

In MRW, log volatility is normal and decays at a logarithmic rate on a
range of frequencies. A multifractal diffusion X is obtained by taking the
limit of XΔ as the step size goes to zero.

The MRW is intimately connected to MSM with lognormal multipliers.
As in Section 7.2.3, consider a discrete-time MSM return process on a grid
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of step size Δ = b−k̄T1. Returns are specified by a fixed lognormal distri-
bution: ln(M) ∼ N (−2λ2; 4λ2), the scale parameter σ̄, and the transition
probabilities γk,Δ = 1 − exp(−bk−1Δ/T1), k ∈ {1, . . . , k̄}. The MSM log-
price can then be represented by (7.6), where log volatility is the Gaussian
stationary process

ωΔ(iΔ) =
1
2

k̄∑

k=1

ln(Mk,iΔ)

with mean E (ωΔ(iΔ)) = −λ2 logb (T1/Δ) , analogous to (7.7). The auto-
covariogram of log volatility in MSM is

Cov (ωΔ(t), ωΔ(t + τ)) = λ2
k̄∑

k=1

e−bk−1τ/T1 . (7.8)

Let k(τ) denote the greatest integer smaller than logb(T1/τ). The term
e−bk−1τ/T1 is close to 1 if k < k(τ) and close to 0 otherwise, and the
covariance of log volatility thus satisfies

Cov (ωΔ(t);ωΔ(t + τ)) ≈ λ2 logb

(
T1

τ

)
.

MSM and MRW both imply that log volatility ωΔ(t) decays at a
logarithmic rate on a range of lags, which is a characteristic of 1/f noise
(e.g., Mandelbrot, 1965b, 1999). In particular, ωΔ(t) decays more slowly in
this range than a stationary fractionally integrated process.6

MSM and MRW both generate multifractal features in a parsimonious
framework, implying moment-scaling for a range of frequencies and a loga-
rithmic rate of decline in the autocovariogram of log volatility. A difference
is that MRW has an abrupt low-frequency cutoff at which volatility auto-
correlations switch from a hyperbolic decay to zero, while MSM mimics
long-memory features on a range of intermediate lags before smoothly
transitioning to an exponential decline at low frequencies (7.8).

MSM and MRW share common aspects in their development. Calvet and
Fisher (1999) introduced MSM, demonstrated the weak convergence of the
continuous-time process under Condition 4, and provided a sequence of
discrete filters to use in empirical applications. Muzy, Delour, and Bacry

6
An autoregressive fractionally integrated moving average process ARFIMA(p, d, q)

must have a long-memory parameter d strictly lower than one half in order to be station-
ary (e.g., Granger, 1980; Hosking, 1981). The asymptotic autocovariance of the process
is then of order τ−(1−2d), which decays faster than ln(T1/τ) when τ and T1/τ are both
large.
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(2000) introduced MRW, and Bacry and Muzy (2003) used Condition 4
to demonstrate the existence of a weak limit for their process. Calvet and
Fisher (2002b, 2004) and Calvet, Fisher, and Thompson (2006) demon-
strated the use of econometric techniques such as maximum likelihood
estimation, simulated method of moments estimation, particle filtering,
and closed-form multistep forecasting. In a similar vein to Calvet and
Fisher (2002b, 2004), Bacry, Kozhemyak, and Muzy (2008) show that MRW
outperforms standard GARCH-type specifications out-of-sample, which
confirms the findings of Chapter 3 and Lux (2008).

MRW and a related approach by Barral and Mandelbrot (2002) incor-
porate a continuum of time scales and do not require a “dilation param-
eter” b, which provides elegance to the mathematical construct. In these
approaches, trading time can be represented as an integral over a cone in the
space of scales and time.7 It remains an open question whether these math-
ematical generalizations provide meaningful empirical differences compared
to MSM.

By contrast, MSM is based on Markov-switching and offers the
advantages of such models, including a closed-form likelihood function.8

Chapters 3 and 4 showed that in typical applications the MSM likeli-
hood function levels off in the range of eight to ten volatility components,9

which suggests that improvements of the likelihood function are likely to be
limited as k̄ goes to infinity and the dilation parameter b correspondingly
goes to unity. The tractable Markov-switching state space representation
also aids the integration of MSM into asset pricing models, as will be seen
in Part III.

The literature on multifractal volatility therefore continues to advance
on a number of fronts. While the methodologies used by researchers may
slightly differ, a salient common theme is that multifractal methods provide
accurate forecasts of volatility and estimates of value-at-risk. We anticipate
that these methods will continue to prove useful in financial applications
in coming years.

Alternative stochastic volatility specifications

MSM and the multifractal processes discussed previously are stochas-
tic volatility (SV) models that share certain moment-scaling properties.

7
See the Appendix for further discussion.

8
Calvet and Fisher (2002b) shows that the efficiency gains from ML estimation are

substantial relative to a variety of simulated method of moments estimators, and the
improvement in estimation efficiency confirmed by Lux (2008).

9
Improvements in forecasting accuracy for MSM specifications with up to fifteen com-

ponents are found in Lux (2008). These results are obtained in a restricted setting where
the dilation parameter b and lowest volatility component frequency γ1 are arbitrarily
fixed, due to difficulty identifying these parameters with method of moments estimation.
In Chapter 3, we are able to estimate these parameters with reasonable precision using
the likelihood function.
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Among the broader set of SV models, the long-memory stochastic volatil-
ity (LMSV) models mentioned in Chapter 2 (e.g., Breidt, Crato, and
de Lima, 1998; Comte and Renault, 1998; Harvey, 1998; Robinson and
Zaffaroni, 1998) have in common with multifractals slowly declining
autocovariograms of squared returns.

Recent developments in the LMSV literature have confirmed that
improvements in volatility prediction can be obtained by models with long-
memory features. Rohit Deo, Clifford Hurvich, and Yi Lu (2006) consider
a specification in which log volatility follows an autoregressive fractionally
integrated moving average (ARFIMA) process:

Φ(L)(1 − L)dσ2
t = Θ(L)ηt,

where L denotes the lag operator, ηt is IID N (0, σ2
η), 0 < d < 0.5, and Φ

and Θ are polynomials with all roots outside the unit circle. The authors
estimate the model by maximizing the frequency domain quasi maximum
likelihood, derive an optimal multistep linear predictor, and show that
this approach outperforms GARCH and component GARCH models10 at
horizons of up to 4 weeks. These results confirm the potential benefits of
accounting for low-frequency volatility fluctuations.

A related approach by Ole Barndorff-Nielsen and Neil Shephard (2001)
specifies volatility as a weighted sum of independent Ornstein-Uhlenbeck
(O-U) processes with heterogeneous persistence rates

σ2(t) =
k̄∑

k=1

wkσ2
k(t), (7.9)

where the weights wk are positive and sum to unity. Each process σ2
k(t)

follows

d
[
σ2

k(t)
]

= −λkσ2
k(t)dt + dzk(λkt), (7.10)

where the {zk(t)} are independent non-Gaussian subordinators (that is,
have nonnegative, independent and stationary increments).11 The compo-
nents σ2

k therefore exhibit occasional upward jumps but otherwise revert

10
Ding and Granger (1996) and Engle and Lee (1999) develop GARCH models with

multiple components. Empirical applications typically focus on the case of two volatility
factors, representing long- and short-run fluctuations. Stochastic volatility specifications
with two components have also been shown to improve on single-factor specifications
under a variety of in-sample diagnostics (Alizadeh, Brandt, and Diebold, 2002; Bates,
2000; Bollerslev and Zhou, 2002; Chacko and Viceira, 2003; Chernov et al., 2003; Gallant,
Hsu, and Tauchen, 1999; Xu and Taylor, 1994). Out-of-sample, a two-component volatil-
ity model is useful for forecasting volatility at long horizons (Brandt and Jones, 2006),
for option pricing (Christoffersen, Jacobs, and Wang, 2008), and for cross-sectional stock
pricing (Adrian and Rosenberg, 2008).

11
Bookstaber and Pomerantz (1989) consider a single-frequency version of the

Barndorff-Nielsen and Shephard model.
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toward zero at rate λk. An advantage of this approach is that closed-form
expressions are available for option pricing, as pursued by Nicolato and
Venardos (2003).

Some of the features of the Barndorff-Nielsen and Shephard approach
are similar to MSM. Volatility is hit by shocks of multiple durations, and
the autocorrelation function of returns is a sum of exponentials:

Corr(σ2(t);σ2(t + n)) =
k̄∑

k=1

wke−λkn,

which can approximate a hyperbolic decay and mimic long memory,
consistent with Proposition 1. Similar to MSM, the approach also has impli-
cations for the power variation of returns, as discussed in Barndorff-Nielsen
and Shephard (2003).

The O-U specification (7.10) implies the asymmetry that volatility com-
ponents occasionally jump upward and otherwise slowly decline toward
zero. In MSM, components remain constant until an arrival triggers the
draw of a new value, but as is the case with an O-U process, the conditional
expectation of a future volatility state Et(Mk,t+n) = 1+ (1−γk)n(Mk,t−1)
converges to the long-run mean.

As in other component SV models, the Barndorff-Nielsen specification
requires a potentially large number of parameters as the dimensionality of
the state space grows. This contrasts with the small number of parameters
in MSM, obtained by imposing empirically verifiable restrictions across
different time scales. As is typical of other SV models, superposed Ornstein-
Uhlenbeck volatility does not have a closed form likelihood, and inference is
typically recommended to proceed by Monte Carlo Markov chain (MCMC)
or other simulation-based methods. A unique characteristic of MSM among
SV models is that a large number of volatility components may be specified
with a small number of parameters, while also permitting a closed-form
likelihood function and convenient multistep forecasting.

7.5 Discussion

Continuous-time MSM is a multifrequency diffusion with fully stationary
increments and heterogeneous volatility components, which can be natu-
rally defined on an unbounded time domain. The instants of changes in
volatility components are randomly generated by a sequence of Poisson
arrival processes with increasing frequencies. The model parsimoniously
captures the volatility persistence, moment-scaling, and thick tails that
characterize many financial time series, and is also consistent with the dif-
ferent time scales of economic variables such as technology shocks, business
and earnings cycles, and liquidity shocks.
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MSM implies semimartingale prices and precludes arbitrage in a standard
two-asset setting. Squared returns have long memory, and the highest finite
moment of returns may take any value greater than two. This wide range
of tail behaviors is fully provided by intermittent bursts of volatility and
does not require separate modeling of the tails. Forecasting is facilitated by
discrete MSM which has a finite state space and a simple Markov structure.
We show that the discretize model weakly converges to continuous-time
MSM as the grid step size goes to zero, ensuring that the discrete filters
are consistent in estimation and forecasting applications.
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Power Variation

The multifractal diffusions considered in previous chapters imply that the
moments of returns vary as a power law of the time horizon. In this chap-
ter, we confirm the empirical validity of this property on currency and
equity data. For Deutsche mark/U.S. dollar (DM/USD) exchange rates,
we use a high-frequency data set of approximately 1.5 million quotes col-
lected over one year, and a 24-year sample of daily prices. The exchange
rate displays multifractal moment-scaling over a remarkable range of time
horizons. We estimate the spectrum of local Hölder exponents and infer an
MSM generating mechanism. Monte Carlo simulations show that GARCH
and FIGARCH are less likely to reproduce these results than a multifractal
model. In addition, we find evidence of scaling in a U.S. equity index and
five individual stocks.

This chapter is largely based on results reported in Calvet, Fisher, and
Mandelbrot (1997) and Calvet and Fisher (2002a), updated to reflect the
strictly stationary MSM specification.1 Numerous complementary studies
confirm that multiscaling is a common feature of many financial time series
(e.g., Gallucio et al., 1997; Ghashghaie et al., 1996; Pasquini and Serva,
1999, 2000; Richards, 2000; Vandewalle and Ausloos, 1998). Multifrac-
tal models such as MSM provide a parsimonious representation of these
empirical features of financial data.

8.1 Power Variation in Currency Markets

8.1.1 Data
We first demonstrate multifractality of the DM/USD exchange rate. We
use two data sets provided by Olsen and Associates, a currency research
and trading firm based in Zürich. The first data set (“daily”) contains

1
The similarity between the results reported in this chapter and those originally

published using the MMAR confirms that the two models generate very similar scaling
in return moments.

This chapter is based on an earlier paper: “Multifractality in Asset Returns: Theory and
Evidence” (with A. Fisher), Review of Economics and Statistics, 84: 381–406, August 2002.
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FIGURE 8.1. DM/USD Daily Data. The data is provided by Olsen and Asso-
ciates and spans from 1 June 1973 to 31 December 1996. The outlined area labeled
“HF data” shows the one-year period from 1 October 1992 to 30 September 1993
that corresponds to the span of the high-frequency data.

24 years of daily returns from June 1973 to December 1996.2 Figure 8.1
shows the daily data, which exhibits volatility clustering at all time scales
and intermittent large fluctuations.

The second data set (“high-frequency”) contains all bid/ask quotes and
transmittal times collected over the one-year period from 1 October 1992
to 30 September 1993. We convert quotes to price observations using the
same methodology as Olsen, and we obtain a round-the-clock data set of
1,472,241 observations. The high-frequency data show strong patterns of
daily seasonality. We correspondingly use a seasonally modified version of a
multifractal diffusion:

lnP (t) − lnP (0) = BH {θ [SEAS(t)]} ,

where the seasonal transformation SEAS(t) smooths the variation in aver-
age absolute returns over 15-minute intervals of the week. The results
reported here do not change significantly if we use other reasonable methods

2
Olsen collects price quotes from banks and other institutions through several elec-

tronic networks. A price observation is obtained by taking the geometric mean of the
concurrent bid and ask. The reported price in the daily data is then calculated by linear
interpolation of the price observations closest to 16:00 UK on each side.
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of deseasonalizing the high-frequency data. Combining the daily data and
the high-frequency data allows us to examine moment scaling over three
orders of magnitude for �t.

8.1.2 Methodology
Consider the log-price series X(t) ≡ lnP (t) − lnP (0) observed over the
time interval [0, T ]. Partitioning [0, T ] into integer N intervals of length
�t, we define the partition function or realized power variation

Sq(T, �t) ≡
N−1∑

i=0

|X(i�t + �t) − X(i�t)|q . (8.1)

When X(t) is multifractal and has a finite qth moment, the scaling law
(6.1) yields E [|X(�t)|q] = cX(q)(�t)τX(q)+1, or equivalently

ln E[Sq(T, �t)] = τX(q) ln(�t) + c∗(q) (8.2)

where c∗(q) = ln cX(q) + lnT . Technically, the condition holds on a grid
under the MMAR and asymptotically for small Δt under continuous-time
MSM. We will see, however, that these discrepancies play no material role
in practice.

Given a set of positive moments q and time scales Δt, we calculate the
realized power variations Sq(T, �t) of the data, and plot them against Δt
in logarithmic scales. By (8.2), these plots should be approximately linear,
and regression estimates of the slopes provide the scaling exponents τ̂X(q).

8.1.3 Main Empirical Results
Figures 8.2 and 8.3 illustrate the realized power variations of the two
DM/USD data sets. Values of Δt are chosen to increase multiplicatively by
a factor of 1.1 from minimum to maximum. Since we focus on the slopes
τ̂X(q) but not the intercepts, plots for each q are renormalized to begin at
zero for the lowest value of Δt in each graph. The daily and high-frequency
plots are also presented together to highlight the similarity in their slopes.3

Figure 8.2 shows the full range of calculated Δt, from 15 seconds to
6 months, and five values of q ranging from 1.75 to 2.25. We assume that the
log-price follows X(t) = BH [θ(t)], where θ is an MSM time deformation with
countably many frequencies (as described in Chapter 7). Since τX(1/H) = 0
and the standard Brownian specification H = 1/2 has previous empirical
support, we expect to find τX(q) = 0 for a value of q near two.

3
We vertically displace the plot of the daily data to provide the best ordinary least

squares fit, under the restriction that both lines have the same slope.
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FIGURE 8.2. DM/USD Realized Power Variations for the Full Set of
Time Scales and Moments q near 2. This figure identifies a scaling region
from about 1.4 hours to at least 6 months, the largest horizon for which realized
power variations are calculated. The change in scaling at high frequencies is
consistent with market frictions such as bid-ask spread, discreteness of prices, and
noncontinuous trade. Moments q near 2 are chosen to investigate the martingale
hypothesis for returns by the equation τ(q = 1/H) = 0. We find a flat slope near
q = 1.88, implying Ĥ = 0.53, or slight persistence.

We first note the approximate linearity of the partition functions begin-
ning at Δt = 1.4 hours and extending to the largest increment used, Δt = 6
months. In this range, the slope is zero for a value of q slightly smaller than
two, and we report

Ĥ ≈ 0.53,

which implies very slight persistence in the DM/USD series. It is not
immediately clear whether this result is sufficiently close to H = 1/2 to be
consistent with the martingale version of the multifractal model, and we
return to this issue in the following section using simulation-based inference.

The realized power variation plots in Figure 8.2 also show breaks in lin-
earity at high frequencies. These are consistent with microstructure effects
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FIGURE 8.3. DM/USD Realized Power Variations in the Scaling Region
for Moments 1.5 ≤ q ≤ 5. For each moment, the first solid line plotted from
1.4 hours to two weeks corresponds to the high-frequency data. The second solid
line ranges from Δt = 1 day to 6 months, and corresponds to the daily data. The
lines are remarkably straight, as predicted by the model, and have nearly iden-
tical slopes. Also, their scaling is noticeably different from that of the Brownian
motion, which is shown by the dotted lines in the figure.

such as bid-ask spreads, discreteness of quoting units, and discontinuous
trading. In particular, such microstructure effects can be expected to induce
a negative autocorrelation at high frequencies, as is well understood in
the case of bid-ask bounce (Roll, 1984b). Negative autocorrelation tends
to raise the empirical sum of squared returns, as previously discussed in
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FIGURE 8.4. Estimated DM/USD Scaling Functions. For each partition
function Sq(T, Δt), we estimate the slope τ̂X(q) by OLS. The estimated scaling
functions for both data sets are concave and have a similar shape until high
moments are reached. For comparison, the scaling function of Brownian motion
is shown by the dotted line.

the variance ratio literature (e.g., Campbell and Mankiw, 1987; Lo and
MacKinlay, 1988; Richardson and Stock, 1989; Faust, 1992). The results in
Figure 8.2 are analogous to variance ratio tests, exactly so if we focus on the
moment q = 2. As we move to the left on the graph and sampling frequency
increases, microstructure-induced negative autocorrelation increases, and
the plots bend upward corresponding to the increase in variability.

Descriptive statistics help to confirm that high-frequency breaks in linear-
ity are related to microstructure effects. The departure from linearity begins
at a frequency of approximately Δt = 1.4 hours, highlighted by the dotted
lines in Figure 8.2. We calculate the average absolute change in the DM/USD
rate over a time increment of 1.4 hours, and find that this equals approxi-
mately 0.0014 DM. Comparing this to the average spread of 0.0007 DM,4 it
appears reasonable that microstructure effects should be important at this
horizon. For time scales between 3.6 minutes and 1.4 hours, the partition
function has an approximate slope of zero for the moment q = 2.25, imply-
ing H ≈ 0.44 < 1/2, consistent with negative autocorrelation induced by
microstructure effects. In the remainder of the analysiswediscardvalues ofΔt
less than 1.4 hours, leaving three orders ofmagnitude of sampling frequencies.

Figure 8.3 presents partition functions for a larger range of moments
1.5 ≤ q ≤ 5 with Δt between 1.4 hours and 6 months. Higher moments

4
The two most common spread sizes are 0.0005 DM (38.25%) and 0.0010 DM (52.55%),

together comprising over 90% of all observed spreads.
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capture information in the tails of the distribution of returns and are thus
generally more sensitive to deviations from scaling. All of the plots are
nonetheless remarkably linear, and the overlapping values from the two
data sets appear to have almost the same slope. Thus despite the long
24-year series of daily data, multifractal scaling seems to hold over a broad
range of sampling frequencies.

To obtain scaling functions τ̂X(q) for each data set, we estimate the
slopes of the partition functions for a range of q, using ordinary least
squares (OLS), and report the results in Figure 8.4.5 The estimated func-
tions are strictly concave, indicating multifractality, and the daily and
high-frequency spectra are similar except for very large moments.

Chapter 5 suggests estimating the multifractal spectrum fX(α) by taking
the Legendre transform of τ̂X(q). Following this logic, Figure 8.5 shows the
estimated multifractal spectrum of the daily data. The estimated spectrum
is concave, in contrast to the degenerate spectra of Brownian motion and
other unifractals.

The specific shape of the daily spectrum is very nearly quadratic, and
Chapter 5 has shown that quadratic spectra are indicative of lognormally
distributed multipliers M . To obtain an estimated MSM generating mech-
anism, we specify − logb M ∼ N (λ − 1, σ2), giving trading time θ(t) with
multifractal spectrum fθ(α) = 1−(α−λ)2/[4(λ−1)].6 The log-price process
has the most probable exponent α0 = λH and spectrum

fX(α) = 1 − (α − α0)2

4H(α0 − H)
.

Since Ĥ = 0.53, the free parameter α0 is used to fit the estimated spectrum.
We report

α̂0 = 0.589,

which produces the parabola shown in Figure 8.5. Choosing a generating
construction with base b = 2,7 this immediately implies λ̂ = 1.11 and

5
The increasing variability of the partition function plots with the time scale Δt

suggests a weighted least squares or generalized least squares approach. In practice,
weighting the observations has little effect on the results because the plots are very
nearly linear. Preferring simplicity, we report OLS regression results.

6
A multiplier has a mean equal to unity in MSM and to 1/b in the MMAR. An MSM

multiplier M must therefore be divided by b in order to be an admissible MMAR multi-
plier. The specification − logb M ∼ N (λ − 1, σ2) implies that − logb(M/b) ∼ N (λ, σ2),
and the formula for the multifractal spectrum (5.10) can then be applied without
modification.

7
The base b of the multifractal generating process is not uniquely identified by the

spectrum alone; hence we assume the commonly used value b = 2. Chapter 3 develops
a likelihood based filter under which b can be estimated for the class of multinomial
multifractals.
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FIGURE 8.5. Estimated Multifractal Spectrum of Daily DM/USD
Data. The estimated spectrum is obtained from the Legendre transform f̂X(α) =
Inf

q
[αq − τ̂(q)], shown in this graph by the lower envelope of the dotted lines. The

shape is nearly quadratic, with a fitted parabola shown by marked symbols,
suggesting a lognormal distribution for multipliers M .

σ̂2 = 0.32.8 It is also natural to consider the martingale version of the multi-
fractal model with the restriction H = 1/2. For this case, we estimate the
single parameter α̂0 = 0.545.

In both cases, the estimated value of the most probable local Hölder
exponent α0 is greater than 1/2. On a set of Lebesgue measure 1, the
estimated multifractal process is therefore more regular than a Brownian

8
Mandelbrot (1989) shows that the partition function methodology provides reason-

able estimates of τX(q) only for moments q < 1/
√

α0(X)/H − 1, which is approximately
equal to 5.66 in our estimated process.
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FIGURE 8.6. Simulated MSM Generating Process for the DM/USD
Data. We use the estimated values of Ĥ = 0.53 and α̂0 = 0.589 with the lognor-
mal specification of MSM. The plots show volatility clustering at all time scales
and occasional large fluctuations.

motion. However, the concavity of the spectrum also implies the existence
of lower Hölder exponents that correspond to more irregular instants of the
price process. These contribute disproportionately to quadratic variations.

Figure 8.6 shows the levels and log-differences of a random price path
generated by the estimated lognormal MSM. The simulation shows a variety
of large price changes, apparent trends, persistent bursts of volatility, and
other characteristics found in the DM/USD series.

8.1.4 Comparison of MSM vs. Alternative Specifications
To assess whether the estimated MSM process is able to replicate the
scaling features of DM/USD data, we first simulate several long series
from the extended MSM specification estimated above with Ĥ = 0.53
and α̂0 = 0.589. For each of four simulated series of 100,000 observa-
tions, we calculate partition functions and display these in Figure 8.7a.
For comparison,9 Figure 8.7b shows partition functions from simulated
GARCH(1,1) series where parameter estimates are taken from Baillie and
Bollerslev (1989). Figure 8.7c considers the FIGARCH(1, d, 0) specification

9
LeBaron (2001) suggests multiple component stochastic volatility alternatives.

Mandelbrot (2001) and Stanley and Plerou (2001) provide discussions.
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FIGURE 8.7. Simulated Realized Power Variations. Each panel shows
realized power variations for a simulated sample of 100,000 observations. The
data-generating process in (a) uses our estimates from the extended MSM. The
data-generating processes in (b) and (c) use specifications from previously pub-
lished research on daily DM/USD exchange rates. Large simulated samples are
used to reduce noise. Dotted lines in each figure represent the scaling predicted
for Brownian motion, and dashed lines represent the scaling found in the data.
MSM appears most likely to capture scaling in the DM/USD data. The GARCH
simulations tend to scale like Brownian motion. FIGARCH simulations occasion-
ally show scaling that is similar to the data, but in general tend to be much more
irregular.
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of Baillie, Bollerslev, and Mikkelsen (1996). The figure shows that the
MSM partition functions are approximately linear and close to the slopes
of the DM/USD data. By contrast, the GARCH(1, 1) partition functions
are fairly linear, but their apparent slope is similar to the predicted slope
of Brownian motion rather than the data. This is symptomatic of short
memory in GARCH models. Over long time periods, temporal clustering
disappears, and GARCH scales like a Brownian motion. The FIGARCH
partition function plots appear more irregular than those of MSM and the
data.

We now provide a more systematic assessment of ability to replicate the
scaling features of DM/USD data. The analysis focuses on four processes:
the extended MSM (with arbitrary H), the martingale MSM (H = 1/2),
FIGARCH, and GARCH. These models are, respectively, indexed by m ∈
{1, . . . , 4}. For each model m, we simulate J = 10,000 paths with the
same length T = 6,118 as the DM/USD data. We denote each path by
Y m

j = {Y m
j,t}T

t=1, (1 ≤ j ≤ J), and we focus the analysis on the moments q ∈
Q= {0.5, 1, 2, 3, 5}. For each path and each q, an OLS regression provides
a slope estimate τ̂(q, Y m

j ) and the corresponding sum of squared errors
SSE(q, Y m

j ). Tables 8.1 and 8.2 report the percentiles of these statistics for
each model. The distributions of the reported statistics appear unimodal,
with smoothly declining tails.

Table 8.1 shows that the extended MSM is very close to the data in both
its theoretically predicted slopes τ0 and the mean slopes τ̄ . Furthermore, the
estimated slopes from the DM/USD data are well within the central bells of
the simulated slope distributions generated by the extended MSM. For the
martingale version of MSM, the estimated slopes from the DM/USD data
are generally close to the model slopes, but for low moments the statistics
from the data are in the upper tail of the simulated distribution for the
model.

Table 8.2 analyzes the variability of the simulated partition functions
around their slopes. The extended and martingale versions of the MSM
yield nearly identical results. For low moments, the data falls well within
the likely range of the SSE statistic for both models. For high moments,
the partition functions are typically more variable for the simulated MSM
than for the data. Overall, MSM appears to successfully match the main
scaling features of the data.

Comparing GARCH and FIGARCH to these results, Tables 8.1 and 8.2
confirm that the GARCH partition functions, while linear, have very dif-
ferent slopes than the DM/USD data. The simulated FIGARCH slopes
improve over the GARCH slopes, but are not as close to the data as the
multifractal model. The SSEs from the data, reported in Table 8.2, are also
far in the tails of their distributions generated under FIGARCH. Thus, the
two MSM specifications appear more likely to replicate the scaling features
of the exchange rate data than alternative models.



TABLE 8.1. Realized Power Variation: Estimated Slopes

A. Predicted Slopes and Mean Slopes from Model Simulations and DM/USD Data

i. ii. iii. iv.
DM/USD MSM MSM FIGARCH GARCH

Data (H = 1/2) (1, d, 0) (1, 1)

q τ̂ τ0 τ̄sim s.d. τ0 τ̄sim s.d. τ̄sim s.d. τ̄sim s.d.

0.5 −0.711 −0.71 −0.72 0.01 −0.73 −0.74 0.01 −0.74 0.01 −0.75 0.01
1.0 −0.440 −0.44 −0.45 0.02 −0.49 −0.48 0.02 −0.49 0.03 −0.50 0.02
2.0 0.058 0.06 0.05 0.06 0.00 −0.01 0.06 −0.01 0.08 −0.01 0.05
3.0 0.500 0.49 0.48 0.12 0.43 0.42 0.10 0.42 0.16 0.47 0.08
5.0 1.208 1.19 1.17 0.27 1.16 1.12 0.24 1.14 0.35 1.36 0.17

B. Probabilities that the Simulated Model Slopes are Less than the Slopes from DM/USD Data: P(τsim < τ̂)

0.5 0.6356 0.9835 0.9969 0.9993
1.0 0.5732 0.9614 0.9787 0.9959
2.0 0.5568 0.8820 0.8363 0.9186
3.0 0.5851 0.7968 0.7209 0.6587
5.0 0.5572 0.6554 0.5656 0.1754

C. Percentiles of the Simulated Model Slopes

P0.5 P1 P2.5 P5 P10 P25 P50 P75 P90 P95 P97.5 P99 P99.5

i. MSM

0.5 −0.746 −0.743 −0.739 −0.735 −0.731 −0.723 −0.715 −0.707 −0.700 −0.695 −0.692 −0.687 −0.683
1.0 −0.508 −0.502 −0.493 −0.486 −0.477 −0.461 −0.445 −0.429 −0.413 −0.405 −0.396 −0.387 −0.381
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2.0 −0.107 −0.093 −0.068 −0.050 −0.027 0.009 0.049 0.089 0.127 0.151 0.172 0.201 0.220
3.0 0.157 0.192 0.246 0.288 0.331 0.401 0.476 0.552 0.625 0.674 0.721 0.779 0.817
5.0 0.353 0.453 0.603 0.715 0.835 1.003 1.173 1.343 1.508 1.609 1.710 1.834 1.918

ii. MSM(H = 1/2)

0.50 −0.767 −0.764 −0.759 −0.755 −0.751 −0.744 −0.735 −0.728 −0.721 −0.716 −0.713 −0.709 −0.707
1.00 −0.544 −0.539 −0.528 −0.521 −0.512 −0.497 −0.481 −0.466 −0.452 −0.443 −0.436 −0.427 −0.423
2.00 −0.152 −0.137 −0.116 −0.098 −0.078 −0.044 −0.007 0.030 0.063 0.086 0.103 0.123 0.144
3.00 0.142 0.174 0.213 0.249 0.286 0.347 0.415 0.483 0.550 0.589 0.629 0.677 0.708
5.00 0.445 0.529 0.643 0.735 0.822 0.960 1.119 1.274 1.423 1.508 1.603 1.715 1.783

iii. FIGARCH(1, d, 0)

0.5 −0.776 −0.773 −0.768 −0.764 −0.760 −0.753 −0.744 −0.736 −0.729 −0.725 −0.721 −0.716 −0.713
1.0 −0.566 −0.556 −0.546 −0.537 −0.527 −0.511 −0.494 −0.476 −0.460 −0.450 −0.442 −0.430 −0.422
2.0 −0.244 −0.211 −0.174 −0.141 −0.111 −0.064 −0.016 0.034 0.084 0.115 0.147 0.191 0.221
3.0 −0.082 −0.003 0.086 0.151 0.220 0.320 0.416 0.514 0.608 0.680 0.737 0.815 0.857
5.0 0.033 0.200 0.412 0.559 0.703 0.934 1.155 1.362 1.560 1.699 1.807 1.935 2.031

iv. GARCH(1, 1)

0.5 −0.777 −0.774 −0.770 −0.766 −0.762 −0.755 −0.747 −0.740 −0.733 −0.729 −0.725 −0.721 −0.718
1.0 −0.555 −0.548 −0.541 −0.534 −0.525 −0.512 −0.497 −0.482 −0.470 −0.461 −0.454 −0.447 −0.442
2.0 −0.121 −0.110 −0.095 −0.080 −0.063 −0.036 −0.005 0.025 0.053 0.071 0.084 0.101 0.113
3.0 0.281 0.302 0.322 0.347 0.375 0.420 0.470 0.521 0.571 0.601 0.629 0.664 0.685
5.0 0.928 0.978 1.037 1.094 1.150 1.250 1.352 1.461 1.569 1.641 1.709 1.790 1.859

Notes: This table is based on J = 10,000 simulated paths for each of the four models. In Panel A, the column τ0 is the theoretically predicted
slope, under the MSM, in the regression of the logarithm of realized power variation on the logarithm Δt (equation 8.2). The column τ̄ shows the
average slope over the J paths, and s.d. the standard deviation. Panel B provides the percentage of the simulated paths with slope values less
than observed in the daily DM/USD data, and Panel C gives percentiles of the simulated distribution under each model.
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TABLE 8.2. Realized Power Variation: Sum of Squared Errors

A. Mean SSE from Simulated Models and DM/USD Data

i. ii. iii. iv.
DM/USD MSM MSM FIGARCH GARCH

Data (H = 1/2) (1, d, 0) (1, 1)

q SSE SSE s.d. SSE s.d. SSE s.d. SSE s.d.

0.5 0.018 0.020 0.008 0.021 0.008 0.024 0.009 0.021 0.008
1.0 0.0507 0.060 0.027 0.064 0.027 0.083 0.042 0.059 0.023
2.0 0.159 0.330 0.213 0.311 0.167 0.635 0.635 0.210 0.09
3.0 0.42 1.50 1.14 1.29 0.864 2.98 2.95 0.70 0.39
5.0 2.76 10.2 7.19 9.84 6.01 17.3 13.7 4.91 3.54

B. Probabilities that the Simulated Model SSE are Less than in the DM/USD Data

0.5 0.4652 0.3914 0.2541 0.3733
1.0 0.4225 0.3553 0.1648 0.4191
2.0 0.1019 0.1000 0.0204 0.3211
3.0 0.0139 0.0197 0.0026 0.1902
5.0 0.0175 0.0283 0.0034 0.2293

C. Percentiles of the Simulated Model SSE

P0.5 P1 P2.5 P5 P10 P25 P50 P75 P90 P95 P97.5 P99 P99.5

i. MSM

0.5 0.0072 0.0079 0.0092 0.010 0.012 0.015 0.019 0.024 0.030 0.034 0.039 0.046 0.050
1.0 0.0204 0.0229 0.0261 0.029 0.034 0.042 0.055 0.072 0.093 0.111 0.129 0.150 0.165
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2.0 0.095 0.106 0.121 0.136 0.158 0.206 0.279 0.395 0.561 0.698 0.849 1.05 1.27
3.0 0.352 0.396 0.462 0.530 0.630 0.842 1.18 1.78 2.69 3.44 4.31 5.81 7.12
5.0 2.25 2.52 2.97 3.46 4.16 5.68 8.25 12.5 18.4 23.2 28.9 36.8 42.8

ii. MSM (H = 1/2)

0.5 0.008 0.008 0.010 0.011 0.013 0.016 0.020 0.025 0.031 0.036 0.040 0.048 0.053
1.0 0.022 0.024 0.028 0.032 0.036 0.045 0.058 0.076 0.097 0.113 0.131 0.155 0.184
2.0 0.096 0.106 0.122 0.138 0.161 0.204 0.272 0.375 0.511 0.622 0.752 0.92 1.11
3.0 0.333 0.382 0.441 0.507 0.591 0.768 1.07 1.58 2.26 2.87 3.63 4.93 6.11
5.0 2.04 2.34 2.74 3.17 3.76 5.04 7.26 10.9 16.3 20.4 25.5 33.8 38.1

iii. FIGARCH(1, d, 0)

0.5 0.00873 0.00969 0.0112 0.0126 0.0144 0.0179 0.0229 0.0287 0.0355 0.0403 0.0447 0.0507 0.0561
1.0 0.026 0.0291 0.034 0.0386 0.0448 0.0572 0.0745 0.0984 0.129 0.155 0.185 0.228 0.276
2.0 0.126 0.14 0.165 0.192 0.227 0.31 0.461 0.73 1.18 1.62 2.14 3.1 4.18
3.0 0.453 0.527 0.64 0.751 0.931 1.34 2.11 3.6 5.75 7.74 10.3 14.3 19.4
5.0 2.99 3.42 4.13 4.94 6.07 8.73 13.5 21.4 32.1 41.5 52.4 68.9 85.3

iv. GARCH(1, 1)

0.5 0.00804 0.00872 0.00995 0.0111 0.0128 0.0159 0.0202 0.0254 0.0315 0.0357 0.0397 0.0455 0.05
1.0 0.0212 0.0232 0.0265 0.0299 0.0343 0.0427 0.0546 0.0697 0.0874 0.101 0.115 0.135 0.149
2.0 0.0725 0.0793 0.091 0.103 0.116 0.147 0.19 0.249 0.325 0.383 0.449 0.548 0.624
3.0 0.214 0.237 0.27 0.31 0.356 0.456 0.608 0.827 1.13 1.39 1.64 2.07 2.46
5.0 1.25 1.39 1.59 1.83 2.14 2.84 3.95 5.83 8.5 11.1 13.9 18.4 23.2

Notes: This table is based on the same simulated paths as Table 8.1. In Panel A, the column SSE shows the average, over the J =10,000 paths
for each model, of the sum of squared errors from the regression of the logarithm of realized power variation on the logarithm of Δt. The
column s.d. gives the standard deviation of the sum of squared errors over the 10,000 simulations. Panel B gives the percentage of simulated
paths with SSE less than in the daily DM/USD data, and Panel C provides percentiles of the simulated SSE under each model.
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136 8. Power Variation

8.1.5 Global Tests of Fit
We summarize these observations with several tests of global fit, drawing
on the literature that suggests specification tests using simulated moments
(e.g., Ingram and Lee, 1991; Duffie and Singleton, 1993). For a given model
m ∈ {1, . . . , 4}, each path Y m

j generates a column vector of slope and SSE
estimates10:

h(Y m
j ) = {[τ̂(q, Y m

j ), lnSSE(q, Y m
j )]q∈Q}′.

Denote the data by X = {Xt}T
t=1 and arrange the simulated paths in a

J × T matrix Y m = [Y m
1 , . . . , Y m

J ]′. We then consider

H (X, Y m) = h (X) − 1
J

J∑

j=1

h(Y m
j ).

The function H is useful to test how a particular model fits the moment
properties of the data. In particular, we can define a global statistic G =
H ′WH for any positive-definite matrix W . We use four different weighting
matrices Wm, m ∈ {1, . . . , 4}, each of which is obtained by inverting the
simulated covariance matrix of moment conditions:

Wm =

⎡

⎣
J∑

j=1

H
(
Y m

j , Y m
)
H

(
Y m

j , Y m
)′
/J

⎤

⎦
−1

.

The global statistics

Gm,n(X) = H (X, Y m)′
WnH(X, Y m), m, n ∈ {1, . . . , 4} , (8.3)

are indexed by the model m that generates the simulated data Y m and
the model n that generates the weighting matrix Wn. This gives a set of
16 global statistics. Assuming that m is the true model, we can estimate
the cumulative distribution function Fm,n of each statistic from the set
{Gm,n(Y m

j )}1≤j≤J , and then quantify the p-value 1 − Fm,n[Gm,n(X)].
The global statistics Gm,n(X) and their associated p-values are reported

in Table 8.3. Each column of the results uses a different weighting matrix,
so that within column comparisons provide four separate views of ability to
fit the data. Each weighting matrix provides different power against a given
model, and asymptotic theory suggests that the most powerful weighting
matrix for each model is provided by the inverse of its own covariance

10
We use the logarithm of the SSE in calculating the global statistics because Table 8.2

shows that the SSE are heavily right-skewed.
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TABLE 8.3. Global Tests for DM/USD Scaling

Weighting
W1 W2 W3 W4

Model Test Statistics and Simulated p-values

MSM 7.70 10.11 7.50 27.21
(0.506) (0.451) (0.523) (0.317)

MSM(H = 1/2) 11.29 12.81 11.49 20.15
(0.199) (0.210) (0.185) (0.297)

FIGARCH(1, d, 0) 24.45 28.94 25.96 58.79
(0.114) (0.163) (0.043) (0.259)

GARCH(1, 1) 20.65 22.81 25.34 27.04
(0.0290) (0.024) (0.030) (0.032)

Notes: The weighting matrices W1, . . . , W4 correspond to the inverse covariance matrix
of the moment conditions under the four models: MSM, MSM(H =1/2), FIGARCH, and
GARCH. The 10 moment conditions used are the expected slope and sum of squared
errors for the 5 moments q = 0.5, 1, 2, 3, 5, conditioned on each model, from the regression
of the logarithm of realized power variation on the logarithm of Δt (equation 8.2). The
expectations and covariances of the moment conditions are obtained by simulating 10,000
paths under each model. The statistics reported are from the daily DM/USD data, and
the p-values show the probability of observing a larger statistic conditioning upon the
assumed model. Asymptotic theory suggests that the diagonal entries will have most
power against each model.

matrix of moment conditions. We expect the diagonal entries of the table to
provide the greatest power to reject each model, and this is consistent with
the results. Whether evaluated column-wise or by the diagonal elements,
the results confirm that the multifractal model best replicates the scaling
properties of the data.

8.2 Power Variation in Equity Markets

After observing multifractal properties in DM/USD exchange rates, it is
natural to test the model on other financial data. This section presents
evidence of moment-scaling in a sample of five major U.S. stocks and one
equity index.

The Center for Research in Security Prices (CRSP) provides daily
stock returns for 9,190 trading days from July 1962 to December 1998.
We present results for the value-weighted NYSE-AMEX-NASDAQ index
(CRSP Index) and five stocks: Archer Daniels Midland (ADM), General
Motors (GM), Lockheed Martin, Motorola, and United Airlines (UAL).
The individual stocks are issued by large, well-known corporations from
various economic sectors, and have reported data for the full CRSP sample
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FIGURE 8.8. Realized Power Variations for CRSP Index and GM. The
data spans from 1962 to 1998, and the time increments labeled “d,” “w,” “m,”
and “y” correspond to one day, one week, one month, and one year, respectively.
When the full data sets are used, we observe scaling in the first three moments,
and for horizons Δt ≥ 3 days in the fifth moments. The drop in the fifth moments
between two and three days is caused by sharp rebounds for both series from the
1987 crash. After removing the crash from the data, the second two panels show
striking linearity, but change the slopes of the full-sample plots to increase and
thus appear more Brownian.

span. For each series, we convert the daily return data into a renormalized
log-price series Xt, and then we calculate realized power variations for a
range of time intervals Δt.11

Figure 8.8 shows results for the CRSP index and General Motors. In the
first two panels, the full data sets are used with increments Δt ranging from
one day to approximately one year. The partition functions for moments
q = {1, 2, 3} are approximately linear for both series, with little variation
around the apparent slope. The slope for the moment q = 2 is noticeably
positive for the CRSP index, indicating persistence. This characteristic is
atypical of individual securities, although short horizon persistence is a
common feature of index returns, often attributed to asynchronous trad-
ing (e.g., Boudoukh, Richardson, and Whitelaw, 1994). In contrast to the
results for low moments, the realized power variations from both series vary
considerably for the moment q = 5. This suggests investigation of the tails
of the data. The second two panels of Figure 8.8 display striking linear-
ity after simply removing the day of the October 1987 stock market crash
from both data sets. Not surprisingly, removing the crash also results in
the power variation plots moving toward the Brownian benchmark, thus
appearing more “mild.”

The other four stocks scale remarkably well despite the crash, as shown in
Figure 8.9. Consistent with the martingale hypothesis for returns, three of

11
The CRSP holding period returns rt = (Pt − Pt−1 + Dt)/Pt−1 include cash distri-

butions Dt. We construct the series {Xt}T
t=0 by X0 = 0, Xt = Xt−1 + ln(1 + rt).
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FIGURE 8.9. Realized Power Variations for ADM, Lockheed, Motorola,
and UAL. The plots, which are based on all daily returns between July 1962
and December 1998, show strong scaling properties.

the four stocks have almost exactly flat realized power variations for q = 2,
while Archer Daniels Midland has a slight negative slope. The difference
between Brownian scaling and multiscaling becomes perceptible for q = 3,
and for the fifth moment, this difference is pronounced. United Airlines
appears to be the most variable, with lower slopes at higher moments and
thus a wider multifractal spectrum.

8.3 Additional Moments

Besides power variation scaling, other properties of MSM can be useful
to estimate the model, assess its fit, and compare with alternative specifi-
cations. For instance, the autocorrelograms of powers of absolute returns,
Cov(|rt|q, |rt+s|q), scale as power laws of s on a wide range of lags, as is
shown by Proposition 1 in Chapter 3. Arneodo, Muzy, and Sornette (1998)
provide visual confirmation of this property in currency data, and Lux
(2008) uses the autocorrelations of powers of returns to estimate MSM.
We have also shown in Chapter 3 that the tail statistics of simulated MSM
data closely approximate the tail statistics of actual currency returns. Thus,
MSM parsimoniously captures a variety of economically important features
of financial series.

In Calvet and Fisher (2002b), we used the simulated method of moments
(Ingram and Lee, 1991; Duffie and Singleton, 1993) in a Monte Carlo study
to compare the informativeness of different moment properties of the mul-
tifractal model. Implementing the simulated method of moments requires
only a small extension of the global test of fit described previously. Given
a set of empirical moments h (X), we draw J i.i.d. paths {Yj (ψ)}J

j=1 of the
same lengths as the data under the assumed model with parameter vector
ψ. For a fixed weighting matrix W , we estimate the model by computing
the vector ψ̂ that minimizes the objective function

G (Y (ψ) , X, W ) = H ′WH,
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where

H (X, Y (ψ)) = h (X) − 1
J

J∑

j=1

h [Yj (ψ)] ,

and Y (ψ) is a matrix containing all of the simulated paths Yj .12

In order to assess the properties of different simulated method of
moments estimators, we repeatedly simulated time series from a fixed MSM
process, and then applied the simulation estimator to each series using
different sets of moment conditions. The moment conditions we used in esti-
mation can be divided into four categories: 1) moments based on the scaling
properties of realized power variations (implemented previously in this
chapter); 2) moments based on the hyperbolic decline of the covariance of
the qth absolute moment of returns Cov(|rt|q, |rt+s|q); 3) higher-frequency
autocovariances, as suggested by Andersen and Sørensen (1996) and an
early version of Lux (2008); and 4) estimated tail statistics of absolute
returns.13 We focused on comparing the ability of each of these sets of
moment conditions to consistently and efficiently estimate the binomial
parameter m0.

Our findings demonstrated that each of the four types of moment condi-
tions are individually informative, giving approximately unbiased estimates
of the binomial parameter m0. Turning to efficiency, moments based on the
hyperbolic decline of the covariogram and the tail index produced lower
root-mean-square errors than estimators based on either power variation
scaling or high-frequency autocovariances. By combining the tail index and
estimates of power law decline from the autocovariograms we obtained
a root-mean-square-error for m0 approximately 50% larger than for the
maximally efficient ML estimator discussed in Chapter 3.14

12
All random draws used to generate the simulations are held constant as ψ varies in

order to obtain a smooth objective function.
13

The power variation moments included the estimated slopes τ̂(q) and SSE for
q ∈ {0.5, 1, 2, 3, 5} from the linear regressions (8.2). For autocovariograms, follow-
ing Proposition 1 in Chapter 3 we regress the log autocovariance ln Cov(|rt|q , |rt+s|q)
against the lag ln(s), and obtain the corresponding slopes and the SSE for the set of
moments q described previously. We similarly estimated the hyperbolic rate of decline d̂q

in the autocovariograms by implementing the log-periodogram regression of Geweke and
Porter-Hudak (1983). Using bias reduction methods such as Andrews and Guggenberger
(2003) did not appreciably affect the results, which is not surprising because the simu-
lated method of moments matches estimated parameters against estimated parameters.
The high-frequency autocovariances we used focused on lags of 1, 2, 4, and 8 days. The
tail index was estimated by linear fit of the empirical cumulative density function, in
logarithms, of the 100 largest absolute returns. The Monte Carlo study used a sample
size of 5,000 and k̄ = 8, normalized σ̄ to 1, and set b = 2.5, m0 = 1.4, γk = 0.386.

14
Given sufficient computing power one can of course match the efficiency of the MLE

estimator using the particle filter described in Chapter 4. In the current chapter we focus
instead on moments that emphasize some of the important economic properties of MSM.
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The availability of multiple types of moments suggests extending the
global tests of fit discussed in the previous subsection. Correspondingly, we
applied the global test (8.3) using tail index and covariogram moments,
with a set of MSM models having k̄ varying from 1 to 10 and parame-
ters taken from the ML estimates for each of the four currency datasets
described in Chapter 3.15 Specifications with a low number of components
k̄ were rejected with high confidence in all datasets, but specifications with
k̄ large were not rejected in three of the four exchange rate series. Thus,
whether evaluated by power variation scaling, declines of autocovariograms,
or tail statistics, the properties of MSM appear consistent with financial
data.

8.4 Discussion

The empirical analysis in this chapter indicates that multifractal moment-
scaling is a prominent feature of many financial series. Over a range of
observational frequencies from approximately two hours to 180 days, and
over a time series spanning 24 years, realized power variations of DM/USD
exchange rate returns grow approximately like a power law in the time
step. We obtain an estimate of the multifractal spectrum by a Legendre
transform of the moments’ growth rates. We simulate the implied process
and confirm that the multifractal model replicates the moment behavior
found in the data. We also demonstrate scaling behavior in an equity index
and five major U.S. stocks.

Beyond our research on moment-scaling in 1997, numerous complemen-
tary studies confirm that multiscaling is exhibited by many financial time
series, focusing on a variety of aspects of the data including power vari-
ations, autocovariograms, and tail distributions (e.g., Pasquini and Serva,
1999, 2000; Richards, 2000; Vandewalle and Ausloos, 1998). In addition, the
literature on power variation, while often having a slightly different empha-
sis, has independently confirmed some of these characteristics of financial
data (e.g., Andersen, Bollerslev, Diebold, and Labys, 2001; Barndorff-
Nielsen and Shephard, 2003). MSM is thus consistent with numerous
important properties of financial returns.

In addition to the method of moments (this chapter) and particle filter
(Chapter 4), MSM also may be estimated using its closed form likelihood
(Chapters 3 and 4). In Part III, we show how MSM can be produc-
tively incorporated into asset pricing frameworks in both discrete and
continuous time.

15
The specific moments used were the slopes and SSE from log covariogram regressions

with q = 1, 2, 4 and two tail statistics, estimated from the largest 100 and 2400 absolute
returns.



9
Multifrequency News and Stock
Returns

In the final part of this book, encompassing Chapters 9 and 10, we
explore the implications of multifrequency risk for the valuation of finan-
cial assets. We assume that fundamentals are subject to multifrequency
risk, and derive the resulting price dynamics in a consumption-based
asset equilibrium framework, as developed in Lucas (1978) and sur-
veyed in Campbell (2003). The multifrequency approach allows us to
apply consumption-based modeling to high-frequency data, and can be
viewed as a first step toward bridging the gap between the macro finance
and financial econometrics literatures. For readers who are not famil-
iar with consumption-based asset pricing, the models presented in this
section provide examples of martingale pricing, in which dividend news
and the stochastic discount factor are driven by components of multiple
frequencies. Other pricing kernels can of course be considered in appli-
cations. The present chapter focuses on the valuation of equity claims
in discrete-time economies, while Chapter 10 examines endogenous jumps
in stock prices in continuous time.

The assumption that fundamentals are subjected to multifrequency risk
seems reasonable given the heterogeneity of the news that drive financial
returns. At short horizons, corporate and macroeconomic announcements
(e.g., MacKinlay, 1997; Andersen, Bollerslev, Diebold, and Vega, 2003),
weather news (Roll, 1984a), and analyst reports (e.g., Womack, 1996)
affect investor forecasts of future cash flows and discount rates, and in turn
the dynamics of daily returns. Equity markets also price lower-frequency
fundamentals such as demographics (Abel, 2003), technological innovation
(Pastor and Veronesi, 2008), and variations in consumption, dividends, and
macroeconomic uncertainty (Bansal and Yaron, 2004; Lettau, Ludvigson,
and Wachter, 2004).1 As has been discussed in Chapter 5, there is also

1
Other examples of financial news operating at different frequencies include the

relatively high-frequency impact of liquidity uncertainty (Gennotte and Leland, 1990),
intermediate contributions from political cycles (Santa-Clara and Valkanov, 2003), and
low-frequency uncertainty regarding exhaustible energy resources.

This chapter is based on an earlier paper: “Multifrequency News and Stock Returns” (with
A. Fisher), Journal of Financial Economics, 86: 178–212, October 2007.



146 9. Multifrequency News and Stock Returns

pervasive evidence of multifractality in weather patterns and other natural
phenomena affecting the economy.

We develop a parsimonious asset pricing equilibrium model with exoge-
nous shocks of heterogeneous durations. A consumer receives an exogenous
consumption stream and prices a flow of dividends with MSM volatil-
ity dynamics.2 The model generates volatility feedback, the property that
upward revisions to anticipated future volatility tend to decrease current
returns. Consistent with a multifrequency perspective, previous research
investigates volatility feedback at a range of different horizons. For example,
French, Schwert, and Stambaugh (1987), Campbell and Hentschel (1992,
hereafter CH), and Wu (2001) assess feedback effects in daily, weekly, and
monthly data, while Pindyck (1984), Poterba and Summers (1986), Bansal
and Yaron (2004), and Lettau, Ludvigson, and Wachter (2004) emphasize
volatility movements at the business cycle range and beyond.3 Intuition
suggests that a multifrequency approach can be useful in this context
since high-frequency volatility shocks can help to capture the dynam-
ics of typical day-to-day variations, while lower-frequency movements
can generate the strong feedback required to fit the most extreme daily
returns.

We estimate the model by maximum likelihood on an index of U.S.
equities over the period 1926 to 2003, and find that using six to
eight volatility frequencies provides significant improvements relative to
lower-dimensional settings. The model improves in-sample on earlier spec-
ifications of single-frequency news arrivals (CH), even though it uses fewer
parameters. The multifrequency equilibrium also generates substantially
larger feedback than previous research. For instance, CH find that feedback
amplifies the volatility of dividend news by only about 1 to 2%, depending
on the sample. With our MSM specification, feedback rises with the num-
ber of components and the likelihood function, increasing to between 20
and 40% for the preferred specifications. Hence, the multifrequency equi-
librium model generates an unconditional feedback that is 10 to 40 times
larger than in previous literature.

2
Following Hamilton (1989), researchers have used regime-switching to help explain

financial phenomena, including stock market volatility, return predictability, the relation
between conditional risk and return, the term structure of interest rates, and the recent
growth of the stock market. Contributions include Abel (1999), Bansal and Zhou (2002),
Cecchetti, Lam, and Mark (1990), David (1997), Hung (1994), Kandel and Stambaugh
(1990), Lettau, Ludvigson, and Wachter (2004), Turner, Startz, and Nelson (1989),
Veronesi (1999, 2000, 2004), Wachter (2006), and Whitelaw (2000).

3
General equilibrium investigation of volatility feedback was pioneered by Barsky

(1989) in a two-period setting and Abel (1988) in the dynamic case. French, Schwert, and
Stambaugh (1987) and CH use GARCH-type processes to show that ex post returns are
negatively affected by positive innovations in volatility. Bekaert and Wu (2000) provide
further support for this hypothesis.
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We next investigate the pricing implications of investor learning about
volatility. We observe that investors may learn quickly about volatility
increases, because a single extreme fluctuation is highly improbable with
low volatility. By contrast, learning about reduced risk takes time because
observations near the mean are a relatively likely outcome regardless of
the true state. Thus, bad news about volatility is incorporated into prices
quickly, while good news is assimilated slowly. As a consequence, informa-
tion quality controls a novel trade-off between endogenous skewness and
kurtosis, and economies with intermediate signal precisions best capture
the higher moments of daily stock returns. These results complement ear-
lier research by Veronesi (2000) on how information quality affects stock
returns. Whereas Veronesi considers learning about the drift in a two-state
Lucas economy, our investors receive signals about an arbitrary number of
dividend volatility components. By incorporating multiple shocks of hetero-
geneous durations, we obtain a structural learning model that is empirically
relevant for higher-frequency daily stock returns.4

We finally extend the multifrequency equilibrium to include long-run con-
sumption risk, as in Bansal and Yaron (2004) and Lettau, Ludvigson, and
Wachter (2004). With a relative risk aversion as low as α = 10, the model
generates a sizeable equity premium while maintaining substantial endoge-
nous feedback. This extension offers a pure regime-switching formulation
of long-run risks in a multifrequency environment.

9.1 An Asset Pricing Model with
Regime-Switching Dividends

This section develops a discrete-time consumption-based equilibrium with
regime shifts in the mean and volatility of dividend growth. The demand
for financial assets is modeled by a utility-maximizing representative agent
who receives and consumes an exogenous income flow, as in Lucas (1978).
The model generates a negative relation between volatility and prices for
all preference parameters.

4
Empirical implementation of learning models tends to focus on lower frequencies.

For example, Veronesi (2004) calibrates to yearly returns and considers horizons ranging
from 20 to 200 years. Lettau, Ludvigson, and Wachter (2004) similarly consider highly
persistent shocks with durations of about three decades. David (1997) and Brennan and
Xia (2001) calibrate to a monthly frequency. Guidolin and Timmermann (2003) develop
estimation and forecasting for a model of learning about the drift on a binomial lattice,
and apply this to pricing options at a weekly frequency. At a monthly frequency, Turner,
Startz, and Nelson (1989) and Kim, Morley, and Nelson (2004) consider learning about
volatility in a two-state specification with feedback effects, where the signals that drive
investor learning are not specified.
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9.1.1 Preferences, Consumption, and Dividends
We consider an exchange economy defined on the regular grid t = 0, 1,
2, . . . ,∞. As in Epstein and Zin (1989) and Weil (1989), the representative
agent has isoelastic recursive utility

Ut =
{

(1 − δ)C
1−α

θ
t + δ[Et(U1−α

t+1 )]
1
θ

} θ
1−α

,

where α is the coefficient of relative risk aversion, ψ is the elasticity
of intertemporal substitution (EIS), and θ = (1 − α)/(1 − ψ−1). When
α = ψ−1, the specification reduces to expected utility.

The agent receives an exogenous consumption stream {Ct}. The log-
consumption ct = lnCt follows a random walk with constant drift and
volatility,

ct − ct−1 = gc + σcεc,t, (9.1)

where the shocks εc,t are i.i.d. standard normal. This standard specifica-
tion is consistent with the empirical evidence that consumption growth
is approximately i.i.d. in postwar U.S. consumption data (e.g., Campbell,
2003). In Section 9.5, we extend the model to allow for small but highly
persistent components in consumption, as in Bansal and Yaron (2004).5

The volatility feedback literature suggests that aggregate stock prices
decrease with the volatility of dividend news. When the stock market is a
claim on aggregate consumption, a negative relation arises in equilibrium
only for specific preferences. For Epstein-Zin-Weil utility, volatility reduces
prices only if θ < 0,6 which necessitates that the EIS and risk aversion
are either both strictly larger than unity (α > 1 and ψ > 1) or both
strictly lower than unity (α < 1 and ψ < 1), as noted by Bansal and
Yaron (2004) and Lettau, Ludvigson, and Wachter (2004). While there is
abundant evidence that α > 1, the empirical validity of the EIS restriction
has not been settled.7

We resolve this ambiguity by (i) separating dividends from consumption,
and (ii) permitting that dividend volatility shocks do not simultaneously

5
Arguments in favor of long-run consumption risks are given by Bansal and Lundblad

(2002), Bansal, Khatchatrian, and Yaron (2005), and Lettau, Ludvigson, and Wachter
(2004).

6
As the Appendix shows, the aggregate consumption claim has a constant price-

dividend ratio Pc that satisfies
Pc

1 + Pc
= δ exp

[
(1 − ψ−1)gc + (1 − α)2σ2

c/(2θ)
]
.

The equilibrium price decreases with volatility if and only if θ < 0.
7
Attanasio and Weber (1993), Vissing-Jørgensen (2002), and Bansal and Yaron

(2004) report estimates of ψ larger than one, while Campbell and Mankiw (1989),
Campbell (2003), and Yogo (2004) find that ψ is small and in many cases statistically
indistinguishable from zero.
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impact consumption. The log-dividend dt = ln Dt follows a random walk
with state-dependent drift and volatility,

dt − dt−1 = μd(Mt) − σ2
d(Mt)

2
+ σd(Mt)εd,t, (9.2)

where εd,t is i.i.d. standard normal and correlated with εc,t. The state Mt

is a first-order Markov vector with k̄ < ∞ elements. We will later assume
that Mt follows an MSM(k̄), but for now the vector Mt is a general Markov
process. The drift μd and volatility σd are deterministic functions of the
state Mt, and the Itô term σ2

d(Mt)/2 guarantees that expected dividend
growth E[Dt/Dt−1|Mt] = eμd(Mt) is controlled only by μd(Mt). We leave
the exact specification of drift and volatility fully general in the rest of this
section.

The model separates stock returns from aggregate consumption growth
and the stochastic discount factor. This common assumption (e.g.,
Campbell, 1996; Campbell and Cochrane, 1999) is consistent with the
imperfect correlation between real consumption growth and real dividend
growth. For instance, Campbell (2003) reports correlation estimates less
than 0.5 in U.S. data, while Bansal and Yaron (2004) report and use in cal-
ibration a value of approximately 0.55. The disconnect between dt and ct is
reasonable because corporate profits account for a small portion of national
income. In U.S. data, corporate profits and personal consumption, respec-
tively, account for approximately 10% and 70% of national income over
the period 1929 to 2002. Consumption and dividend shocks should thus be
correlated but not identical.

9.1.2 Asset Pricing under Complete Information
We begin by assuming that the agent directly observes the true state of
the economy and has the full information set It = {(Cs, Ds, Ms); s ≤ t}.
This assumption holds if agents observe the macroeconomic quantities
determining the state or obtain Mt by engaging in fundamental research.

The stochastic discount factor satisfies

SDFt+1 = δ′
(

Ct+1

Ct

)−α

, (9.3)

where δ′ = δ{E[(Ct+1/Ct)
1−α]} 1

θ −1, as shown in the Appendix. This expres-
sion is proportional to the stochastic discount factor obtained under
expected utility (θ = 1), suggesting that the elasticity of intertemporal
substitution affects the interest rate but not the price of risk.

The interest rate rf = − ln Et(SDFt+1) is constant:

rf = − ln δ + gc/ψ − [α + (α − 1)/ψ]σ2
c/2. (9.4)
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Consistent with earlier research (e.g., Hung, 1994), the equilibrium
price-dividend ratio is controlled by the Markov state: Pt/Dt = Q(Mt).
The gross return on the stock,

Dt+1 + Pt+1

Pt
=

Dt+1

Dt

1 + Q(Mt+1)
Q(Mt)

, (9.5)

satisfies the Euler equation

δ′
E

[(
Ct+1

Ct

)−α
Dt+1

Dt

1 + Q(Mt+1)
Q(Mt)

∣∣∣∣∣ It

]
= 1.

The price-dividend ratio therefore solves the fixed-point equation

Q(Mt) = Et

{
[1 + Q(Mt+1)]eμd(Mt+1)−rf −αρc,dσcσd(Mt+1)

}
, (9.6)

where ρc,d ≡ Corr(εc,t, εd,t) > 0 denotes the constant correlation between
the Gaussian noises in consumption and dividends. When the volatility
{σd(Mt)} is persistent, a large standard deviation of dividend growth at
a given date t implies a low contemporaneous price-dividend ratio.8 High
volatility therefore feeds into low asset prices for any choices of the relative
risk aversion α and the EIS ψ.

When the Markov vector Mt takes a finite number of values m1, . . . , md,
the equilibrium price-dividend ratio can be computed numerically for
every state Q(m1), . . . , Q(md) by solving the fixed-point equation (9.6).
Econometric inference is straightforward. While the investor observes the
true state Mt, we assume as in Campbell and Hentschel (1992) that the
econometrician observes only excess returns and thus has the smaller
information set Rt = {rs}t

s=1 . By (9.5), the log excess return rt+1 ≡
ln((Dt+1 + Pt+1)/Pt) − rf is determined by the price-dividend ratio and
the realization of dividend growth:

rt+1 = ln
1 + Q(Mt+1)

Q(Mt)
+ μd(Mt+1) − rf − σ2

d(Mt+1)
2

+ σd(Mt+1)εd,t+1.

(9.7)

The likelihood function L(r1, . . . , rT ) has the closed-form expression given
in the Appendix.

8
Forward iteration implies Q(Mt) = Et

∑+∞
n=1[Πn

h=1eμd(Mt+h)−rf −αρc,dσcσd(Mt+h)].
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9.2 Volatility Feedback with Multifrequency
Shocks

We now apply the above equilibrium to the case of multifrequency dividend
news.

9.2.1 Multifrequency Dividend News
We assume that the volatility of dividend news follows a binomial MSM
process (m0, σ̄d, b, γk̄), as in Chapter 3. That is, given a state vector Mt =
(M1,t; M2,t; . . . ; Mk̄,t) ∈ R

k̄
+, volatility is specified by

σd(Mt) ≡ σ̄d

⎛

⎝
k̄∏

k=1

Mk,t

⎞

⎠
1/2

, (9.8)

where σ̄d > 0 is constant. The components Mk,t take two possible values,
m0 ∈ [1, 2] and 2 − m0 ∈ [0, 1], with equal probability, and the transition

probabilities γk are parameterized by γk = 1 − (1 − γk̄)(bk−k̄) . Consistent
with empirical evidence, the first component may have transitions measured
in years or even decades, corresponding to low-frequency shocks to tech-
nology or demographics. Medium-run components might represent business
cycle fluctuations, and high-frequency components may capture liquidity
or other transient effects. We need not specify the source of these fluctu-
ations in advance. As in earlier chapters, the number of components and
their frequencies will be inferred directly from returns.

Following earlier research (e.g., CH), we initially restrict the dividend
growth rate to be constant:

μd(Mt) ≡ μ̄d.

We later extend the empirical implementation to include a state-dependent
drift in dividend news.

The MSM volatility specification has a number of appealing properties in
the context of equity modeling. Low-frequency multipliers deliver persistent
and discrete switches, consistent with evidence of apparent nonstationarity
in stock returns (e.g., Schwert, 1989; Pagan and Schwert, 1990). High-
frequency multipliers give additional outliers through their direct effect on
the tails of the dividend news process. Furthermore, multiplicative inter-
action implies that total volatility can quickly switch from an extreme
to a normal level, as has been observed in equity data (e.g., Schwert,
1990a). We expect that these features of MSM will help to fit U.S. stock
returns over a long time span as well as to generate substantial volatility
feedback.
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9.2.2 Equilibrium Stock Returns
We combine the general regime-switching economy in Section 9.1 with the
MSM specification for dividend news. Equilibrium excess returns on the
stock satisfy

rt+1 = ln
1 + Q(Mt+1)

Q(Mt)
+ μ̄d − rf − σ2

d(Mt+1)
2

+ σd(Mt+1)εd,t+1. (9.9)

Volatility feedback appears through the term ln([1 + Q(Mt+1)]/Q(Mt)).
Intuitively, an increase in a volatility component causes a decrease in the
price-dividend ratio, which leads to a low realized return. In the Appendix,
we use a loglinearized return equation to confirm this logic and show that (i)
the magnitude of the feedback due to a shift in an individual component
is approximately proportional to the inverse of the persistence level γk;
(ii) the conditional return increases with the magnitude of the volatility
components. Thus, lower-frequency components drive the conditional mean
and can induce large feedback effects.

The structural model implies tight specifications for consumption, divi-
dends, the riskless interest rate (9.4), the price-dividend ratio (9.6), and
excess stock returns (9.9). The economy is specified by preferences (α, δ, ψ),
consumption (gc, σc), dividends (m0, γk̄, b, μ̄d, σ̄d), and the correlation ρc,d.

The variables gc, ψ, and δ appear only in the interest rate equation.
For any desired values of gc, ψ, and the other parameters (α and σc), we
can choose δ to match an arbitrary fixed interest rate. Without loss of
generality, we therefore calibrate the interest rate to its long-run value r̄f .
In this chapter, the implied δ always takes annualized values in the 0.96 to
0.995 range, which seems reasonable.

Following the literature, we calibrate the mean price-dividend ratio to a
plausible long-run value

E [Q(Mt)] = Q̄, (9.10)

where Q̄ is obtained from aggregate dividend data. Since E [Q(Mt)]
monotonically decreases in ασcρc,d, the restriction on the average price-
dividend ratio identifies ασcρc,d, conditional on the values of the five
dividend parameters. By taking values of σc and ρc,d from consumption
and dividend data, we can then infer an implied value for the risk aversion
coefficient α. Given our standard setup, we anticipate that matching the
equity premium in long-run data will require relatively large risk aversion,
as suggested by Hansen and Jagannathan (1991). To demonstrate that our
base results are robust to lower values of α, we conclude this chapter with
an extension that adds long-run consumption risk.
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Given calibrated values of the risk-free rate and the average price-
dividend ratio, excess stock returns are specified by

(m0, γk̄, b, μ̄d, σ̄d) ∈ R
5.

The parameters μ̄d and σ̄d are important variables in any consumption-
based asset pricing model, while m0, γk̄, and b are specific to the MSM
specification. We calibrate μ̄d and σ̄d to commonly used values derived
from aggregate dividend data, and we estimate the MSM parameters by
maximizing the likelihood of daily excess returns.

This approach is motivated by the relative advantages of dividends ver-
sus stock returns in estimating parameters of the news process. We want
the estimated model to be consistent with reasonable values for the long-
run mean and standard deviation of dividend growth, and this is easily
accomplished by directly calibrating the parameters μ̄d and σ̄d to observed
dividends. On the other hand, the dynamics of news volatility may be bet-
ter reflected in stock prices than in dividends themselves. We therefore infer
m0, γk̄, and b from stock return data.

Unlike the existing literature, the MSM setup can accommodate an arbi-
trarily large number of volatility frequencies while retaining a small and
constant number of parameters. This allows us to estimate a fully specified
structural model of volatility feedback at a daily observation frequency.

9.3 Empirical Results with Fully Informed
Investors

9.3.1 Excess Return Data
We estimate the multifrequency equilibrium model on the daily excess
returns of a U.S. equity index from January 1926 to December 2003. As in
CH, we combine the Schwert (1990b) daily index from 1926 to 1963 with
CRSP value-weighted returns from 1963 onward, and we subtract a daily
risk-free rate imputed from 30-day Treasury bills. The entire period con-
tains 20,765 observations (“full sample”). We also report results for the
period beginning in 1952, which corresponds to a change in interest rate
regime with the Fed-Treasury Accord. This latter sample contains 13,109
observations (“postwar sample”).

Figure 9.1 depicts the data, demonstrating the thick tails, low-frequency
cycles, and negative skewness that are widely recognized characteristics of
aggregate stock returns. To further indicate how conditions change across
different periods over the long span of the data, Table 9.1 reports moments
of the excess return series for four evenly spaced subperiods of each sample.
These vary substantially, consistent with Schwert (1989) and Pagan and
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FIGURE 9.1. Daily Excess Returns on U.S. Aggregate Equity. This figure
shows daily excess returns on U.S. aggregate equity from 1926 to 2003. The
market return series splices the Schwert (1990a) data from 1926–1963 with the
CRSP value-weighted index from 1963–2003. The risk-free rate is proxied by
the return on 30-day U.S. Treasury bills.

TABLE 9.1. Excess Return Moments

Sample
Moment

By Subperiod

1 2 3 4

A. Full Sample: 1926–2003
Mean 0.022 0.010 0.043 0.013 0.024
Standard deviation 1.10 1.64 0.76 0.77 1.00
Skewness −0.30 0.09 0.96 0.07 −1.55
Kurtosis 20.5 11.5 11.4 5.79 32.2

B. Postwar: 1952–2003
Mean 0.023 0.044 −0.004 0.021 0.030
Standard deviation 0.86 0.67 0.77 0.93 1.02
Skewness −1.05 −0.70 0.13 −2.83 −0.21
Kurtosis 26.5 13.3 5.76 59.8 7.18

Notes: This table reports statistics of the first four moments of daily excess returns on
U.S. aggregate equity for the full sample (1926–2003, Panel A) and the postwar sample
(1952–2003, Panel B). Each panel also shows the value of the statistics in four evenly
spaced subsamples. All four moments show considerable variability across subsamples.

Schwert (1990). The data therefore contain high-frequency variations as
well as substantial movements at low frequencies.

9.3.2 Maximum Likelihood Estimation and Volatility
Feedback

We begin by investigating the model under a single set of calibrated values.
We choose the average price-dividend ratio Q̄ = 25, similar to the long-run
estimates reported by Campbell (2003) and Fama and French (2002). For
the standard deviation of real dividend growth, we initially set σ̄d = 0.70%
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per day (about 11% per year), in the middle of the range of U.S. historical
estimates9 and also close to values used in earlier literature (e.g., Campbell
and Cochrane, 1999; Bansal and Yaron, 2004). To acknowledge the uncer-
tainty surrounding σ̄d and the importance of this parameter, we examine σ̄d

closely in subsequent sensitivity analysis, using values ranging from 7.75 to
12.4% annually. Finally, we choose μ̄d to approximate the long-run average
dividend growth rate and give a reasonable equity premium. The initial
calibration sets μ̄d − rf to 0.5 basis points (bp) per day, or about 1.2% per
year. Given an annual risk-free rate of 1%, this implies μ̄d = 2.2% per year,
implying an average equity premium of about 4.6% annually. The base cali-
bration thus ensures reasonable values for the real dividend growth mean
and variance, price-dividend ratio, and equity premium.

Table 9.2 reports maximum likelihood (ML) estimation results for the
MSM volatility parameters (m0, γk̄, b), conditional on the calibrated para-
meters. For the full sample in Panel A, and the postwar sample in Panel B,
we consider a range of volatility components k̄ varying from one to eight.
The first row (k̄ = 1) of each panel corresponds to a standard regime-
switching model with only two possible volatility states. Examining the
likelihood as k̄ increases, we see the benefits of a multifrequency specifi-
cation. Moving from one to two volatility components, the log-likelihood
increases by over 3,000 points in the full sample and over 700 points in the
postwar sample. Since this requires adding only one more parameter (from
two to three), the increase in likelihood is large by any standard model selec-
tion criterion.10 Increasing the number of frequencies from two to three
raises the log-likelihood by an additional 1,360 points in the full sample
and 260 points in the postwar sample, but does not increase the number of
parameters. Substantial increases in the likelihood continue, without adding
more parameters, throughout the set of k̄ that we examine. The likelihood
function appears monotonically increasing and concave in k̄, and flattens
markedly by the time we reach the maximum value of k̄ = 8.

We assess significance in the log-likelihood differences using the Vuong
(1989) test and the heteroskedasticity and autocorrelation consistent
(HAC) version proposed in Chapter 3. For each sample and each value
of k̄ ∈ {1, . . . , 7}, we test the hypothesis that the specification has a
higher likelihood than the model with k̄ = 8 components. The statistical

9
Earlier research gives a relatively wide range of estimates for the standard deviation

of U.S. real dividend growth. Campbell (2003) reports a standard deviation of 14.02%
over the 1891 to 1998 period and of 16.80% between 1970 and 1998. Fama and French
(2002) estimate a standard deviation of real dividend growth equal to 5.09% between
1951 and 2000, and 12.37% between 1872 and 2000. Bansal and Yaron (2004) report a
value of 11.49% for the annual 1929 to 1998 series.

10
For example, using the Akaike Information Criterion (AIC) or Bayesian Information

Criterion (BIC), the necessary increase in likelihood to justify one additional parameter
would be less than five points for either sample size.



TABLE 9.2. Combined Calibration/Estimation

Calibrated Estimated Return
Parameters Parameters Moments

k̄ σ̄d μ̄d − rf P/D AEP ασc,d m0 γk̄ b ln L mean s.d. skew kurt FB LDY

(%/d) (%/d) (a) (a) (%/d) (d) (d) (d) (d) (%d) (%d) (d) (d) (%) (a)

A. Full Sample: 1926–2003

1 0.70 0.005 25.0 4.61 0.024 1.774 0.057 — 64820.3 0.019 0.702 −0.038 4.8 0.7 0.1
(0.005) (0.005)

2 0.70 0.005 25.0 4.61 0.026 1.724 0.056 21.30 67860.9 0.019 0.742 −0.063 14.4 12.5 1.6
(0.004) (0.005) (2.10)

3 0.70 0.005 25.0 4.61 0.028 1.703 0.054 4.92 69224.9 0.019 0.755 −0.099 18.7 16.3 1.8
(0.005) (0.005) (0.31)

4 0.70 0.005 25.0 4.61 0.029 1.637 0.087 5.95 69752.3 0.019 0.838 −0.078 233.1 43.3 9.6
(0.006) (0.004) (0.23)

5 0.70 0.005 25.0 4.61 0.028 1.558 0.047 2.54 70066.9 0.019 0.774 −0.099 29.5 22.4 3.7
(0.008) (0.004) (0.08)

6 0.70 0.005 25.0 4.61 0.029 1.523 0.059 2.84 70214.6 0.019 0.837 −0.080 164.8 43.1 12.7
(0.007) (0.007) (0.17)

7 0.70 0.005 25.0 4.61 0.029 1.477 0.058 2.73 70318.1 0.019 0.863 −0.065 298.9 51.8 29.0
(0.007) (0.006) (0.11)

8 0.70 0.005 25.0 4.61 0.028 1.435 0.058 2.19 70355.7 0.019 0.830 −0.072 131.7 40.5 16.9
(0.008) (0.009) (0.11)
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B. Postwar: 1952–2003

1 0.70 0.005 25.0 4.61 0.023 1.645 0.038 — 45028.6 0.019 0.702 −0.025 4.2 0.6 0.1
(0.008) (0.005)

2 0.70 0.005 25.0 4.61 0.024 1.599 0.036 3.91 45730.4 0.019 0.710 −0.046 5.5 2.7 0.4
(0.008) (0.006) (0.55)

3 0.70 0.005 25.0 4.61 0.025 1.527 0.051 5.31 45990.9 0.019 0.731 −0.049 10.4 9.0 2.2
(0.010) (0.008) (0.45)

4 0.70 0.005 25.0 4.61 0.025 1.479 0.037 3.06 46116.0 0.019 0.741 −0.054 13.7 12.0 3.2
(0.009) (0.006) (0.20)

5 0.70 0.005 25.0 4.61 0.025 1.444 0.042 2.45 46183.3 0.019 0.743 −0.058 14.0 12.8 3.6
(0.007) (0.006) (0.12)

6 0.70 0.005 25.0 4.61 0.025 1.390 0.037 2.00 46206.4 0.019 0.739 −0.054 11.2 11.5 3.6
(0.010) (0.006) (0.10)

7 0.70 0.005 25.0 4.61 0.025 1.371 0.053 2.28 46227.0 0.019 0.770 −0.048 43.2 21.0 10.9
(0.012) (0.009) (0.10)

8 0.70 0.005 25.0 4.61 0.026 1.369 0.047 2.15 46241.6 0.019 0.796 −0.049 84.8 29.4 18.2
(0.010) (0.010) (0.13)

Notes: This table shows parameter estimates for the full-information regime-switching model for a number of volatility components k̄
ranging from one to eight. The table holds constant the calibrated dividend volatility σ̄d = 0.7% per day (about 11% per year), excess
dividend growth μ̄d − rf = 0.5 bp per day (about 1.2% per year), and an annual price dividend ratio of 25. For each value of k̄, the
MSM volatility parameters m0, γk̄, and b are then estimated on daily data by maximum likelihood. The optimized value of the likelihood
function is given by ln L. Excess dividend growth and average P/D determine the annual equity premium (AEP), and the constraint on
average P/D identifies the product ασc,d ≡ ασ̄dσcρc,d. The table reports implied statistics for the first four moments of daily returns,
the feedback (FB), and the duration of the lowest-frequency shock in years (LDY). Where a variable depends on time scale or units, it is
noted in parentheses under the variable description using the notation “d” for day and “a” for annual. Asymptotic standard errors for the
estimated parameters are reported in parentheses beneath each reported value, conditional on the values of the calibrated parameters.157
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significance of the preference for the model with k̄ = 8 components is
moderate in the postwar sample and strong in the full sample.

The parameter estimates in Table 9.2 follow reasonable patterns as k̄
varies. In both samples, the multiplier m0 decreases monotonically as com-
ponents are added, as in Chapters 3 and 4. The switching probability γk̄

of the highest-frequency component is fairly stable across specifications,
while the spacing parameter b tends to fall with k̄. These results imply that
the highest-frequency volatility shocks have durations of approximately 15
to 30 days. Adding volatility components tends to tighten the intrafre-
quency spacing b as well as to extend the low-frequency range of volatility
variations.

We report the largest duration in yearly units (LDY) in the next-to-last
column of Table 9.2. For low k̄, LDY tends to be under one year. Under the
preferred specifications with six to eight components, the lowest-frequency
shocks are in the range of 10 to 20 years, a potentially reasonable value for
technology or demographic changes. Since the frequency parameters driving
the LDY statistics are estimated directly through the equilibrium likelihood
function, this finding provides additional support for earlier specifications
emphasizing low-frequency shocks. The estimated durations of LDY are
roughly consistent with the durations assumed by Lettau, Ludvigson, and
Wachter (2004) and suggest that the approximately 2.5-year half-life of
shocks in Bansal and Yaron (2004) may even be somewhat conservative.

Table 9.2 also reports statistics of the first four moments for each speci-
fication. The mean return of approximately 1.9 bp per day is close to the
values of 2.2 in the full sample and 2.3 in the postwar sample, and does
not vary substantially across specifications with different k̄. The volatil-
ity of excess returns tends to increase with k̄. In the postwar sample, the
specifications with large k̄ have standard deviations of 0.8% per day, which
is similar to the empirical value of 0.85%. In the full sample, the uncon-
ditional standard deviation is larger for k̄ = 8 at 0.83% per day, but is
still substantially smaller than the approximately 1.1% in the data. The
model produces moderate negative skewness, but not as much as in the
data, and specifications with large k̄ seem to have high kurtosis relative to
the data. We later use investor learning to endogenously attenuate kurtosis
and enhance negative skewness.

The unconditional volatility feedback

FB =
V ar(rt+1)

V ar(dt+1 − dt)
− 1

is presented in the last column of Table 9.2. Feedback increases as compo-
nents are added: for the best performing models with k̄ ≥ 6, equilibrium
pricing amplifies the variance of dividends by about 40 to 50% in the full
sample and 11 to 30% in the postwar data. These numbers are substantially
higher than the 1 to 2% reported by Campbell and Hentschel (1992).



9.3 Empirical Results with Fully Informed Investors 159

9.3.3 Comparison with Campbell and Hentschel (1992)
The CH specification, described in the Appendix, provides a good compa-
rison for our approach. Table 9.3 reports ML estimation results for the CH
model on both samples. Panel A provides parameter estimates that are
comparable to those found in the original CH study. The implied half-life
of a volatility shock is about six months for both samples, which is again
consistent with CH (1992). As in the original study, feedback contributes
between 1 and 2% of unconditional variance and is thus small relative to
the MSM equilibrium.

Panel B compares the in-sample fit of the CH model to the multi-
frequency specification with k̄ = 8 volatility components. Although the
MSM equilibrium has four fewer free parameters, its likelihood is over 400
points larger in the full sample and almost 200 points larger in the postwar
sample. We adjust for the number of parameters by calculating the Bayesian
Information Criterion statistic for each specification, and we assess signifi-
cance using the Vuong (1989) test and the HAC-adjusted version defined

TABLE 9.3. Comparison with Campbell and Hentschel (1992)

A. CH Parameter Estimates

ω × 107 α1 α2 β b × 103 μ × 104 γ

Full Sample 1.87 0.140 −0.073 0.925 3.05 3.60 0.14
(0.78) (0.01) (0.01) (0.004) (0.18) (0.53) (0.03)

Postwar 0.53 0.145 −0.088 0.934 3.04 3.47 0.47
(0.74) (0.01) (0.01) (0.005) (0.20) (0.57) (0.09)

B. Likelihood Comparison

BIC p-value vs. MSM

Free Vuong HAC
Parameters ln L BIC (1989) Adj

Full Sample MSM 3 70355.7 −6.7749
QGARCH 7 69920.7 −6.7311 < 0.001 < 0.001

Postwar MSM 3 46241.6 −7.0527
QGARCH 7 46057.3 −7.0218 < 0.001 < 0.001

Notes: Panel A shows parameter estimates from the CH volatility feedback model. Panel
B gives a comparison of the in-sample fit versus the multifrequency regime-switching
economy. The Bayesian Information Criterion is given by BIC = T −1(−2 ln L+NP ln T ).
The last two columns in Panel B give p-values from a test that the QGARCH dividend
specification dominates the MSM equilibrium by the BIC criterion. The first value uses
the Vuong (1989) methodology, and the second value adjusts the test for heteroskedas-
ticity and autocorrelation. A low p-value indicates that the CH specification would be
rejected in favor of the MSM equilibrium.



160 9. Multifrequency News and Stock Returns

in Chapter 3. The difference is significant in both samples. MSM equilibria
with k̄ > 4 volatility components have a higher likelihood than CH in the
full sample, and in the postwar sample MSM specifications with k̄ > 3
have a higher likelihood, confirming that the multifrequency equilibrium
generates large feedback effects and performs well in-sample relative to an
important benchmark.

9.3.4 Conditional Inference
In the full-information framework, investors directly observe the volatility
state Mt, but the empiricist makes inferences based only on excess returns
Rt ≡ {rs; s ≤ t}. The Appendix explains how to calculate the filtered
probabilities Π̂j

t ≡ P
(
Mt = mj |Rt

)
as well as the smoothed probabili-

ties Ψ̂j
t ≡ P

(
Mt = mj |RT

)
for j ∈ {1, . . . , 2k̄}. The filtered probabilities

are useful for forecasting, while their smoothed versions allow for the most
informative ex post analysis of the data.

Figure 9.2 displays the corresponding marginals of each component when
k̄ = 8. Let

Π̂M(k)
t ≡ P (Mk,t = m0 |Rt ) and Ψ̂M(k)

t ≡ P (Mk,t = m0 |RT ),

respectively, denote the filtered and smoothed probabilities that volatility
component k ∈ {1, . . . , k̄} is in a high state. Filtered probabilities on the
left side of the figure show sensible patterns. For the lowest frequency k = 1,
the probability rises over time from 0.5 to around 0.75 until the 1987 crash,
at which point it jumps immediately to almost 1.0. The model therefore
attributes a portion of the very large price drop to an increase in low-
frequency volatility. By contrast, when a smaller but still substantial price
decline of about −8% occurs just after 1955, probabilities about the first
k = 1 and second k = 2 components move little, but the third component
k = 3 jumps upward substantially. For low values of k, the conditional
distribution of the volatility state spends considerable time at the extreme
values of zero and one. By contrast, at high frequencies, probabilities move
up and down rapidly, but rarely reach their boundaries. The smoothed
marginals move less frequently but in larger increments, and spend more
time near the boundaries of zero and one.

In Figure 9.3, we use the filtered probabilities to compute the one-step-
ahead conditional mean and variance of returns. As implied by equilibrium
conditions, these are positively correlated, showing small peaks in the early
1970s and high levels in 1987 and around 2000. Recent literature (Ghysels,
Santa-Clara, and Valkanov, 2005; Lundblad, 2007) finds empirical support
for this type of relation.

The asset pricing literature emphasizes that the market discount rate
exhibits small and persistent variations over time, as reviewed in Campbell
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FIGURE 9.2. Conditional Probabilities of Volatility Components. This
figure illustrates the filtered and smoothed probabilities that each volatility com-
ponent k, 1 ≤ k ≤ 8 is in the high state on a given day. Inference is based on
the full-information MSM equilibrium with k̄ = 8 components, and parameters
estimated from the postwar data. The filtered probabilities Πt are in the left-
hand column, and the smoothed probabilites Ψt are in the right-hand column.
Volatility components progress from low (k = 1) to high (k = 8) frequency from
top to bottom of the figure.

(2003). Feedback models focus on cyclical variations in dividend news
volatility as a possible source of these fluctuations. While our multi-
frequency volatility specification permits multiple sources of volatility
fluctuations in accord with economic intuition, one might worry that this
would lead to a conditional mean that is “too variable” or “too jumpy.”
Figure 9.3 shows that this is not in fact the case. The conditional discount
rate moves slowly because it is dominated by the most persistent volatility
components.
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FIGURE 9.3. Ex Ante Conditional Mean and Volatility. This figure shows
the conditional mean and variance of excess returns under the full-information
MSM equilibrium with k̄ = 8 volatility components, and parameters estimated
from postwar data. Conditioning information is the ex ante information set of
returns up to and including date t.

9.3.5 Return Decomposition
We now develop an ex post decomposition of U.S. equity returns. At time
t + 1 or later, the fully informed investor observes the excess return rt+1
and can implement

rt+1 = E (rt+1|Mt) + [E (rt+1|Mt, Mt+1) − E (rt+1|Mt)] + σd(Mt+1)εd,t+1.

This separates the realized return into its expected value at time t, the
innovation due to the volatility feedback, and the multifrequency divi-
dend news.

The empiricist with the smaller information set RT can derive an analo-
gous but less precise decomposition derived in the Appendix. The relation
rt+1 = E (rt+1|RT ) implies

rt+1 = EΨ̂t
rt+1 +

(
EΨ̂t+1

− EΨ̂t

)
rt+1 + êd,t+1, (9.11)

where

êd,t+1 ≡ E[σd(Mt+1)εd,t+1|RT ] (9.12)
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FIGURE 9.4. Ex Post Return Decomposition. This figure shows an ex
post decomposition of realized returns using the full-information MSM equilib-
rium with k̄ = 8 components and parameters estimated on postwar data. The
decomposition uses the smoothed beliefs Ψt obtained by using the conditioning
information set of all returns. The first panel shows actual returns. The second
panel shows the mean return at time t + 1 conditional on the beliefs Ψt. The
third panel shows the estimated amount of returns due to volatility feedback at
time t+1 conditional on all of the data. The final panel is the smoothed estimate
of dividend news, equal to the realized return less the second and third panels.

is the ex post estimate of realized dividend news. By the law of iterated
expectations, êd,t+1 has mean zero.

We implement the ex post decomposition in Figure 9.4. The top panel
illustrates the excess return series {rt}, and the remaining panels show the
three smoothed terms of (9.11), that is the conditional return, volatility
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feedback, and dividend news. The smoothed conditional return in the sec-
ond panel of Figure 9.4 shows small persistent variations, very much like
the ex ante conditional return in Figure 9.3. By contrast, the smoothed
feedback in the third panel appears in intermittent bursts. On most days it
is small, but its occurrences coincide with the most substantial variations
in the series, and on these days it contributes a large portion of realized
returns. These features are consistent with the intuition that low-frequency
volatility changes are infrequent but have a large price impact. This ex post
analysis attributes over half of the 1987 crash to volatility feedback.

In the bottom panel of Figure 9.4, the residual êd,t+1 is the filtered version
of a symmetric MSM process. We calculate its sample moments and find
variance of 0.635, skewness of −0.123, and kurtosis of 8.00. Relative to
the actual return data, the residual variance is approximately 16% smaller,
skewness is 88% smaller, and kurtosis is 79% smaller. These findings suggest
that endogenous volatility feedback plays an important role in explaining
the higher moments of returns in our sample.

9.3.6 Alternative Calibrations
We now examine the robustness of the results to alternative calibrations
of the main economic parameters. Specifically, we explore different val-
ues of the calibrated mean μ̄d and standard deviation σ̄d of dividend
growth and of the average price-dividend ratio Q̄. For each alterna-
tive calibration, we reestimate the volatility parameters (m0, γk̄, b) of the
MSM equilibrium with k̄ = 8 components using the constrained likelihood
function.

We also assess how likely each model is to generate return moments
similar to the data. For each specification, we simulate 1,000 paths of the
same length as the data and calculate the fraction of paths for which a given
statistic (mean, variance, skewness, kurtosis) exceeds the corresponding
empirical moment.

The results of the estimations and simulated p-values are reported in
Table 9.4. The first four rows in each panel hold σ̄d constant at 0.7% per day,
but allow for varying combinations of Q̄ ∈ {25, 30} and μ̄d−rf ∈ {0.5, 1.0}
bp per day, or 1.2% and 2.4% on an annual basis. Increasing the price-
dividend ratio Q̄ leads to a lower equity premium (through the Gordon
growth formula), which decreases feedback. To partially compensate, the
estimates of m0 and b increase slightly, implying somewhat larger and more
persistent volatility shocks. Overall, the effect of the lower equity premium
dominates, and the feedback measure FB declines as the average price-
dividend ratio increases. Similarly, raising the dividend growth rate μ̄d

augments the equity premium and the magnitude of price shocks. The
parameters m0 and b decrease to partially compensate, and the net effect on
feedback is positive. The likelihood tends to increase with μ̄d and decrease
with Q̄, and thus favors specifications with a larger feedback.
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The final three rows in each panel hold μ̄d and Q̄ constant at their original
values and allow dividend volatility σ̄d to increase to 0.8% per day (approx-
imately 12.4% annually) or to decrease to 0.6 or 0.5% per day (9.3 and 7.7%
annually). These changes in dividend volatility have a considerable impact.
When σ̄d is low, the model needs to generate large feedback in order to bet-
ter approximate the volatility of excess stock returns. Generally, this tends
to favor larger and more persistent volatility shocks. In the full sample, the
model with σ̄d = 0.5 generates extremely large kurtosis (1,481) and very
persistent shocks (LDY = 160 years); the estimated feedback is over 150%.
Larger values of σ̄d generate more moderate feedback in the range of 30 to
50%, and have substantially higher likelihood. In the postwar period, for
which average return volatility is not as high, the model better accommo-
dates low values of σ̄d. The highest likelihood in the postwar data occurs
in the base case in which σ̄d = 0.7.

The simulated p-values show that the model captures well the mean
return. The empirical skewness is more negative than expected under the
model, but typically within the range of values that can be generated with
our sample sizes. In the postwar period, the return volatility is lower than
implied by the model, but the p-values are not significant. In the full sam-
ple, the p-values for the second moment are significant at the 5% level.
All of the full-sample specifications and some of the postwar specifications
have significant p-values for a kurtosis that is too large. In summary, large
feedback effects are robust across different calibrations, but kurtosis can
become excessive when dividend volatility is very low. In the next section,
we maintain the symmetric MSM dividend process and show that learn-
ing about stochastic volatility can be a powerful method to endogenously
amplify negative skewness and reduce kurtosis.

9.4 Learning about Volatility and Endogenous
Skewness

Financial economists have long considered that investors observe only noisy
signals about fundamentals, and a large literature has investigated how
Bayesian learning about future cash flows and discount rates can affect
asset prices and other equilibrium outcomes (e.g., Brennan, 1998; Brennan
and Xia, 2001; David, 1997; Guidolin and Timmermann, 2003; Pastor and
Veronesi, 2008; Timmermann, 1993, 1996; Veronesi, 1999, 2000, 2004). Fol-
lowing this tradition, we assume in this section that investors receive only
imperfect signals about the volatility state vector Mt. Signal quality con-
trols a trade-off between endogenous skewness and kurtosis: as information
quality deteriorates, returns exhibit less kurtosis and more negative skew-
ness. We show that (i) the size of the volatility feedback effect is not highly
sensitive to the learning environment, and (ii) intermediate information
levels best capture the higher moments of stock returns.



TABLE 9.4. Alternative Calibrations

Calibrated Estimated Return
Parameters Parameters Moments

σ̄d μ̄d − rf P/D AEP ασc,d m0 γk̄ b ln L mean s.d. skew kurt FB LDY

(%/d) (%/d) (a) (a) (%/d) (d) (d) (d) (d) (%/d) (%/d) (d) (d) (%) (a)

A. Full Sample: 1926–2003

0.70 0.005 25.0 4.61 0.028 1.435 0.058 2.19 70355.7 0.019 0.830 −0.072 131.7 40.5 16.9
(0.008) (0.009) (0.11) (0.755) (0.991) (0.368) (0.003)

0.70 0.005 30.0 3.95 0.024 1.438 0.057 2.24 70347.0 0.016 0.818 −0.070 138.3 36.5 20.0
(0.008) (0.008) (0.09) (0.893) (0.991) (0.386) (0.005)

0.70 0.010 25.0 5.81 0.034 1.430 0.061 2.12 70365.3 0.024 0.866 −0.073 150.9 53.0 12.7
(0.008) (0.003) (0.04) (0.349) (0.992) (0.368) (0.000)

0.70 0.010 30.0 5.15 0.031 1.432 0.059 2.14 70359.5 0.021 0.855 −0.072 158.0 49.1 14.2
(0.007) (0.007) (0.08) (0.578) (0.985) (0.387) (0.000)

0.80 0.005 25.0 4.43 0.027 1.422 0.059 2.24 70378.6 0.018 0.913 −0.069 96.4 30.2 19.2
(0.008) (0.009) (0.10) (0.765) (0.907) (0.355) (0.010)

0.60 0.005 25.0 4.77 0.030 1.475 0.066 2.73 70339.6 0.020 0.822 −0.055 695.2 87.6 68.9
(0.006) (0.008) (0.13) (0.718) (0.927) (0.441) (0.000)

0.50 0.005 25.0 4.90 0.032 1.514 0.085 3.23 70261.8 0.020 0.786 −0.042 1481.0 247.2 170.8
(0.006) (0.009) (0.16) (0.642) (0.920) (0.483) (0.000)
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B. Postwar: 1952–2003

0.70 0.005 25.0 4.61 0.026 1.369 0.047 2.15 46241.6 0.019 0.796 −0.049 84.8 29.4 18.2
(0.010) (0.010) (0.13) (0.754) (0.717) (0.185) (0.071)

0.70 0.005 30.0 3.95 0.023 1.371 0.045 2.19 46235.6 0.016 0.787 −0.047 87.9 26.5 21.6
(0.010) (0.008) (0.10) (0.881) (0.742) (0.236) (0.132)

0.70 0.010 25.0 5.81 0.032 1.365 0.049 2.07 46249.0 0.024 0.824 −0.052 99.5 38.5 13.4
(0.010) (0.010) (0.12) (0.420) (0.602) (0.195) (0.043)

0.70 0.010 30.0 5.15 0.029 1.367 0.047 2.10 46245.1 0.021 0.816 −0.051 104.8 35.8 15.2
(0.010) (0.012) (0.16) (0.591) (0.647) (0.200) (0.045)

0.80 0.005 25.0 4.43 0.025 1.337 0.064 2.07 46237.3 0.018 0.854 −0.047 21.5 13.9 10.3
(0.012) (0.014) (0.10) (0.739) (0.558) (0.001) (0.719)

0.60 0.005 25.0 4.77 0.026 1.372 0.057 2.25 46231.4 0.020 0.713 −0.047 154.0 41.4 20.8
(0.012) (0.006) (0.07) (0.743) (0.885) (0.266) (0.039)

0.50 0.005 25.0 4.90 0.027 1.405 0.048 2.49 46217.0 0.020 0.686 −0.037 593.9 88.1 49.8
(0.010) (0.008) (0.14) (0.722) (0.889) (0.377) (0.007)

Notes: This table shows parameter estimates conditional on alternative calibrations of the structural parameters in the MSM equilibrium. All
estimated economies use k̄ = 8 components. The first group of four rows in each panel holds constant average dividend volatility σ̄d = 0.7% per
day (about 11% per year) and considers combinations of excess dividend growth μ̄d −rf ∈ {0.5, 1.0} bp per day (about 1.2% or 2.4% per year) and
annual average P/D ratio Q̄ ∈ {25, 30}. For each combination of calibrated values, the MSM volatility parameters m0, γk̄, and b are reestimated
on daily data by maximum likelihood. The optimized value of the likelihood function is given by ln L. Excess dividend growth and average P/D
determine the annual equity premium (AEP), and the constraint on average P/D identifies the product ασc,d ≡ ασ̄dσcρc,d. The table reports
implied statistics for the first four moments of daily returns, the feedback (FB), and the duration of the lowest-frequency shock in years (LDY).
When a variable depends on time scale or units, it is noted in parentheses under the variable description using the notation “d” for day and “a”
for annual. Asymptotic standard errors for the estimated parameters are reported in parentheses beneath each reported value, conditional on the
values of the calibrated parameters. The second grouping of three rows in each panel holds μ̄d − rf and average P/D constant at their original
values, and considers alternative values of dividend growth volatility σ̄d ∈ {0.5, 0.6, 0.8}% per day, or approximately 7.7, 9.3, and 12.4% annually.167
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9.4.1 Investor Information and Stock Returns
Each period investors observe consumption, dividends, and noisy observa-
tions of the volatility components

δt = Mt + σδzt, (9.13)

where σδ is a nonnegative scalar and zt ∈ R
k̄ is an i.i.d. vector of indepen-

dent standard normals. This specification nests the full information case
(σδ = 0). The information set It = {(Ct′ , Dt′ , δt′); t′ ≤ t} generates a con-
ditional probability distribution Πt over the volatility states {m1, . . . , md},
which can be computed recursively.

The stochastic discount factor depends only on consumption and is thus
the same as in the full information economy. The price-dividend ratio

Q(Πt) = E

[ ∞∑

i=1

δ′i
(

Ct+i

Ct

)−α
Dt+i

Dt

∣∣∣∣∣ It

]
(9.14)

is the conditional expectation of exogenous variables driven by the first-
order Markov state Mt. We infer that it is linear in the current belief11

Q(Πt) = E [Q(Mt)| It] =
d∑

j=1

Q(mj)Πj
t , (9.15)

where Q(mj) is the price-dividend ratio computed under full information.
The setup is highly tractable because prices are a belief-weighted average
of state prices from the full information model.

The excess return is determined by the volatility state and investor belief:

rt+1 = ln
1 + Q(Πt+1)

Q(Πt)
+ μ̄d − rf − σ2

d(Mt+1)
2

+ σd(Mt+1)εd,t+1. (9.16)

When a new state occurs, investors may learn of it gradually and gene-
rate less extreme returns than in the full-information economy. Simulating
the return process with learning is straightforward, as discussed in the
Appendix.

The equilibrium impact of signal variability σδ is conveniently analyzed
from (9.15) for fixed values of the other structural parameters. The price-
dividend ratio is the filtered version of its full-information counterpart,
which implies equality of the means: E [Q(Πt)] = E [Q(Mt)]. Information

11
In a representative agent economy with Epstein-Zin-Weil utility, the price-dividend

ratio is linear in beliefs if dividend growth is driven by a Markov state, and consumption
growth is a separate i.i.d. process.
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quality therefore has essentially no effect on the equity premium. The
variance satisfies the orthogonality condition V ar[Q(Mt)] = V ar [Q(Πt)]+
E{[Q(Πt) − Q(Mt)]2}. This equation is the analog of the variance bounds
considered by LeRoy and Porter (1981) and Shiller (1981). In our frame-
work, we expect the difference in variances to be small: the variance of
the price-dividend ratio is dominated by changes in the most persistent
components. Since learning about these changes is rare and transitory, the
difference Q(Πt) − Q(Mt) is likely to be modest most of the time. This
suggests that the variances of the price-dividend ratio and returns should
be relatively insensitive to information quality.

The linearity property (9.15) implies that this model does not contain
the “uncertainty channel” previously considered in the learning literature
(e.g., Veronesi, 1999; Lettau, Ludvigson, and Wachter, 2004). In these
models, signals are informative about both future dividend news and
future marginal rates of substitution, which generates a higher sensitiv-
ity of returns about bad news in good times than about good news in
bad times. Our model illustrates that even in the absence of such effects,
learning about stochastic volatility can be a powerful source of endogenous
skewness.

9.4.2 Learning Model Results
Despite the simplicity of the pricing and updating rules, econometric
inference is computationally expensive in the imperfect information
equilibrium. The state consists of the volatility vector Mt+1 and the
investor belief Πt+1. Since the econometrician observes only excess returns,
evaluating the likelihood of the data would require integrating over the con-
ditional distribution of the state (Πt, Mt). When k̄ = 8, this would entail
estimating a distribution defined on R

256 × {m1, . . . , m256}.
Instead we use a simulation-based approach and focus on the two base

specifications with k̄ = 8 frequencies considered previously. Specifically,
we assign the daily values μ̄d − rf = 0.5 bp and σ̄d = 0.70%, and we set
the parameters (m0, γk̄, b) to the full-information ML estimates reported
in Table 9.2. Consistent with the empirical estimates and calibration in
Bansal and Yaron (2004), we choose ρc,d = 0.6. Unreported robustness che-
cks show that the learning results are not highly sensitive to the choice of
ρc,d over a wide range.

To evaluate the impact of information quality, we consider signal volatil-
ities σδ ∈ {0, .1, . . . , 1, 1.25, . . . 2, 3, 4, 5, 10, 15, 20}. For each value, we
simulate a single long sample of excess returns and calculate the first four
moments of returns as well as the feedback using the same set of ran-
dom draws. We report a subset of the results in Table 9.5. For simplicity,
we focus our discussion on the postwar period. In Panel B, the average
mean return is equal to 1.93 bp per day for all values of the signal preci-
sion. The simulated means and standard deviations are nearly invariant to
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TABLE 9.5. Moments of the Learning Model

Signal Standard Deviation σδ

0 0.2 0.5 1 1.5 2

A. Full Sample: 1926–2003

E[rt] 0.0195 0.0195 0.0195 0.0195 0.0195 0.0195
V ar[rt]1/2 0.825 0.825 0.824 0.825 0.825 0.824
Skew[rt] −0.069 −0.127 −0.509 −0.926 −1.076 −1.181
Kurt[rt] 133.2 99.2 42.6 22.9 17.5 15.5
Feedback 38.9 38.9 38.7 38.8 38.8 38.6

B. Postwar: 1952–2003

E[rt] 0.0193 0.0193 0.0193 0.0193 0.0193 0.0193
V ar[rt]1/2 0.796 0.796 0.796 0.796 0.796 0.796
Skew[rt] −0.054 −0.097 −0.441 −0.804 −0.958 −1.06
Kurt[rt] 83.4 54.1 23.5 13.8 11.5 10.7
Feedback 29.4 29.4 29.4 29.1 29.2 29.2

Notes: This table shows the effect of learning on different moments of the data. For
each panel, the base parameters m0, σ̄d, μ̄d −r, γk̄, are taken from the estimates in Table
9.2 for the specification with k̄ = 8 components. These values, as well as the calibrated
value ρc,d = 0.6, are held constant across all simulations. Columns vary only by the
value of the reported signal standard deviation σδ . Investors have full information when
σδ = 0, and as σδ increases the signal precision weakens. For each specification, we
simulate a single long series of T = 107 returns using the same set of random draws,
and report moments of the simulated data. Mean, variance, and feedback are nearly
constant across simulations. Skewness becomes more negative, and kurtosis declines as
information quality deteriorates.

information quality, as previously anticipated. Hence, volatility feedback is
robust across different learning environments.

We do, however, find large and systematic differences in skewness and
kurtosis as signal precision varies. Skewness is close to zero at about −0.05
when σδ = 0, falling to −0.44 when σδ = 0.5 and to −1.06 when σδ = 2.
Returns become more negatively skewed as investor information becomes
less precise. Kurtosis takes its highest value of about 83 when investor
information is perfect. With a value of σδ = 0.5, kurtosis drops to 24, and
when σδ = 2, it falls to 11. The numerical simulations therefore confirm the
trade-off between skewness and kurtosis. With full information, kurtosis is
large but skewness is close to zero. As the quality of investor information
deteriorates, returns become more negatively skewed and kurtosis falls as
well. Figure 9.5 depicts the trade-off between skewness and kurtosis. Inter-
mediate information qualities approximately in the range σδ ∈ [0.5, 1.0]
seem most consistent with the data.

To understand these results, consider the role played by dividend growth
in investor updating. When information is perfect, dividend growth is
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FIGURE 9.5. Skewness and Kurtosis of Daily Returns in the Learning
Model. This figure shows skewness and kurtosis for different information envi-
ronments in the simulated learning model. For each curve, the base parameters
m0, σ̄d, μ̄d − r, γk̄, are taken from the estimates in Table 9.2 for the specification
with k̄ = 8 components. These values, as well as ρc,d = 0.6, are held constant
across all simulations. Each simulation is then based on a different value of the
signal standard deviation σδ ∈ {0, 0.1, . . . , 1, 1.25, . . . , 2, 3, 4, 5}. Investors have
full information when σδ = 0, and as σδ increases the signal precision weakens.
For each economy, we simulate a single long series of T = 107 returns using the
same set of random draws. Each marked point on the plot represents a different
simulation, progressing from σδ = 0 in the top left to σδ = 5 in the bottom right.

irrelevant to investor beliefs. Investors find out immediately and fully
incorporate the impact of any changes into prices. The speed of learn-
ing is independent of the direction of the volatility change, and returns are
approximately symmetric. Kurtosis is high and skewness is close to zero.

At the other extreme, when σδ is arbitrarily large, the corresponding sig-
nals are not useful. Investors then rely on dividend news to infer the latent
state. If volatility increases, investors may observe a single extreme realiza-
tion of the signal that is implausible under their existing beliefs. In this case
beliefs quickly revise upward. On the other hand, a volatility decrease (good
news) can only be revealed slowly. This is because investors learn about
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low volatility by observing dividend growth close to its mean, but this is a
relatively likely outcome regardless of the volatility level. Thus, bad news
about increased volatility can be incorporated into price quickly, while good
news about low volatility trickles out slowly. This asymmetry explains why
skewness increases and kurtosis falls as information quality deteriorates.

To further illustrate the effect of information quality, Figure 9.6 displays
four simulations with length T = 20,000 of the learning economy with
different signal precisions. From top to bottom, σδ = 0 corresponds to full
information, σδ = 0.5 and σδ = 1.0 to two intermediate values, and σδ = 20
to nearly uninformative signals. All simulations use identical sets of random
draws to facilitate comparison. With perfect information, large and sym-
metric feedback generates substantial outliers of both signs. As information
quality decreases, gradual learning causes feedback to be spread out across
multiple days, and fewer extreme returns occur. The attenuation is stronger
for positive returns, and skewness becomes more pronounced with σδ. When
σδ = 20, this effect is so extreme that no large positive returns occur in the
simulation. The intermediate cases in which σδ = 0.5 and σδ = 1.0 appear
most consistent with daily stock returns.

9.5 Preference Implications and Extension to
Multifrequency Consumption Risk

In this section we discuss the role of the preference parameters in the
previous empirical results. We also examine the robustness of volatility
feedback to alternative specifications of consumption and dividend drift.

As discussed in Section 9.2, the preference parameters of our model can
be chosen to match the average return on the bond and the stock. Calib-
rating to the long-run price-dividend ratio Q̄ implies a unique value for
ασc,d ≡ ασcσ̄dρc,d, which is equal to 2.8 bp per day in the base postwar
example reported in Table 9.2. As in the learning section, we additionally
specify ρc,d = 0.6. We calibrate aggregate consumption to U.S. values and
use gc = 1.8% and σc = 2.93% per year. Given these specifications, we
can infer that our base examples imply risk aversion of about α ≈ 35. If
the elasticity of intertemporal substitution (EIS) is set equal to ψ = 1, the
discount rate δ = 97.8% per year then matches the interest rate rf = 1%.

The results in Section 9.3 therefore imply reasonable levels of the EIS
and subjective discount rate, but large relative risk aversion. Previous
calibrations in the literature use α in this range (e.g., Lettau, Ludvig-
son, and Wachter use a value of 40). Nonetheless, we would like to
better understand the importance of risk aversion for volatility feedback
in our framework. The loglinear approximation derived in the Appendix
shows that α controls both the magnitude of the equity premium and the
price impact of volatility changes. In order to achieve a reasonable equity
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FIGURE 9.6. Simulations of Daily Excess Returns in the Learning
Model. This figure shows learning economy simulations with length T = 20, 000.
All simulations are based on the base parameters estimated from the full sam-
ple with k̄ = 8 components: m0 = 1.435, σ̄d = 0.70% per day, μ̄ − rf = 0.5 bp
per day, γk̄ = 0.058, and b = 2.19. All simulations also use the identical set of
random draws for dividends, signal noises, and multipliers. The only value that
changes across the panels is the signal variability parameter, σδ. The top panel
where σδ = 0 corresponds to full investor information; the middle two panels
show intermediate signal precision; and in the final panel information quality
is poor. Noise in the investor signals attenuates extreme feedback realizations,
but attenuation is stronger for positive than negative realizations. This gener-
ates increasingly negative skewness and reduces kurtosis as information quality
deteriorates.
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premium using a lower risk aversion, we need an additional source of risk
in stock returns.

Small but persistent variations in the drift and volatility of consumption
have been empirically documented by Bansal and Lundblad (2002), Bansal,
Khatchatrian, and Yaron (2005), and Lettau, Ludvigson, and Wachter
(2004). Bansal and Yaron (2004) demonstrate that these variations help
to solve the equity premium puzzle. They calibrate a model in which an
autoregressive state with a half-life of about 2.5 years drives the drift and
volatility of consumption. Lettau, Ludvigson, and Wachter estimate a four-
state regime-switching model in which the good state has a duration of over
30 years.

This earlier research motivates the following extension of our asset pricing
model. Consumption growth exhibits regime shifts in drift and volatility:

ct − ct−1 = gc(M ′
t) + σc(M ′

t)εc,t,

where {εc,t} is i.i.d. N (0, 1) and M ′
t ∈ R

�̄
+ is a multifrequency state vector

with 
̄ components. Each component of the state M ′
t takes the values mc0 >

1 and 2 − mc0 with equal probability. Drift and volatility are specified by

gc(M ′
t) ≡ ḡc − λc

�̄∑

k=1

(M ′
k,t − 1)

σc(M ′
t) ≡ σc(M ′

1,t...M
′
�̄,t)

1/2.

Consumption volatility is the product of the components M ′
k,t, as in the

dividend news process. We define the drift, on the other hand, as the sum
of the state components, which permits a symmetric distribution around
ḡc. Similarly, the dividend growth process (9.2) exhibits regime switches in
drift

μd(Mt) = μ̄d − λd

k̄∑

k=1

(Mk,t − 1),

as well as the usual MSM volatility (9.8).
The extended specification allows us to capture the variations in macro-

economic risk that have been documented at various frequencies in the lit-
erature. When λc > 0, a high M ′

k,t implies both a low drift and a higher
volatility, consistent with empirical evidence on business cycles. We assume

̄ ≤ k̄, consistent with the idea of consumption smoothing at short horizons.
For instance, consumption may be affected by business cycles, technology,
and demographic shocks, but not by shorter-lived shocks that can affect
dividend news. For simplicity, we assume that the consumption and volatil-
ity components are perfectly correlated; that is, M ′

k,t = mc0 if and only
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if Mk,t = m0 for every k. Asset prices are easily derived as shown in the
Appendix.

We calibrate the model using statistics reported by Bansal and Yaron
(2004). We set aggregate consumption to gc = 1.80% per year and σc =
2.89% per year, and dividends satisfy μ̄d = gc and σ̄d = 0.80% per day.
There are 
̄ = 4 consumption components and k̄ = 5 dividend components.
We choose the dividend volatility parameter m0 = 1.50, which is close to
the values estimated in Table 9.2, and set mc0 = 1.40. The drift parameter
λc satisfies λc(mc0 − 1) = 0.30% on an annualized basis, implying that
the state-dependent consumption drift varies between 0.6 and 3% per year.
Similarly, the dividend drift switches are specified by λd(m0 − 1) = 0.5%,
implying state-dependent drifts varying between −0.7 and 4.3% per year.
We set the correlation ρc,d to 0.64, and frequencies are specified by b =
2.4 and 1/γ1 = 20 years. The duration of the consumption components
therefore ranges between 1.44 and 20 years, while the shortest dividend
duration is 0.6 years. The coefficient of relative risk aversion is α = 10, and
the other preference parameters are ψ = 1.5 and δ = 0.993.

The dynamics of consumption are consistent with the existing literature
and evidence. The standard deviation of consumption growth is almost
identical to the value used by Bansal and Yaron, and consumption growth
autocorrelations are 0.032 at a one-year horizon, 0.015 over five years, and
0.009 over ten years. These values would be hard to distinguish from white
noise and are in fact much lower than the autocorrelations in Bansal and
Yaron. Similarly, the variance ratios do not exceed 1.21 over a 10-year hori-
zon, again lower than the values in Bansal and Yaron. Hence, the consump-
tion specification appears to be consistent with earlier empirical evidence.

We first shut down the stochastic volatility of dividends by forcing m0 =
1.0 and consequently σd(Mt) = σ̄d. This yields a risk premium of 2.16%,
an average price-dividend ratio equal to 46.7, and an average risk-free rate
equal to 1.02% per year. The variance of the stock return is 4.2% higher
than the dividend variance; that is, FB = 4.2%.

We then reintroduce stochastic volatility in dividends by specifying
m0 = 1.50. The consumption process, stochastic discount factor, and inter-
est rate regimes are unchanged. The equity premium on the stock increases
to 3.29%, and the price-dividend ratio falls to 31.1. The price-dividend
regimes vary between 22.9 and 37.7. The feedback increases to 25.9%,
which is more than six times larger than when dividend volatility is con-
stant. The marginal contribution of multifrequency dividend volatility to
return volatility is thus 25.9%− 4.2% = 21.7%, which is comparable to the
feedback estimates obtained with i.i.d. consumption and high risk aversion.

In sum, by incorporating long-run risks in consumption, we can use a
lower risk aversion (α = 10) to match the equity premium and still generate
a substantial contribution of dividend volatility feedback. The exten-
sion also offers a pure regime-switching formulation of long-run risks in
a multifrequency environment, opening new directions for future research.
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9.6 Discussion

In this chapter, we develop a tractable asset pricing framework with
multifrequency shocks to fundamentals and discount rates, focusing on a
dividend news specification with constant mean, multifrequency stochas-
tic volatility, and conditionally Gaussian noise. The structural equilibrium
with three free parameters accounts for endogenous skewness, thick tails,
time-varying volatility, and sizeable feedback in over 80 years of daily stock
returns.

Two economic mechanisms play important roles. First, endogenous
volatility feedback amplifies dividend variance by 20 to 40% in favored
specifications, or 10 to 40 times the feedback obtained in the previous
literature (e.g., Campbell and Hentschel, 1992). Feedback from persistent
components helps to capture extreme returns, while higher-frequency vari-
ations match day-to-day volatility movements. Second, investor learning
generates substantial endogenous skewness. Building on Veronesi (2000), we
consider investor signals about the volatility state and show that informa-
tion quality creates a trade-off between skewness and kurtosis. Intermediate
information environments best match the data.

The chapter illustrates that a multifrequency approach helps connect the
low-frequency macro-finance and learning literatures with higher-frequency
financial econometrics. Convergence of these areas follows from bringing
multifrequency shocks into pure regime-switching economies, which tradi-
tionally offer three major benefits: (i) asset pricing is straightforward in
a Markov chain setup; (ii) the econometrics of regime-switching, based on
simple filtering theory, is well understood; and (iii) learning is easily incor-
porated by using similar filtering techniques. The multifrequency approach
expands the practical range of equilibrium regime-switching economies from
a few states to several hundred and from lower frequencies to daily returns.

We develop an extension based on joint modeling of multifrequency
regime switches in consumption and dividends. This generates large feed-
back and a reasonable equity premium with moderate values of relative
risk aversion. This framework offers potential for further development,
particularly in modeling the impact of long-run risks on high-frequency
financial data.



10
Multifrequency Jump-Diffusions

The multifractal diffusions considered in Part II are exogenously specified
and have continuous sample paths. We now endogenize the price pro-
cess by considering a continuous-time version of the exchange economy
developed in Chapter 9. Dividends and consumption follow continuous dif-
fusions, but their drift rates and volatilities can undergo discrete Markov
switches. These regime changes in fundamentals trigger endogenous jumps
in asset prices, consistent with the well-known property that discrete
arrivals of information about cash flows and discount rates can cause price
discontinuities in equilibrium.

When dividends follow a continuous-time MSM, the construction gen-
erates a new class of stochastic processes, which we call multifrequency
jump-diffusions. The stock price displays endogenous jumps of heteroge-
neous frequencies, and the largest discontinuities are triggered by the most
persistent volatility shocks. The model thus produces many small jumps
and fewer large jumps, as in Madan, Carr, and Chang (1998), Carr, Geman,
Madan, and Yor (2002), and others. Our equilibrium model contributes to
the literature on jump and Lévy processes by endogenizing the heterogeneity
of jump sizes, and the association between jump-size and frequency.

We investigate the limiting behavior of the economy when the number of
volatility components goes to infinity. As in Chapter 7, the dividend process
weakly converges to a multifractal diffusion with continuous sample paths.
We also show that the equilibrium price-dividend ratio converges to an infi-
nite intensity pure jump process with heterogeneous frequencies. Prices are
then the sum of a continuous multifractal diffusion and an infinite intensity,
pure jump process, yielding a new stochastic process that we accordingly
call a multifractal jump-diffusion. A jump in the stock price occurs in the
neighborhoodofany instant,but theprocess is continuousalmost everywhere.

For simplicity, the chapter focuses mainly on time-separable preferences.
The stochastic discount factor is then continuous, and endogenous jumps
in stock valuations are “unpriced” in the sense that they do not affect
expected excess stock returns (e.g., Merton, 1976). In the final section,
we obtain priced jumps and endogenous discontinuities in the stochastic
discount factor by assuming nonseparable preferences, as in Epstein and
Zin (1989), Weil (1989), and Duffie and Epstein (1992). This extension
provides additional flexibility in structural modeling of jump-diffusions.

This chapter is based on an earlier paper: “Multifrequency Jump-Diffusions: An Equili-
brium Approach” (with A. Fisher), Journal of Mathematical Economics, 44: 207–261,
January 2008.
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10.1 An Equilibrium Model with Endogenous
Price Jumps

This section develops a continuous-time equilibrium model with regime-
shifts in the drift and volatility of fundamentals. We do not require that
the state follows an MSM process, and the setup developed in this section
can therefore be used directly in other contexts.

10.1.1 Preferences, Information, and Income
We consider an exchange economy with a single consumption good defined
on the set of instants t ∈ [0,∞). The information structure is represented
by a filtration {Ft} on the probability space (Ω,F , P).

The economy is specified by two independent stochastic processes:
a bivariate Brownian motion Zt = (ZY (t), ZD(t)) ∈ R

2 and a random state
vector Mt ∈ R

k̄
+, where k̄ is a finite integer. The processes Z and M are

mutually independent and adapted to the filtration {Ft}. The bivariate
Brownian Z has zero mean and covariance matrix

(
1 ρY,D

ρY,D 1

)
,

where the correlation coefficient ρY,D = Cov(dZY , dZD)/dt is strictly pos-
itive. The vector Mt is a stationary Markov process with right-continuous
sample paths.

The economy is populated by a finite set of identical investors
h ∈ {1, . . . , H}, who have homogeneous information, preferences, and
endowments. Investors observe the realization of the processes Z and M ,
and have information set It = {(Zs, Ms); s ≤ t}. The common utility is
given by

Ut = E

[∫ +∞

0
e−δsu(ct+s)ds

∣∣∣∣ It

]
,

where the discount rate is a positive constant: δ ∈ (0,∞). The Bernoulli
utility u(·) is twice continuously differentiable and satisfies the usual
monotonicity and concavity conditions: u′ > 0 and u′′ < 0. Furthermore,
the Inada conditions hold: limc→0 u′(c) = +∞ and limc→+∞ u′(c) = 0.

Every agent continuously receives the exogenous endowment stream Yt ∈
(0,∞). The process Yt is identical across the population and follows a
geometric Brownian motion with stochastic drift and volatility. Specifically,
let gY (·) and σY (·) denote deterministic measurable functions defined on
R

k̄
+ and taking values on the real line.
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Condition 7 (Income) The moments E

[∫ t

0 |gY (Ms)| ds
]

and E

[∫ t

0 σ2
Y

(Ms)ds] are finite, and the exogenous income stream is given by

ln(Yt) ≡ ln(Y0) +
∫ t

0

[
gY (Ms) − σ2

Y (Ms)
2

]
ds +

∫ t

0
σY (Ms)dZY (s)

at every instant t ∈ [0,∞).

The moment conditions guarantee that the stochastic integrals are well
defined. By Itô’s lemma, the income flow satisfies the stochastic differential
equation

dYt

Yt
= gY (Mt)dt + σY (Mt)dZY (t). (10.1)

10.1.2 Financial Markets and Equilibrium
Agents can trade two financial assets: a bond and a stock. The bond has
an instantaneous rate of return rf (t), which is endogenously determined in
equilibrium. Its net supply is equal to zero.

The stock is a claim on the stochastic dividend stream {Dt}t≥0.

Condition 8 (Dividend process) The dividend stream is given by:

ln(Dt) ≡ ln(D0) +
∫ t

0

[
gD(Ms) − σ2

D(Ms)
2

]
ds +

∫ t

0
σD(Ms)dZD(s),

where gD(·) and σD(·) are measurable functions defined on R
k̄
+ and valued

in R such that E

[∫ t

0 |gD(Ms)| ds
]

< ∞ and E

[∫ t

0 σ2
D(Ms)ds

]
< ∞ for

all t.

We infer from Itô’s lemma:

dDt

Dt
= gD(Mt)dt + σD(Mt)dZD(t). (10.2)

The dividend process Dt has continuous sample paths, but its drift and
volatility can exhibit discontinuities. Every agent is initially endowed with
Ns ∈ R+ units of stock, where one unit represents one claim on the flow
Dt. We treat the difference Yt −NsDt as the nontradable component of the
endowment flow.1

1Distinguishing between aggregate endowment flow and dividends on public equity is
common in asset pricing settings. For example, Brennan and Xia (2001) invoke nontraded
labor income as a wedge between the aggregate endowment flow and dividends. In our
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Each agent selects a consumption-portfolio strategy (ch, Nh, Bh) defined
on Ω× [0,∞) and taking values on R+×R×R, where ch(ω, t), Nh(ω, t) and
Bh(ω, t) respectively denote consumption, stockholdings and bondholdings
in every date-event (ω, t). A strategy is called admissible if it is adapted,
self-financing, and implies nonnegative wealth at all times.2 We assume
that there are no transaction costs.

Definition 7 (General equilibrium) A general equilibrium consists of
a stock price process P , an interest rate process rf , and a collection of
individual admissible consumption-portfolio plans (ch, Nh, Bh)1≤h≤H , such
that (i) for every h, (ch, Nh, Bh) maximizes utility over all admissible plans;
(ii) goods markets and securities markets clear:

1
H

∑

h

ch(t, ω) = Y (t, ω),
1
H

H∑

h=1

Nh(t, ω) = Ns, and
1
H

H∑

h=1

Bh(t, ω) = 0

for almost all (t, ω).

In our setting, agents are fully symmetric, and autarky is the unique
equilibrium. Individual consumption coincides with individual income:
ch(t, ω) = Y (t, ω) for every h,t, ω, and it is convenient to denote Ct ≡ Yt,
ZC ≡ ZY , gC (.) ≡ gY (.) , σC (.) ≡ σY (.), and ρC,D ≡ ρY,D.

The stochastic discount factor (SDF) is equal to instantaneous marginal
utility:

Λt = e−δtu′(Ct). (10.3)

It satisfies the stochastic differential equation:

dΛt

Λt
= −rf (Mt)dt − α(Ct)σC(Mt)dZC(t),

where α(c) ≡ −cu′′(c)/u′(c) denotes the coefficient of relative risk aversion
and π(c) ≡ −cu′′′(c)/u′′(c) is the coefficient of relative risk prudence. The
instantaneous interest rate

rf (Mt) = δ + α(Ct)gC(Mt) − α(Ct)π(Ct)σ2
C(Mt)/2 (10.4)

economy, the difference Yt − NsDt can be either positive or negative since Yt and Dt

are imperfectly correlated diffusions: hence we prefer the more general interpretation of
an unmodeled endowment flow shock. Recent literature (e.g., Cochrane, Longstaff, and
Santa-Clara, 2008; Santos and Veronesi, 2005) proposes methods to ensure positivity of
the nontraded portion of the endowment while maintaining tractable asset prices.

2The wealth nonnegativity constraint prevents agents from using doubling strategies
to create arbitrage profits (Dybvig and Huang, 1988).



10.1 An Equilibrium Model with Endogenous Price Jumps 181

increases with investor impatience and the growth rate of the economy, and
is reduced by the precautionary motive.

In equilibrium, the stock price Pt is given by

Pt

Dt
= E

[∫ +∞

0
e−δs u′(Ct+s)

u′(Ct)
Dt+s

Dt
ds

∣∣∣∣ It

]
.

The joint distribution of (Ct+s;Dt+s/Dt) depends on the state Mt and the
consumption level Ct, but not on the initial dividend Dt. The P/D ratio is
therefore a deterministic function of Mt and Ct, which will henceforth be
denoted by Q(Mt, Ct).

Shifts in the state Mt induce discontinuous changes in the P/D
ratio and the stock price. We use lower cases for the logarithms of all
variables.

Proposition 12 (Equilibrium stock price) The stock price follows a
jump-diffusion, which can be written in logs as the sum of the continuous
dividend process and the price-dividend ratio:

pt = dt + q(Mt, Ct).

A price jump occurs when there is a discontinuous change in the Markov
state Mt driving the continuous dividend and consumption processes.

The endogenous price jumps contrast with the continuity of the
fundamentals and the SDF.

10.1.3 Equilibrium Dynamics under Isoelastic Utility
We assume that every investor has the same constant relative risk aversion
α ∈ (0,∞), that is,

u(c) ≡
{

c1−α/(1 − α) if α �= 1,
ln(c) if α = 1.

The P/D ratio then simplifies as follows.

Proposition 13 (Equilibrium with isoelastic utility) The P/D ratio
is a deterministic function of the Markov state:

q(Mt) = ln Et

(∫ +∞

0
e−

∫ s
0 [rf (Mt+h)−gD(Mt+h)+ασC(Mt+h)σD(Mt+h)ρC,D]dhds

)

,

(10.5)

where Et denotes the conditional expectation given Mt.
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When dividends and consumption are uncorrelated (ρC,D = 0) and regime-
swiches affect only dividend volatility, the price-dividend ratio is constant,
and the equilibrium value of the equity claim follows a continuous-time
MSM (with continuous sample paths). Outside this special case, equity
prices exhibit jumps. Over an infinitesimal time interval, the stock price
changes by

d(pt) = d(dt) + Δ(qt),

where Δ(qt) ≡ qt − qt− denotes the finite variation of the price-dividend
ratio in case of a discontinuous regime change.3 Consider the effect of
a Markov switch that increases the volatility of current and future divi-
dends (without impacting consumption). The P/D ratio falls and induces
a negative realization of Δ(qt). Market pricing can thus generate an endoge-
nous negative correlation between volatility changes and price jumps. This
contrasts with earlier jump models in which the relation between discon-
tinuities and volatility is exogenously postulated (e.g., Duffie, Pan, and
Singleton, 2000; Carr and Wu, 2004).

Under isoelastic utility, our results can be made robust to some degree
of investor heterogeneity. Assume that in addition to the stock and bond,
a complete set of traded financial assets exists, and investors can hedge
the risks implicit in the state vector Mt. If agents have heterogeneous
coefficients of relative risk aversion αh and homogeneous discount rates
δ > 0, Huang (1987) and Duffie and Zame (1989) show that equilib-
rium asset prices are supported by an isoelastic representative investor.
Thus, when markets are complete, the SDF (10.3) is consistent with het-
erogeneity in risk aversion. Extensions to investor heterogeneity under
incomplete markets are likely to lead to more novel implications (e.g., Con-
stantinides and Duffie, 1996; Calvet, 2001) and are well-deserving of further
research.4

3We denote by qt− the left limit of q at t.
4A large literature in economics also considers the pricing implications of bounded

rationality and heterogeneous beliefs (e.g., Arthur et al., 1997; Brock and Hommes,
1998; Brock, Lakonishok, and LeBaron, 1992; Brock and LeBaron, 1996; Buraschi
and Jiltsov, 2006; Chan, LeBaron, Lo, and Poggio, 1998; DeLong, Shleifer, Summers,
and Waldman, 1990; Froot, Scharfstein, and Stein, 1992; Grandmont, 1998; Hong and
Stein, 2003, 2007; Kirman, 1991; LeBaron, 2000; LeBaron, Arthur, and Palmer, 1999;
Lettau, 1997; Lux 1997, 1998; Lux and Marchesi, 1999; Scharfstein and Stein, 1990).
A related line of research, often associated with econophysics and the Santa Fe Insti-
tute, is surveyed by Bouchaud and Potters (2003), Challet, Marsili, and Zhang (2005),
LeBaron (2006), and Mantegna and Stanley (2000). See also Farmer and Geanakoplos
(2008) for a recent discussion of the interplay between equilibrium modeling and
finance.
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10.2 A Multifrequency Jump-Diffusion for
Equilibrium Stock Prices

We now incorporate multifrequency shocks into dividends and consumption
and investigate the resulting price jump-diffusion.

10.2.1 Dividends with Multifrequency Volatility
We introduce shocks of multiple frequencies by assuming that dividends
follow a continuous-time MSM, as defined in Chapter 7. That is, given the
Markov state vector Mt = (M1,t;M2,t; . . . ;Mk̄,t) ∈ R

k̄
+ at date t,

Mk,t+dt is drawn from distribution M with probability γkdt,
Mk,t+dt = Mk,t with probability 1 − γkdt.

For parsimony, we assume that M is specified by a single parameter m0 ∈ R.
The arrival intensities satisfy γk = γ1b

k−1 for all k, and the growth rate b is
strictly larger than unity. Stochastic volatility is the renormalized product

σD(Mt) ≡ σ̄D

⎛

⎝
k̄∏

k=1

Mk,t

⎞

⎠
1/2

.

The parameter σ̄D is the unconditional standard deviation of the dividend
growth process: V ar(dDt/Dt) = σ̄2

Ddt.
We assume that dividends have the constant growth rate

gD(Mt) ≡ ḡD,

which focuses attention on the rich volatility dynamics. MSM generates
both short and long swings in volatility and thick tails in the divi-
dend growth series, while by design there are no jumps in the dividends
themselves.

10.2.2 Multifrequency Economies
We now turn to the specification of aggregate consumption, which will close
the description of the exchange economy.

Specification C1: Lucas tree economy. The stock is a claim on
aggregate consumption: Dt = Ct. By Proposition 13, the P/D ratio is
given by

Et

(∫ +∞

0
e−[δ−(1−α)ḡD]s− α(1−α)

2

∫ s
0 σ2

D(Mt+h)dhds

)
. (10.6)
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An increase in volatility reduces the price-dividend ratio only if α < 1,
which is consistent with earlier research in discrete time (e.g., Barsky, 1989;
Abel, 1988).5

Specification C2: i.i.d. consumption. We can alternatively assume that
consumption has a constant drift and volatility. The interest rate (10.4) is
then constant, and the price-dividend ratio is equal to

Et

(∫ +∞

0
e−(rf −ḡD)s−αρC,Dσ̄C

∫ s
0 σD(Mt+h)dhds

)
.

High volatility feeds into low asset prices for any choices of relative risk
aversion α. This approach fits well with the discrete-time volatility feedback
literature reviewed in the previous chapter.

Specification C3: multivariate MSM. In the Appendix we develop a
multivariate extension of MSM that permits more flexible specifications of
consumption. This approach helps to construct SDF models with a stochas-
tic volatility that is only partially correlated to the stochastic volatility
of dividends. We focus for expositional simplicity on the tree and i.i.d.
specifications in the remainder of the chapter.

10.2.3 The Equilibrium Stock Price
Jumps in equilibrium prices are triggered by regime changes in the volatility
state vector. Since the components have heterogeneous persistence levels,
the model avoids the difficult choice of a unique frequency and size for “rare
events”, which is a common issue in specifying traditional jump-diffusions.6

The relation between the frequency and size of a jump is easily quantified
by loglinearizing the price-dividend ratio. Consider the parametric family
of state processes Mt(ε) = 1 + ε(νt − 1), t ∈ R+, ε ∈ [0, 1), where ν is itself
a fixed MSM state vector.

5When future consumption becomes riskier, two opposite economic effects impact
the P/D ratio, as can be seen in (10.5). First, investors perceive an increase in the
covariance σC(Mt+h)σD(Mt+h)ρC,D between future consumption and dividends (sys-
tematic risk), which reduces the price-dividend ratio. Second, the precautionary motive
increases the expected marginal utility of future consumption, which lowers future inter-
est rates rf (Mt+h) and increases P/D. The negative impact of systematic risk dominates
when α < 1.

6In the simplest exogenously specified jump-diffusions, it is often possible that dis-
continuities of heterogeneous but fixed sizes and different frequencies can be aggregated
into a single collective jump process with an intensity equal to the sum of all the indi-
vidual jumps and a random distribution of sizes. A comparable analogy can be made for
the state vector Mt in our model, but due to the equilibrium linkages between jump size
and the duration of volatility shocks, and the state dependence of price jumps, no such
reduction to a single aggregated frequency is possible for the equilibrium stock price.
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Proposition 14 (First-order expansion of P/D) The log of the P/D
ratio is approximated around ε = 0 by the first-order Taylor expansion:

q[Mt(ε)] = q̄ − q1

k̄∑

k=1

Mk,t(ε) − 1
δ′ + γk

+ o(ε). (10.7)

The Lucas tree economy implies δ′ = δ − (1 − α)ḡD + α(1 − α)σ̄2
D/2, q̄ = −

ln(δ′) and q1 =α(1 − α)σ̄2
D/2. When consumption is i.i.d., the parameters

instead are δ′ = rf −ḡD+αρC,Dσ̄C σ̄D, q̄ = −ln(δ′) and q1 = αρC,Dσ̄C σ̄D/2.

When the distribution M is close to unity, the P/D ratio is approximated
by a persistence-weighted sum of the volatility components. Low-frequency
multipliers deliver persistent and discrete switches, which have a large
impact on the P/D ratio. By contrast, higher-frequency components have
no noticeable effect on prices, but give additional outliers in returns through
their direct effect on the tails of the dividend process. The price process
is thus characterized by a large number of small jumps (high-frequency
Mk,t), a moderate number of moderate jumps (intermediate frequency
Mk,t), and a small number of very large jumps. Earlier empirical research
suggests that this is a good characterization of the dynamics of stock
returns.

In Figure 10.1 we illustrate the endogenous multifrequency pricing
dynamics of the model, in the case where consumption is i.i.d.. The top
two panels present a simulated dividend process, in growth rates and in
logarithms of the level, respectively. The middle two panels then display
the corresponding stock returns and log prices. The price series exhibits
much larger movements than dividends, due to the presence of endogenous
jumps in the P/D ratio. To see this clearly, the bottom two panels show
consecutively: (1) the “feedback” effects, defined as the difference between
log stock returns and log dividend growth, and (2) the price-dividend ratio.
We observe a few infrequent but large jumps in prices, with more numer-
ous small discontinuities. The simulation demonstrates that the difference
between stock returns and dividend growth can be large even when the P/D
ratio varies in a plausible and relatively modest range (between 26 and 33
in the figure). The pricing model thus captures multifrequency stochas-
tic volatility, endogenous multifrequency jumps in prices, and endogenous
correlation between volatility and price innovations.

10.3 Price Dynamics with an Infinity
of Frequencies

We now investigate how the price diffusion evolves as k̄ → ∞, that is, as
components of increasingly high frequency are added into the state vector.
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FIGURE 10.1. Equilibrium Price and Return Dynamics. This figure illus-
trates the relation between exogenous dividends and equilibrium prices when
consumption is i.i.d. The top two panels display simulated dividend growth rates
and dividend levels. The parameters used in the specification are m0 =1.35, σ̄D =
0.7, b = 2.2, and ḡD = 0.0001. The middle two panels demonstrate the result
of equilibrium pricing. In these panels we use the preference and consumption
parameters α = 25, δ =0.00005, ḡC = 0.00005, ρC,Dσ̄C = 0.0012. The left-hand
side displays returns, and the right side shows the log-price realization. Both
show more variability, and in particular jumps, relative to the dividend processes.
To isolate the endogenous pricing effects in returns and prices, the bottom left
panel shows the volatility “feedback” effect, defined as the difference between
log-returns and log-dividend growth, that is, Δpt−Δdt, or the difference between
the middle left and top left panels. To show the same endogenous pricing effects
in levels, the bottom right-hand panel shows the price-dividend ratio.

Specifically, the parameters (ḡD, σ̄D, γ1, b) and the distribution M are fixed,
and Mt = (Mk,t)∞

k=1 ∈ R
∞
+ is an MSM Markov state with countably many

frequencies. Each component Mk,t is characterized by the arrival intensity
γk = γ1b

k−1.
As in Chapter 7, we characterize dividend dynamics by the time

deformation

θk̄(t) ≡
∫ t

0
σ2

D,k̄(Ms)ds. (10.8)
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The dividend process dk̄(t) is then represented by d0 + ḡDt − θk̄(t)/2 +
B[θk̄(t)], where B is a standard Brownian. When E(M2) < b, the trad-
ing time sequence θk̄ has a limit θ∞ with continuous sample paths. The
dividend process therefore converges to

d∞(t) ≡ d0 + ḡDt − θ∞(t)/2 + B[θ∞(t)].

The local Hölder exponent of d∞(t) takes a continuum of values in any
time interval.

We now examine the equilibrium impact of increasingly permitting many
frequencies in the volatility of dividends. A particularly striking example
is provided by Lucas tree economies. We consider

Condition 9 α ≤ 1 and ρ = δ − (1 − α)ḡD > 0.

For finite k̄, the equilibrium price-dividend ratio is given by (10.6), or
equivalently,

qk̄(t) = ln E

[∫ +∞

0
e−ρs− α(1−α)

2 [θk̄(t+s)−θk̄(t)]ds

∣∣∣∣ (Mk,t)k̄
k=1

]
. (10.9)

The price process has therefore the same distribution as

pk̄(t) ≡ dk̄(t) + qk̄(t).

When the number of frequencies goes to infinity, the dividend process has
a well-defined limit. As we show in the Appendix, the P/D ratio (10.9) is
a positive submartingale, which also converges to a limit as k̄ → ∞.

Proposition 15 (Jump-diffusion with countably many frequencies)
When the number of frequencies goes to infinity, the log-price process weakly
converges to

p∞(t) ≡ d∞(t) + q∞(t),

where

q∞(t) = ln E

[∫ +∞

0
e−ρs− α(1−α)

2 [θ∞(t+s)−θ∞(t)]ds

∣∣∣∣ (Mk,t)∞
k=1

]

is a pure jump process. The limiting price is thus a jump-diffusion with
countably many frequencies.

In an economy with countably many frequencies, the log-price process is
the sum of (1) the continuous multifractal diffusion d∞(t); and (2) the pure
jump process q∞(t). We correspondingly call p∞(t) a multifractal jump-
diffusion.



188 10. Multifrequency Jump-Diffusions

When k̄ = ∞, the state space is a continuum, while the Lucas tree econ-
omy is still specified by the seven parameters (ḡD, σ̄D, m0, γ1, b, α, δ). The
equilibrium P/D ratio q∞(t) exhibits rich dynamic properties. Within any
bounded time interval, there exists almost surely (a.s.) at least one mul-
tiplier Mk,t that switches and triggers a jump in the stock price. This
property implies that a jump in price occurs a.s. in the neighborhood
of any instant. The number of switches is also countable a.s. within any
bounded time interval, implying that the process has infinite activity and
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FIGURE 10.2. Convergence to Multifractal Jump-Diffusion. This figure
illustrates convergence of the equilibrium price process as the number of high-
frequency volatility components becomes large. The panels show, consecutively,
simulations of the log-price process pk̄(t) = d0+ḡDt−θk̄(t)/2+B[θk̄(t)]+qk̄(t) for
k̄ = 2, 4, 6, 8. All panels hold constant the Brownian B(t). The multipliers Mk,t

are also drawn only once and then held constant as higher level multipliers are
added. The construction is thus recursive in k̄, with each increment requiring the
previously drawn nondeformed dividends and multipliers from the preceding level,
plus new random draws for the next set of (higher-frequency) multipliers being
incorporated. We observe large differences between the panels corresponding to
k̄ = 2 and k̄ = 4, more moderate changes between k̄ = 4 and k̄ = 6, and only
modest differences between k̄ = 6 and k̄ = 8. In this set of simulations, we use
the Lucas economy specification with T =2, 500, m0 = 1.4,b = 3.25, γ1 =0.25b7 ≈
0.0001, σ̄C = 0.0125, ḡD = 0.00008, δ = 0.00003, and α = 0.5.
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is continuous almost everywhere. Equilibrium valuation therefore generates
a limit P/D ratio that follows an infinite intensity pure jump process.

In Figure 10.2 we illustrate the convergence of the equilibrium price
processes as k̄ becomes large. The first panel shows a simulation with
k̄ = 2 volatility components, and the following panels consecutively add
higher-frequency components to obtain paths with k̄ = 4, k̄ = 6, and
k̄ = 8 components. Consistent with the theoretical construction, the figure
is obtained by randomly drawing a trajectory of the Brownian motion B
in stage k̄ = 0, which is thereafter taken as fixed. Similarly, each multiplier
Mk,t is drawn only once, so that (Mk,t)k̄

k=1 does not vary when we move
from stage k̄ to stage k̄ + 1. The figure suggests that the price process
becomes progressively insensitive to the addition of new high-frequency
components, and the sample path of the price process stabilizes. For low k̄,
adding components has a significant impact, and as k̄ increases the process
converges.

10.4 Recursive Utility and Priced Jumps

We showed in Chapter 9 that the equity premium can be matched with rea-
sonable levels of risk aversion when investors have Epstein-Zin-Weil utility
and consumption undergoes regime switches. The recursive preference equi-
librium easily generalizes to continuous time, permitting discontinuities in
the SDF and priced jumps, as we now show.

Agents have a stochastic differential utility Vt (Duffie and Epstein, 1992),
which is specified by a normalized aggregator f(c, v) and satisfies the fixed-
point equation

Vt = Et

[∫ T

t

f(Cs, Vs)ds + VT

]
(10.10)

for any instants T ≥ t ≥ 0. The aggregator is given by

f(c, v) ≡ δ

1 − ψ−1

c1−ψ−1 − [(1 − α)v]θ

[(1 − α)v]θ−1 ,

where α is the coefficient of relative risk aversion, ψ is the elasticity of
intertemporal substitution, and θ = (1 − ψ−1)/(1 − α). The case where
θ = 1 corresponds to isoelastic utility as considered previously.

Under the consumption process in Condition 7, the recursive utility has
functional form V (c, Mt) = ϕ(Mt)c1−α/(1 − α). 7 The stochastic discount

7The fixed-point equation (10.10) can be written as f(Ct, Vt)dt + Et(dVt) = 0.
Let ϕ1, . . . , ϕd denote the value of ϕ in all possible states m1, . . . , md. The fixed-point
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factor is then Λt = δ−1 exp
[∫ t

0 fv(Cs, Vs)ds
]
fc(Ct, Vt) (Duffie and Epstein,

1992; Duffie and Skiadas, 1994), or equivalently

Λt = [ϕ(Mt)]1−θC−α
t e− δ

θ t+δ(1− 1
θ )

∫ t
0 [ϕ(Ms)]−θds.

Consumption and the exponential expression are continuous. On the other
hand, the first factor in the equation is a function of ϕ(Mt), which depends
on the Markov state and can therefore vary discontinuously through
time. In the simplifying case where θ = 1 (power utility), the factor
[ϕ(Mt)]1−θ drops out, and the SDF has continuous sample paths, reducing
to Λt = e−δtC−α

t . On the other hand, if θ �= 1, the term [ϕ(Mt)]1−θ is
discontinuous, and the marginal utility of consumption depends on the
current state. Discrete changes in the state vector Mt thus cause jumps in
the SDF.

Since switches in Mt trigger simultaneous jumps in the stochastic dis-
count factor and the P/D ratio, they impact expected returns, and hence
are“priced” in equilibrium. To see this, we denote by γ =

∑k̄
k=1 γk the

intensity that at least one arrival occurs. Furthermore, let Et,A denote the
expectation operator conditional on (1) the investor information set It;
and (2) the occurrence of at least one arrival between t and t + dt. The
conditional equity premium is then:

− 1
dt

Et

(
dΛt

Λt

dPt

Pt

)
= ασC(Mt)σD(Mt)ρC,D + γEt,A

(
−ΔΛt

Λt

ΔPt

Pt

)
.

When θ �= 1, the final term is generally nonzero, confirming that the possi-
bility of a discontinuity modifies the expected return required by investors
on the stock. Jumps represent a priced risk in equilibrium.

The ability of our framework to accommodate priced jumps is potentially
useful for empirical applications. For example, we have used nonseparable
preferences in Chapter 9 to obtain priced switches in a calibration that
simultaneously fits, with reasonable levels of risk aversion, the equity pre-
mium, equity volatility, and the drifts and volatilities of consumption and
dividends. In a recent contribution, Bhamra, Kuehn, and Strebulaev (2006)
extend this framework by considering levered claims on the priced asset.
They find that the ability to capture priced jumps is empirically important

equation is then

δ

θ
(ϕ1−θ

i − ϕi) + ϕi

[
(1 − α)gC(mi) +

α(α − 1)
2

σ2
C(mi)

]
+

∑
j �=i

ai,j(ϕj − ϕi) = 0,

where ai,j = P
(
Mt+dt = mj |Mt = mi

)
/dt. Existence and uniqueness can then be ana-

lyzed using standard methods.
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in simultaneously reconciling the equity premium, default spreads, and
empirically observed default rates. We anticipate that future work will use
our structural approach to modeling priced jumps in other applications,
including, for example, pricing options and other derivatives.

10.5 Discussion

In this chapter, we develop a continuous-time asset pricing economy with
endogenous multifrequency jumps in stock prices. Equilibrium valuation
gives a number of appealing features that are often assumed exogenously in
previous literature, including: (1) heterogeneous jump sizes with many and
frequent small jumps and few large jumps; and (2) endogenous correlation
between jumps in prices and volatility. Furthermore, jumps are priced in
equilibrium under nonseparable preferences.

We consider the weak limit of our economic equilibrium as the num-
ber of components driving fundamentals becomes large. Under appropriate
conditions, the stock price converges to a new mathematical object called
a multifractal jump-diffusion. The equity value can be decomposed into
the continuous multifractal diffusion followed by the exogenous dividend
process, and an infinite-intensity pure jump process corresponding to
endogenous variations in the price-dividend ratio.

The chapter can be viewed as bridging a gap between exogenously
specified jump-diffusions and discrete-time equilibrium models of volatil-
ity feedback, such as in Chapter 9. More generally, the model illustrates
that equilibrium is a powerful method to generate endogenous price
discontinuities in financial economics.
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Conclusion

The Markov-switching approach to multifractal modeling offers a
parsimonious and accurate statistical description of financial time series
based on the concept of scale-invariant multifrequency risk. In the most
basic construction, MSM is driven by a Markov state vector with multiple
components, whose rescaled product defines total volatility. Each of the
components, or multipliers, can switch to a new level with a different prob-
ability per unit time, generating volatility shocks of multiple frequencies.
When an arrival does occur in a given multiplier, a new value is drawn
from a fixed distribution independently of all other variables in the model.
The marginal distributions of all volatility components are hence identical,
which provides parsimony to MSM and finds empirical support at stan-
dard confidence levels. The construction works equally well in discrete and
continuous time, and easily extends to multivariate settings.

From a statistical point of view, elaborated in Parts I and II of the
book, MSM captures thick tails, long-memory features, and intertwined
volatility cycles of heterogeneous durations. When volatility components
have a discrete distribution, MSM is a latent Markov chain, and its para-
meters can be estimated by maximizing the closed-form likelihood of the
return series. Alternatively, return moments can be used to quickly cali-
brate or estimate MSM. Once the parameters have been imputed, the
applied researcher can readily compute the conditional distribution of the
volatility state and returns at any instant. Bayesian updating permits filter-
ing of volatility components, and the Markov construction implies tractable
multistep prediction. The research presented in this book and subsequent
studies have shown that MSM performs well in-sample, produces good
forecasts of volatility, and generates reliable estimates of the value-at-risk
in a position or portfolio of assets.

MSM also captures the unconditional moments of returns, and in particu-
lar the “power variations” of many financial series, which have been studied
extensively (e.g., Andersen et al., 2001; Barndorff-Nielsen and Shephard,
2003; Calvet and Fisher, 2002a; Calvet, Fisher, and Mandelbrot, 1997;
Galluccio et al., 1997; Ghashghaie et al., 1996; Pasquini and Serva, 1999,
2000; Richards, 2000; Vandewalle and Ausloos, 1998; Vassilicos, Demos,
and Tata, 1993). The multifractal model implies that the qth moment of
absolute returns scales as a power function of the frequency of observation,



194 11. Conclusion

provided that the qth moment exists. Furthermore, across q the scaling
exponents used in the power functions form a nonlinear strictly convex func-
tion of q. Extensive research, including results presented in this book, shows
that these scaling properties hold in a variety of currency and equity series.

The transition between discrete- and continuous-time versions of MSM is
remarkably straightforward, which is a substantial operational advantage
of our approach. Additional insights can be gained from continuous-time
MSM by considering the limit time deformation when the number of high-
frequency components goes to infinity. Because local volatility exhibits
increasingly extreme fluctuations, the Lebesgue dominated convergence
theorem does not apply and in fact gives the misleading intuition that the
limit trading time converges to zero. By contrast, a correct analysis using
the martingale convergence theorem and appropriate tightness conditions
implies that the trading-time sequence converges to a nondegenerate time
deformation process. The limiting multifractal diffusion is driven by count-
ably many components, and its sample paths contain a continuum of local
Hölder exponents in any time interval.

In Part III we show that MSM integrates easily into equilibrium models,
providing a tractable framework within which to analyze the impact of
multifrequency shocks on endogenous asset prices. We consider a con-
sumption-based economy as in Lucas (1978) with MSM shocks to dividend
news, and in some cases, consumption growth. The presence of volatility
shocks of heterogeneous durations generates endogenous variations in the
price-dividend ratio, and the volatility of returns can be substantially higher
than the volatility of dividends. Investor learning endogenously generates
negative skewness in stock returns because increases in volatility (bad news)
tend to be revealed abruptly while decreases in volatility (good news) are
likely to be inferred gradually. Long-run risk is naturally present in MSM,
and helps to generate equilibrium stock returns consistent with the equity
premium. In continuous time, volatility shocks of heterogeneous dura-
tions lead to endogenous jumps in prices, with many small discontinuities,
frequent moderate jumps, and rare extreme events. As the number of
volatility components diverges to infinity, the continuous-time equilibrium
approach generates a new mathematical object, which is the sum of
a continuous multifractal diffusion and an infinite intensity pure jump
process. We call this new process a multifractal jump-diffusion.

Numerous applications, extensions, and research questions emerge natu-
rally from the research developed in this book. For example, practitioners
interested in the implementation of MSM on real-time data can impute
the parameters of MSM by either maximizing the closed-form likelihood or
using a moment-based calibration, as illustrated in Chapter 8. The inferred
data generating process can be used to forecast volatility or produce
estimates of value-at-risk. Lux (2008) provides additional discussion of sim-
plified estimation and forecasting methods. Practitioners may also seek
to use MSM to price options, for instance by considering multifrequency
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variants of the Hull and White (1987) model. In ongoing research, we have
found evidence that MSM can be very helpful in pricing options and other
derivatives. We anticipate that applications of multifractals to derivatives
valuation will be a growth area in coming years.

Econometricians may be interested in further expanding and developing
applications of fractal-type methods. MSM illustrates that pure regime-
switching models can match and in some cases outperform smoothly
autoregressive volatility processes. As suggested by Hamilton (2006), the
general approach of investigating high-dimensional but parsimonious and
structured regime-switching offers considerable promise and will likely
receive further attention.

Theoretical researchers can use the models in this book to reexamine
the common view that wild fluctuations in financial markets are incon-
sistent with the concept of economic equilibrium (e.g., Mandelbrot and
Hudson, 2004). As pointed out by Bansal and Yaron (2004), risk premia
can be high and returns volatile in a world where fundamentals are very
persistent. MSM equilibrium models accommodate these low-frequency fea-
tures, while simultaneously providing sufficient realism at high frequencies
that the model can be estimated using maximum likelihood on daily data.
Through this approach, we are able to bring together aspects of both the
high-frequency financial econometrics and lower-frequency macro-finance
literatures.

Recent literature in financial economics and asset management has gen-
erated renewed interest in the modeling and pricing implications of rare
events (e.g., Barro, 2006; Taleb, 2007). MSM provides new insights on
how these risks can be specified and are likely to affect asset prices. To
develop intuition, one can begin by considering a single-frequency MSM
specification with a very low value of γ1. Changes in the drift or volatil-
ity of fundamentals are very rare, but produce extreme asset returns in
equilibrium when they do occur. Estimation is course difficult in such an
environment, as it is effectively based on very few observations or perhaps
none at all.

The multifractal setting implies that rare events need not be studied in
isolation. In particular, the structure imposed by MSM, which appears to
be consistent with empirical evidence, suggests that variations at high and
medium frequencies may help to build a reasonable framework for lower-
frequency events. From an intuitive point of view, gradations in size and
frequency exist even in the context of disaster, depression, and war, and
models assuming a dichotomy between normal and catastrophic states can
miss such regularities. Furthermore given an existing MSM specification,
one can easily contemplate adding in additional possibilities for rare events
by either lowering the intensity of arrival γ1 of the most persistent compo-
nent, or equivalently by assuming that some component of arrival intensity
γ0 = γ1/b has not switched during recorded history. The structure of MSM
allows the applied researcher to infer the likely size and price impact of



196 11. Conclusion

such shocks, and thus stress-test pricing and risk management models.
The recent turbulence in the financial markets highlights the usefulness
of considering shocks larger than those that have been hitherto observed.

MSM offers the finance profession an opportunity to tie together various
phenomena that have been previously modeled in isolation. The interac-
tion of shocks with heterogeneous frequencies is a potent source of price
dynamics that can explain financial data at all horizons with a very limi-
ted number of parameters. We anticipate that future research will further
demonstrate the validity of this approach.
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A.1 Appendix to Chapter 3

A.1.1 Proof of Proposition 1
Consider a sequence of processes with fixed parameter vector ψ = (m0, σ̄,
b, γ∗). Note in particular that γk̄ = γ∗ for all k̄. For any integer n ≥ 0 and
real q ∈ [0,∞), it is convenient to define Kq(n) = E(|rt|q |rt+n|q)/[E(|rt|2q)]
and cq = [E(|εt|q)]2/[E(|εt|2q)]. Multipliers in different stages of the cas-
cade are statistically independent. The definition of returns, rt = σ̄(M1,t

M2,t . . . Mk̄,t)1/2εt and rt+n = σ̄(M1,t+nM2,t+n . . . Mk̄,t+n)1/2εt+n, implies

Kq(n) = cq[E(Mq)]−k̄
∏k̄

k=1
E(Mq/2

k,t M
q/2
k,t+n).

Note that E(Mq/2
k,t M

q/2
k,t+n) = E(Mq)(1 − γk)n + [E(Mq/2)]2[1 − (1 − γk)n]

or equivalently

E(Mq/2
k,t M

q/2
k,t+n) = [E(Mq/2)]2 [1 + aq(1 − γk)n],

where aq = E(Mq)/[E(Mq/2)]2−1. Since 1 − γk = (1−γk̄)bk−k̄

and γk̄ = γ∗,
we obtain

ln
Kq(n)

cq
=

k̄∑

k=1

ln
1 + aq(1 − γ∗)nbk−k̄

1 + aq
. (A.1)

As k increases from 1 to k̄, the expression (1 − γ∗)nbk−k̄

declines from
(1−γ∗)nb1−k̄

to (1−γ∗)n. The maximum (1−γ∗)nb1−k̄

is close to 1 and the
minimum (1 − γ∗)n is close to 0 when bk̄/n and n are large. Intermediate
values are observed when (1 − γ∗)nbk−k̄ ≈ 1 − γ∗, or equivalently
k ≈ logb(bk̄/n). Let i(n) denote the unique integer such that i(n) ≤
logb(bk̄/n) < i(n) + 1. We surmise that

ln
Kq(n)

cq
≈

k̄∑

k=i(n)+1

ln
1

1 + aq
= −[k̄ − i(n)] ln(1 + aq),

and thus ln [Kq(n)] ≈ −(logb n) ln(1 + aq) = −δ(q) ln n.
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To formalize this intuition, consider the interval Ik̄ = {n : α1 logb(bk̄) ≤
logb n ≤ α2 logb(bk̄)}. Note that logb(bk̄/n) ≥ (1 − α2) logb(bk̄) for all
n ∈ Ik̄. We henceforth assume that k̄ is sufficiently large so that i(n) ≥ b
∀ n ∈ Ik̄. Consider an arbitrary sequence of strictly positive integers
j(n) monotonically diverging to +∞. The precise definition of j(n) is
temporarily postponed. Let

un = j(n) ln (1 + aq) +
i(n)+j(n)∑

k=i(n)−j(n)+1

ln
1 + aq(1 − γ∗)nbk−k̄

1 + aq
.

By (A.1), ln[Kq(n)/cq] can be decomposed into four components:

ln
Kq(n)

cq
= − [k̄ − i(n)] ln(1 + aq) +

i(n)−j(n)∑

k=1

ln
1 + aq(1 − γ∗)nbk−k̄

1 + aq
(A.2)

+un +
k̄∑

k=i(n)+j(n)+1

ln[1 + aq(1 − γ∗)nbk−k̄

].

We successively examine each component on the right-hand side.

• The first component is between −δ(q) (lnn + ln b) and −δ(q) ln n.

• The second component contains terms (1− γ∗)nbk−k̄

that are bounded
below by (1− γ∗)nbi(n)−j(n)−k̄

. The definition of i(n) implies
nbi(n)−k̄ ≤ 1 and thus

∣∣∣∣∣∣

i(n)−j(n)∑

k=1

ln
1 + aq(1 − γ∗)nbk−k̄

1 + aq

∣∣∣∣∣∣
≤ i(n) ln

1 + aq

1 + aq(1 − γ∗)b−j(n) .

By standard concavity arguments, we infer ln 1+aq

1+aq(1−γ∗)b−j(n) ≤ aq

[1 − (1 − γ∗)b−j(n)
] and 1 − eb−j(n) ln(1−γ∗) ≤ b−j(n) |ln(1 − γ∗)|.

The second component of (A.2) is therefore bounded by
i(n)b−j(n)aq| ln(1 − γ∗)|.

• The third component, un, contains terms 1 + aq(1 − γ∗)nbk−k̄

that are
between 1 and 1 + aq. Hence |un| ≤ j(n) ln (1 + aq) ≤ aqj(n).

• The fourth component is positive and bounded above by

aq

k̄∑

k=i(n)+j(n)+1

(1 − γ∗)nbk−k̄ ≤ aq

∞∑

k=0

(1 − γ∗)bknbi(n)+j(n)+1−k̄

.
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We check that nbi(n)+j(n)+1−k̄ ≥ 1 and bk ≥ k(b − 1). The fourth
component is therefore bounded above by aq

∑∞
k=0(1 − γ∗)k(b−1) =

aq

1−(1−γ∗)b−1 .

This establishes that

∣∣∣∣
lnKq(n)
lnn−δ(q) − 1

∣∣∣∣ ≤
c∗
q + aqj(n) + aqi(n)b−j(n)| ln(1 − γ∗)|

δ(q) ln n
,

where c∗
q = δ(q) ln b + | ln cq| + aq/[1 − (1 − γ∗)(b−1)]. We now choose a

sequence j(n) such that the right-hand side of the inequality converges
to 0. More specifically, consider the unique integer such that1 j(n) ≤
2 logb i(n) < j(n)+1. It is easy to check that i(n)b−j(n) = blogb i(n)−j(n) ≤ 1
and j(n) ≤ 2 logb k̄. For all n ∈ Ik̄, the quantity

∣∣∣ ln Kq(n)
ln n−δ(q) − 1

∣∣∣ is therefore
bounded above by

ηk̄ =
1

k̄ δ(q)α1 ln b

[
2aq logb k̄ + c∗

q + aq| ln(1 − γ∗)|
]
, (A.3)

which is independent of n. We infer that sup
n∈Ik̄

∣∣∣ ln Kq(n)
ln n−δ(q) − 1

∣∣∣ → 0 as

k̄ → +∞.
Finally, we observe that

∣∣∣∣
ln ρq(n)
lnn−δ(q) − 1

∣∣∣∣ ≤
∣∣∣∣
logb [ρq(n)/Kq(n)]

lnn−δ(q)

∣∣∣∣+
∣∣∣∣
lnKq(n)
lnn−δ(q) − 1

∣∣∣∣.

The autocorrelation ρq(n) satisfies

1 ≤ Kq(n)
ρq(n)

=
1 − cq(1 + aq)−k̄

1 − cq(1 + aq)−k̄/Kq(n)
≤ 1

1 − cq(1 + aq)−k̄/Kq(n)
. (A.4)

Equation (A.3) implies that for all n ∈ Ik̄, logb Kq(n) ≥ −δ(q)(1 + ηk̄)α2k̄,
and thus

logb[Kq(n)/(1 + aq)−k̄] ≥ k̄δ(q)(1 − α2 − α2ηk̄). (A.5)

Combining (A.4) and (A.5), we conclude that supn∈Ik̄

∣∣∣ln Kq(n)
ρq(n)

∣∣∣ → 0 and
that the Proposition holds.

1
We check that when k̄ is large enough, 1 ≤ j(n) ≤ i(n) and j(n) + i(n) ≤ k̄ for

all n ∈ Ik̄.
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A.1.2 HAC-Adjusted Vuong Test
We consider the probability space (Ω,F , P0) and a stochastic process
{rt}+∞

t=1 . Each rt is a random variable taking values on the real line. For
every t, it is convenient to consider the vector of past values Rt−1 =
{rs}t−1

s=1. The econometrician directly observes a finite number of reali-
zations of rt but does not know the true data-generating process. She
instead considers two competing families of models specified by their condi-
tional densities Mf = {f(rt|Rt−1, θ); θ ∈ Θ} and Mg = {g(rt|Rt−1, γ); γ ∈
Γ}. These families may or may not contain the true data-generating pro-
cess. The pseudo true value θ∗ specifies the model in Mf with the optimal
Kullback-Leibler Information Criterion:

θ∗ = arg max
θ∈Θ

E
0[ln f(rt|Rt−1, θ)].

The pseudo true value γ∗ is similarly defined.
Consider the log-likelihood functions:

Lf
T (θ) ≡

T∑

t=1

ln f(rt|Rt−1, θ), Lg
T (γ) ≡

T∑

t=1

ln g(rt|Rt−1, γ).

By definition, the ML estimators θ̂T and γ̂T maximize the functions Lf
T (θ)

and Lg
T (γ). The corresponding first-order conditions are

∂Lf
T

∂θ
(θ̂T ) = 0,

∂Lg
T

∂θ
(γ̂T ) = 0. (A.6)

We now examine the likelihood ratio

LRT (θ̂T , γ̂T ) = Lf
T (θ̂T ) − Lg

T (γ̂T ) =
T∑

t=1

ln
f(rt|Rt−1, θ̂T )
g(rt|Rt−1, γ̂T )

.

By Equation (A.6), a second-order expansion of LRT implies that
1√
T

LRT (θ̂T , γ̂T ) = 1√
T

LRT (θ∗, γ∗) + op(1), and thus

1√
T

LRT (θ̂T , γ̂T ) =
1√
T

T∑

t=1

ln
f(rt|Rt−1, θ

∗)
g(rt|Rt−1, γ∗)

+ op(1).

Let at = ln[f(rt|Rt−1, θ
∗)/g(rt|Rt−1, γ

∗)] and ât = ln[f(rt|Rt−1, θ̂T )/
g(rt|Rt−1, γ̂T )].

When the observations rt are i.i.d., the addends at are also i.i.d..
If the models f and g have equal Kullback-Leibler Information crite-
rion, the central limit theorem implies T−1/2LRT (θ̂T , γ̂T ) d→ N (0, σ2

∗),
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where σ2
∗ = V ar(at). The variance is consistently estimated by the sample

variance of {ât}.
In the non-i.i.d. case, we need to adjust for the correlation in the addends

at. Let σ2
T = T−1∑T

s=1
∑T

t=1 E(asat). We know that T−1/2LRT (θ̂T , γ̂T ) =
σT Z + op(1), where Z is a standard Gaussian. Following Newey-West
(1987), we estimate σT by

σ̂2
T = Ω̂0 + 2

m∑

j=1

w(j, m)Ω̂j ,

where Ω̂j =
∑T

t=j+1 âtât−j/T denotes the sample covariance of {ât}, and
w(j, m) = 1 − j/(m + 1) is the Bartlett weight. We choose m using the
automatic lag selection method of Newey and West (1994).

A.2 Appendix to Chapter 4

A.2.1 Distribution of the Arrival Vector
The probability of a simultaneous switch is P(1α

k,t = 1β
k,t = 1) = P(1α

k,t = 1)
P(1β

k,t = 1|1α
k,t = 1). The vector 1k,t therefore has unconditional distri-

bution:

Arrival on β No arrival on β

Arrival on α γk[(1 − λ)γk + λ] γk(1 − λ)(1 − γk)
No arrival on α γk(1 − γk)(1 − λ) (1 − γk)[1 − γk(1 − λ)].

A.2.2 Ergodic Distribution of Volatility Components
The bivariate process (Mα

k,t, M
β
k,t) can take values s1 = sH,H = (mα

0 , mβ
0 ),

s2 = sH,L = (mα
0 , mβ

1 ), s3 = sL,H = (mα
1 , mβ

0 ) and s4 = sL,L = (mα
1 , mβ

1 ).
The transition matrix is T = (tij), where tij = P(st+1 = sj |st = si). It
satisfies

T =

⎡

⎢⎢⎢⎣

pk 1 − γk

2 − pk 1 − γk

2 − pk γk − 1 + pk

1 − γk

2 − qk qk γk − 1 + qk 1 − γk

2 − qk

1 − γk

2 − qk γk − 1 + qk qk 1 − γk

2 − qk

γk − 1 + pk 1 − γk

2 − pk 1 − γk

2 − pk pk

⎤

⎥⎥⎥⎦,

where

pk = 1 − γk + γk[(1 − λ)γk + λ]
1 + ρ∗

m

4
,

qk = 1 − γk + γk[(1 − λ)γk + λ]
1 − ρ∗

m

4
.
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Simple manipulation implies that the characteristic polynomial of T is

PT (x) = (1 − x)(1 − γk − x)2[2(pk + qk + γk) − 3 − x].

We easily check that |2(pk + qk + γk) − 3| < 1, and we infer that T has a
unique ergodic distribution Π̄k = (Π̄HH

k , Π̄HL
k , Π̄LH

k , Π̄LL
k ). The symmetry

of the transition matrix implies that Π̄HH
k = Π̄LL

k and Π̄HL
k = Π̄LH

k . We
easily check that Π̄HH

k = 1
4

2−2qk−γk

2−(pk+qk)−γk
, or equivalently

Π̄HH
k =

1
4

1 − (1 − ρ∗
m)[(1 − λ)γk + λ]/2

1 − [(1 − λ)γk + λ]/2
,

and finally note that Π̄HL
k = 1/2 − Π̄HH

k . When ρ∗
m > 0, the multipliers

are more likely to be either both high or both low: Π̄HH
k = Π̄LL

k > 1/4 >
Π̄HL

k = Π̄LH
k .

A.2.3 Particle Filter
As discussed in the main text, the vectors M̂

(1)
t+1, . . . , M̂

(B)
t+1 are independent

draws from the probability distribution h(m) ≡ P(Mt+1 = m|Rt). Consider
a continuous function Y defined on R

k̄
+ and taking values on the real

line. The conditional expectation E [Y (Mt+1)|Rt+1] =
∑d

j=1 P(Mt+1 =
mj |Rt+1) Y (mj) is conveniently rewritten as

E [Y (Mt+1)|Rt+1] =
d∑

j=1

h(mj)
P(Mt+1 = mj |Rt+1)

h(mj)
Y (mj) .

The Monte Carlo approximation to this integral is

E [Y (Mt+1)|Rt+1] ≈ 1
B

B∑

b=1

P(Mt+1 = M̂
(b)
t+1|Rt+1)

h(M̂ (b)
t+1)

Y (M̂ (b)
t+1).

Bayes’ rule implies

P(Mt+1 = M̂
(b)
t+1|Rt+1)

B h(M̂ (b)
t+1)

=
frt+1(rt+1|Mt+1 = M̂

(b)
t+1)

B frt+1 (rt+1|Rt)
.

Since frt+1 (rt+1|Rt) ≈ 1
B

∑B
b′=1 frt+1(rt+1|M̂ (b′)

t+1), we infer that

P(Mt+1 = M̂
(b)
t+1|Rt+1)

B h(M̂ (b)
t+1)

≈
frt+1(rt+1|Mt+1 = M̂

(b)
t+1)∑B

b′=1 frt+1(rt+1|Mt+1 = M̂
(b′)
t+1)

.
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The right-hand side defines a probability μb for every b ∈ {1, . . . , B}.
We infer that the random variable Y (Mt+1) has conditional expectation
E [Y (Mt+1)|Rt+1] ≈

∑B
b=1 μb Y (M̂ (b)

t+1). Since this result is valid for any
function Y , we conclude that Πt+1 can be approximated with a discrete
distribution taking on the value M̂

(b)
t+1 with probability μb.

A.2.4 Two-Step Estimation
We partition the parameter vector into ψ ≡ (ψ′

1, ψ
′
2)

′, with ψ1 = (mα
0 , mβ

0 ,
σ̄α, σ̄β , b, γk̄)′ and ψ2 = (ρε, ρ

∗
m, λ)′. In the first step, we compute the vector

ψ̂1 that maximizes the combined univariate likelihood L(rα
t ;mα

0 , σ̄α, b, γk̄)+
L(rβ

t ;mβ
0 , σ̄β , b, γk̄). Note that ψ̂1 is a generalized method of moments

(GMM) estimator based on the score ∂L(rα
t )/∂ψ1+∂L(rβ

t )/∂ψ1. Under cor-
rect specification, the expectation of each derivative is zero, which implies
consistency and asymptotic normality of ψ̂1. In the second step, we estimate
ψ2 by maximizing the simulated bivariate likelihood L(rα

t , rβ
t ; ψ̂1, ψ2) given

the first stage estimate ψ̂1. The simulated likelihood is computed using the
particle filter with B = 10, 000 draws.

Standard errors for the two-step estimates are obtained by restating
the algorithm as a GMM estimator based on the moment conditions
T−1∑T

t=1 gt(ψ̂) = 0, where gt (ψ) is the column vector with components
∂[ln f(rα

t |Rα
t−1) + ln f(rβ

t |Rβ
t−1)]/∂ψ1 and ∂ ln f(rα

t , rβ
t |Rα

t−1,R
β
t−1)/∂ψ2.

Standard GMM arguments imply asymptotic normality

√
T (ψ̂ − ψ0)

d→ N [0, H−1V (H ′)−1]

with H = −E∂gt (ψ0) /∂ψ′ and V = Var
[
T−1/2∑ gt (ψ0)

]
. To estimate V ,

we approximate gt by taking finite difference derivatives of the objective
function. Then we estimate V using the formula of Newey and West (1987)
with 10 lags. When calculating finite difference derivatives using the particle
filter, we use 15, 000 simulations. We estimate H by calculating the sample
variance of the first derivatives:

Ĥ =

(
Ĥ1,1 + Ĥ1,2 0

Ĥ2,1 Ĥ2,2

)
,

where Ĥ1,1 and Ĥ1,2 are the 6 × 6 matrices

Ĥ1,1 = T−1
∑ ∂ ln f(rα

t |Rα
t−1)

∂ψ1

∂ ln f(rα
t |Rα

t−1)
∂ψ′

1
≈ −E

[
∂2 ln f(rα

t |Rα
t−1)

∂ψ1∂ψ′
1

]

Ĥ1,2 = T−1
∑ ∂ ln f(rβ

t |Rβ
t−1)

∂ψ1

∂ ln f(rβ
t |Rβ

t−1)
∂ψ′

1
≈ −E

[
∂2 ln f(rβ

t |Rβ
t−1)

∂ψ1∂ψ′
1

]
.
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Similarly, (Ĥ21, Ĥ22) are the bottom three rows of the 9 × 9 matrix

T−1
∑ ∂ ln f(rα

t , rβ
t |Rα

t−1,R
β
t−1)

∂ψ

∂ ln f(rα
t , rβ

t |Rα
t−1,R

β
t−1)

∂ψ′ .

The matrix Ĥ is consistent since its elements are second derivatives of the
univariate or bivariate likelihoods.

A.2.5 Value-at-Risk Forecasts
We use the particle filter to calculate the value-at-risk implied by MSM. The
algorithm in Section 4.3 is used to generate volatility draws M

(1)
t , . . . , M

(B)
t

from the distribution Πt. For each draw M
(b)
t , we simulate the bivari-

ate series forward n days to obtain B draws from the cumulative return
on the portfolio. We then estimate V aRt,n (p) as the 1 − pth empirical
quantile.

CC-GARCH provides a closed form expression for one-day value-at-risk
forecasts, namely V aRt,1 (p) = − Q1−p σt|t−1, where Q1−p is the (1 − p)th

quantile of a standard normal variable and σt|t−1 is the standard deviation
implied by CC-GARCH. The five-day CC-GARCH forecasts are calculated
by simulation. In all cases we use B = 10,000 simulated draws.

A.2.6 Extension to Many Assets
In this appendix we introduce two alternative classes of models, multi-
variate MSM and factor MSM, and then explain how they can be estimated.

Multivariate MSM

Bivariate MSM can be readily extended to economies with an arbitrary
number N of financial prices. The construction assumes in every period a
volatility component Mn

k,t ∈ R+ for each frequency k ∈ {1, . . . , k̄} and asset
n ∈ {1, . . . , N}. As in the bivariate case, components Mn

k,t and Mn′

k′,t can
be correlated across assets (n �=n′), but are statistically independent across
frequencies (k �= k′). Specifically, the volatility dynamics are determined by
a fixed multivariate distribution M on R

N
+ , and an arrival vector 1k,t ∈

{0, 1}N for each frequency. The kth component of every asset switches with
unconditional probability γk (E1k,t = γk1), and arrivals across assets are
characterized by the correlation matrix:

Corr(1k,t) = (λn,n′)1≤n,n′≤N .



A.2 Appendix to Chapter 4 205

The state vector is defined recursively. At time t, we draw the independent
arrival vector (1k,t)k=1,...,k̄, and sample the new components Mk,t from the
corresponding marginal distribution of M .

The volatility state is fully specified by the N × k̄ matrix Mt = (Mn
k,t)n,k.

Analogous to bivariate MSM, we define returns as rt = (M1,t∗. . .∗Mk̄,t)1/2∗
εt, where εt is a centered multivariate Gaussian noise: εt ∼ N (0,Σ). When
the distribution of M is discrete, the likelihood function is available in
closed-form. For large state spaces, estimation can be carried out using a
particle filter as is discussed below.

Though natural, this approach requires the specification and estima-
tion of the multivariate distribution M and the arrival correlation matrix
(λn,n′)1≤n,n′≤N . In a general formulation, the number of parameters there-
fore grows at least as fast as a quadratic function of N . Like other speci-
fications such as multivariate GARCH, the model is computationally
expensive for a large number of assets. The next subsection develops an
overlapping class of models, which is based on the same principles as
multivariate MSM and yet remains tractable with many assets.

Factor MSM

We consider L volatility factors F 	
t = (F 	

k,t)1≤k≤k̄ ∈ R
k̄
+ that can jointly affect

all assets. For instance, the vector F 	
t may contain the frequency-specific

components determining the volatility of a global risk factor or a specific
industry. Each vector F 	

t contains k̄ frequency-specific components and fol-
lows a specific univariate MSM process with parameters (b, γk̄, m	

0). The
volatility of each asset n is also affected by an idiosyncratic shock En

t , which is
specified by parameters (b, γk̄, mL+n

0 ). Draws of the factors F 	
k,t and idiosyn-

cratic shocks En
k,t are independent, but the timing of arrivals may be cor-

related. Factors and idiosyncratic components thus follow univariate MSM
with identical frequencies.

For every asset n and frequency k, the volatility component Mn
k,t is the

weighted product of the factors and idiosyncratic shock of same frequency:

Mn
k,t = Cn

(
F 1

k,t

)wn
1 . . . (FL

k,t)
wn

L (En
k,t)

wn
L+1 .

The weights are nonnegative and add up to one. The constant Cn is
chosen to guarantee that E(Mn

k,t) = 1 and is thus not a free parameter.2 In
logarithms, we obtain the familiar additive formulation:

lnMn
k,t = ln Cn +

L∑

	=1

wn
	 lnF 	

k,t + wn
L+1 lnEn

k,t.

2
We have Cn = 1/E[

(
F 1

k,t

)wn
1 ] . . . E[(F L

k,t)
wn

L ] E[(En
k,t)

wn
L+1 ]. This computation

is straightforward when the marginal distribution of the shocks are multinomial or
lognormal.
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Returns are again defined as rt = (M1,t ∗ . . . ∗ Mk̄,t)1/2 ∗ εt, where εt is a
centered multivariate Gaussian noise: εt ∼ N(0,Σ).

Two special cases of this setup are of particular interest. First, when
arrivals for all factors and idiosyncratic components are simultaneous,
factor MSM is a special case of the multivariate MSM in the previous
subsection. New draws of Mn

k,t are then independent of all past multipliers,
and the factor model generates univariate series that are consistent with
univariate MSM. Furthermore, when the distribution of factors and idiosyn-
cratic shocks is lognormal, the resulting multipliers Mn

k,t are lognormal as
well. Stochastic volatility is now fully specified by (1) the frequency param-
eters b and γk̄; (2) the distribution parameters of factors and idiosyncratic
shocks (m1

0, . . . , m
L+N
0 ); and (3) the factor loadings wn = (wn

1 , . . . , wn
L)

of each asset. The model is thus defined by N(L + 1) + L + 2 volatility
parameters.

The second interesting special case is when arrivals of factors and idiosyn-
cratic shocks are independent. It is easy to verify that this specification
has the same number of parameters as when arrivals are simultaneous.
Furthermore, this choice permits that at time t some but not all fac-
tors and idiosyncratic components may change. The univariate volatility
components Mn

k,t then take new values without requiring a completely inde-
pendent draw from M . Thus, the implied univariate volatility dynamics
are smoother than standard MSM, but can still generate thick tails and
long-memory volatility persistence.

Inference in Multivariate MSM and Factor MSM

For either multivariate MSM or factor MSM, we seek to estimate the covari-
ance matrix Σ = V ar(εt) and the vector of volatility parameters ψ. One
possibility is to choose a tight specification for Σ and use the particle filter
to optimize the simulated likelihood over all parameters.

In the general case, estimation can be conducted in two steps: (1) Esti-
mate the covariance matrix of the Gaussian noises; and (2) use the particle
filter to estimate the volatility parameters ψ by simulated maximum likeli-
hood. Step (2) is straightforward, and step (1) can be conducted as follows.
For any two assets α and β, we know that

E[r(α)
t r

(β)
t ] = Γα,βE[ε(α)

t ε
(β)
t ] and E|r(α)

t r
(β)
t | = Γα,βE|ε(α)

t ε
(β)
t |,

where Γα,β =
∏k̄

k=1 E{[Mα
k,tM

β
k,t]

1/2}. We infer

∑
t r

(α)
t r

(β)
t∑

t |r(α)
t r

(β)
t |

a.s.→ E[ε(α)
t ε

(β)
t ]

E|ε(α)
t ε

(β)
t |

= ϕ(ρα,β),
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where ρα,β = Corr[ε(α)
t ; ε(β)

t ] and ϕ(ρ) ≡ π
2

ρ√
1−ρ2+ρ arcsin ρ

. The function ϕ

is strictly increasing and maps [−1, 1] onto [−1, 1]. A consistent estimator
of the correlation coefficient is therefore

ρ̂α,β = ϕ−1

( ∑
t r

(α)
t r

(β)
t∑

t |r(α)
t r

(β)
t |

)
.

The variance of the Gaussians is consistently estimated by σ̂2
α =

1
T

∑
t[r

(α)
t ]2. Since the covariance matrix defined by the above estimates

may not be positive definite, we then apply the methodology of Ledoit,
Santa-Clara, and Wolf (2003) to obtain a positive semidefinite matrix Σ̂.

A.3 Appendix to Chapter 5

A.3.1 Properties of D
Consider a fixed instant t ∈ [0, 1]. For all ε > 0, there exists a dyadic number
tn such that |tn − t| < ε. We can then find a number Δn = b−kn < ε for
which (tn,Δn) ∈ D. In the plane R

2, the point (t, 0) is thus the limit of the
sequence (tn,Δn) ∈ D. This establishes that the closure of D contains the
set [0, 1] × {0}. The scaling relation (5.4) thus holds “in the neighborhood
of any instant.”

A.3.2 Interpretation of f(α) as a Fractal Dimension
Fractal geometry considers irregular and winding structures that are not
well described by their Euclidean length. For instance, a geographer mea-
suring the length of a coastline will find very different results as she
increases the precision of her measurement. In fact, the structure of the
coastline is usually so intricate that the measured length diverges to infin-
ity as the geographer’s measurement scale goes to zero. For this reason,
it is natural to introduce a new concept of dimension (Mandelbrot 1982).
Given a precision level ε > 0, we consider coverings of the coastline with
balls of diameter ε. Let N(ε) denote the smallest number of balls required
for such a covering. The approximate length of the coastline is defined by
L(ε) = εN(ε). In many cases, N(ε) satisfies a power law as ε goes to zero:

N(ε) ∼ ε−D,

where D is a constant called the fractal dimension.
Fractal dimension helps to analyze the structure of a fixed multifractal.

For any α ≥ 0, we can define the set T (α) of instants with Hölder exponent
α. As any subset of the real line, T (α) has a fractal dimension D(α), which
satisfies 0 ≤D(α) ≤ 1. For a large class of multifractals, the dimension D(α)
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coincides with the multifractal spectrum f(α) (Frisch and Parisi, 1985;
Halsey et al., 1986; Peyrière 1991).

In the case of measures, we can provide a heuristic interpretation of
this result based on coarse Hölder exponents. Denoting by N(α, Δt) the
number of intervals [t, t + Δt] required to cover T (α), we infer from
Equation (5.5) that N(α, Δt) ∼ (Δt)−f(α). We then rewrite the total mass
μ[0, T ] =

∑
μ(Δt) ∼

∑
(Δt)α(t) and rearrange it as a sum over Hölder

exponents:

μ[0, T ] ∼
∫

(Δt)α−f(α)
dα.

The integral is dominated by the contribution of the Hölder exponent α1
that minimizes α − f(α), and therefore

μ[0, T ] ∼ (Δt)α1−f(α1).

Since the total mass μ[0, T ] is positive, we infer that f(α1) = α1, and
f(α) ≤ α for all α. When f is differentiable, the coefficient α1 also satisfies
f ′(α1) = 1. The spectrum f(α) then lies under the 45◦ line, with tangential
contact at α = α1.

A.3.3 Heuristic Proof of Proposition 3
Consider a conservative multiplicative measure μ. We subdivide the range
of α’s into intervals of length Δα and denote by Nk(α) the number of
coarse Hölder exponents in between α and α+Δα. For large values of k, we
write

1
k

logb

[
Nk(α)

bk

]
∼ 1

k
logb P {α < αk ≤ α + Δα}. (A.7)

We infer from (5.6) and Cramér’s theorem that for any α > α0

1
k

logb P {αk > α} → inf
Q

logb

[
E e(α−V1)Q

]
. (A.8)

We consider the change of variables q = Q/ ln(b), and obtain:

1
k

logb P {αk > α} → inf
q

logb

[
E e(α−V1)q ln b

]

= inf
q

[
αq + logb

(
E e−V1q ln b

)]
. (A.9)

Since the scaling function satisfies (5.2), the limit simplifies to inf
q

[αq −
τ(q)]−1. Combining this with (5.5) and (A.7), it follows that the Proposition
holds.
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These arguments easily extend to a canonical measure μ. Given a
b-adic instant t, the coarse exponent αk(t) = ln μ[t, t + Δt]/ ln Δt is the
sum of a high-frequency component, −k−1 logb Ωη1,...,ηk

, and of the famil-
iar low-frequency average αk,L(t) = − [logb Mη1 + · · · + logb Mη1,...,ηk

] /k.
The exponent αk(t) converges almost surely to α0 = − E( logb M), and
the multifractal spectrum is again the Legendre transform of the scaling
function τ(q).

A.4 Appendix to Chapter 6

A.4.1 Concavity of the Scaling Function τ(q)
Consider two exponents q1, q2, two positive weights w1, w2 adding up to
one, and the corresponding weighted average q = w1q1 + w2q2. Hölder’s
inequality implies

E (|X(t)|q) ≤ [E (|X(t)|q1)]w1 [E (|X(t)|q2)]w2 . (A.10)

Since E (|X(t)|q) ∼ cX(q)tτX(q) and [E (|X(t)|q1)]w1 [E (|X(t)|q2)]w2 ∼
[cX(q1)]

w1 [cX(q2)]
w2 tw1τX(q1)+w2τX(q2), we obtain

τX(q) ≥ w1τX(q1) + w2τX(q2), (A.11)

which establishes the concavity of τX .
This proof also contains additional information on multifractal processes.

Assume that the moment-scaling relation (6.1) holds exactly for t ∈ [0,∞).
Inequality (A.10) also holds as t goes to infinity, which implies the reverse
of inequality (A.11). The function τX(q) is therefore linear. This establishes
that exact multiscaling with a nonlinear τX(q) can hold only on bounded
time intervals.

A.4.2 Proof of Proposition 5
Let Ft and F ′

t denote the natural filtrations of {X(t)} and {X(t), θ(t)}.
For any t, T, u, the independence of B and θ implies

E {X(t + T ) | F ′
t, θ(t + T ) = u } = E {B(u) | F ′

t }

= B[θ(t)],

since {B(t)} is a martingale. Hence E [X(t + T ) | Ft ] = X(t). This estab-
lishes that X(t) is a martingale and has uncorrelated increments. The price
P (t) is a smooth function of X(t) and is therefore a semimartingale.
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A.4.3 Proof of Proposition 7

Trading Time

Consider a canonical cascade after k ≥ 1 stages. Consistent with the nota-
tion of Chapter 5, the interval [0, T ] is partitioned into cells of length
Δt = b−kT , and I1 = [t1, t1 + Δt] and I2 = [t2, t2 + Δt] denote two dis-
tinct b−adic cells with lower endpoints of the form t1/T = 0.η1 . . . ηk and
t2/T = 0.ζ1 . . . ζk. Assume that the first l ≥ 1 terms are equal in the b-adic
expansions of t1/T and t2/T , so that ζ1 = η1, . . . , ζl = ηl, and ζl+1 �= ηl+1.
The distance t = |t2 − t1| satisfies b−l−1 ≤ t/T < b−l, and the product
μ(I1)qμ(I2)q, which is equal to

Ωq
η1,..,ηk

Ωq
ζ1,..,ζk

(M2q
η1

..M2q
η1,..,ηl

)

(Mq
η1,..,ηl+1

..Mq
η1,..,ηk

) (Mq
ζ1,..,ζl+1

..Mq
ζ1,..,ζk

),

has mean [E(Ωq)]2 [E(M2q)]l[E(Mq)]2(k−l). We conclude that

Cov[μ(I1)q;μ(I2)q] = [E(Ωq)]2 [E(Mq)]2k
{
[(EM2q)/(EMq)2]l − 1

}

= C1(Δt)2τθ(q)+2
[
b−l[τθ(2q)−2τθ(q)−1] − 1

]

is bounded by two hyperbolic functions of t.

Log-Price

Since B(t) and θ(t) are independent processes, the conditional expectation

E { |X(0,Δt)X(t,Δt)|q| θ(Δt) = u1, θ(t) = u2, θ(t + Δt) = u3} , (A.12)

simplifies to |u1|q/2 |u3 − u2|q/2 [E |B(1)|q]2. Taking expectations, we infer
that

E [ |X(0,Δt)X(t,Δt)|q ] = E

[
θ(0,Δt)q/2θ(t,Δt)q/2

]
[ E |B(1)|q ]2

declines hyperbolically.

A.4.4 Proof of Proposition 8
Given a process Z, denote αZ(t) as its local scale at date t, and TZ(α) as
the set of instants with scale α. At any date, the infinitesimal variation of
the log-price X(t + �t) − X(t) = B [θ(t + �t)] − B [θ(t)] satisfies

|X(t + �t) − X(t)| ∼ | θ(t + �t) − θ(t) |1/2 ∼ | �t |αθ(t)/2,
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implying αX(t) ≡ αθ(t)/2. The sets TX(α) and Tθ(2α) coincide and in
particular have identical fractal dimensions: fX(α) ≡ fθ(2α). Moreover,
since the price P (t) is a differentiable function of X(t), the two processes
have identical local Hölder exponents and spectra.

A.5 Appendix to Chapter 7

A.5.1 Multivariate Version of Continuous-Time MSM
The bivariate specification of MSM presented in Chapter 4 easily extends
to continuous time. Consider two economic processes α and β. For every
frequency k, the processes have volatility components

Mk,t =

[
Mα

k,t

Mβ
k,t

]
∈ R

2
+.

The period-t volatility column vectors Mk,t are stacked into the 2 × k̄
matrix

Mt = (M1,t;M2,t; . . . ;Mk̄,t).

As in univariate MSM, we assume that M1,t, M2,t . . . Mk̄,t at a given time
t are statistically independent. The main task is to choose appropriate
dynamics for each vector Mk,t.

Economic intuition suggests that volatility arrivals are correlated but
not necessarily simultaneous across economic series. For this reason, we
allow arrivals across series to be characterized by a correlation coefficient
ρ∗ ∈ [0, 1]. Assume that the volatility vector Mk,s has been constructed
up to date t. Over the following interval of infinitesimal length dt, each
series c ∈ {α, β} is hit by an arrival with probability γkdt. If ρ∗ = 0, the
arrivals are assumed to be independent. On the other hand, if ρ∗ ∈ (0, 1],
the probability of an arrival on β conditional on an arrival on α is ρ∗, and
the intensity of a β arrival conditional on no α arrival is (1 − ρ∗)γk.

The construction of the volatility components Mk,t is then based on a
bivariate distribution M = (Mα, Mβ) ∈ R

2
+. If arrivals hit both series, the

state vector Mk,t+dt is drawn from M . If only series c ∈ {α, β} receives
an arrival, the new component M c

k,t+dt is sampled from the marginal
M c of the bivariate distribution M . Finally, Mk,t+dt = Mk,t if there is no
arrival.

As in the univariate case, the transition probabilities (γ1, γ2, . . . , γk̄) are
defined as γk = γ1b

k−1, where γ1 > 0 and b ∈ (1,∞). This completes
the specification of bivariate MSM in continuous time. We can extend the
construction to a larger number of assets by rewriting in continuous time
the multivariate MSM and factor MSM processes described in the Appendix
to Chapter 4.
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A.5.2 Proof of Proposition 9
We assume without loss of generality that T = 1 and σ̄ = 1. Let C denote the
space of continuous functions defined on [0, 1]. For any instants t1, .., tp, the
vector sequence {θk(t1), , . . . , θk(tp)}k is a positive martingale and therefore
has a limit distribution. The sequence {θk} thus has at most one cluster
point.

A cluster point exists if the sequence {θk} is tight. For any continuous
function x ∈ C and δ ∈ (0, 1], it is convenient to consider the modulus of
continuity

w(x, δ) = sup
|t−s|≤δ

|x(t) − x(s)| .

Our discussion is based on the following result, proved in Billingsley (1999).

Theorem 1 The sequence {θk} is tight if and only if these two condi-
tions hold:

(i) For every η > 0, there exist a and K such that P{
∣∣θk(0)

∣∣ ≥ a} ≤
η for all k ≥ K.

(ii) For every ε > 0, lim
δ→0

lim sup
k→∞

P{w(θk, δ) ≥ ε} = 0.

The first condition is trivially satisfied in our setup since θk(0) ≡ 0. We
now turn to the second condition. Since the function lim supk P{w(θk, δ) ≥
ε} is increasing in δ, we can restrict our attention to step sizes of the
form δn = 1/n, n = 1, 2, ..,∞. For a given n, consider the regularly spaced
grid t0 = 0 < t1 = δn < . . . < tn = 1. Since the function θk is increasing,
Theorem 7.4 in Billingsley (1999) implies

P{w(θk, δn) ≥ ε} ≤
n−1∑

i=0

P

{
θk (ti+1) − θk(ti) ≥ ε

3

}
.

Each increment θk (ti+1) − θk(ti) is distributed like θk (δn), implying

P{w(θk, δn) ≥ ε} ≤
(

3
ε

)q

n E [θk (δn)q] (A.13)

for any q > 0.
The right-hand side does not converge to 0 when q = 1. We focus instead

on the second moment (q = 2), and observe that for any t,

E

[
θk+1 (t)2

]
=
∫ t

0

∫ t

0
E(M1,uM1,v) . . . E(Mk,uMk,v)E(Mk+1,uMk+1,v)dudv.
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Since E(Mk+1,uMk+1,v) = 1 + V ar(M)e−γk+1|u−v|, we infer that the

sequence E

[
θk+1 (t)2

]
increases in k and that

E

[
θk+1 (t)2

]
≤ E

[
θk (t)2

]
+ V ar(M)

[
E(M2)

]k
∫ t

0

∫ t

0
e−γk+1|u−v|dudv.

Lemma 1 The following inequality holds:

∫ t

0

∫ t

0
e−γk+1|u−v|dudv ≤ 2

t1+ϕ

γ1−ϕ
k+1

for any t ≥ 0 and ϕ ∈ [0, 1].

Proof The integral is available in closed form:

∫ t

0

∫ t

0
e−γk+1|u−v|dudv =

∫ t

0

2 − e−γk+1v − e−γk+1(t−v)

γk+1
dv

=
2

γk+1
t − 2

1 − e−γk+1t

γ2
k+1

=
2

γ2
k+1

(
e−γk+1t − 1 + γk+1t

)
.

We note that e−x − 1 + x ≤ x2/2 ≤ x1+ϕ/2 if x ∈ [0, 1], and e−x − 1 + x ≤
x ≤ x1+ϕ if x ∈ [1,+∞). Hence e−x − 1 + x ≤ x1+ϕ for all x ≥ 0. We
conclude that

∫ t

0

∫ t

0
e−γk+1|u−v|dudv ≤ 2

γ2
k+1

(γk+1t)1+ϕ = 2
t1+ϕ

γ1−ϕ
k+1

.

holds for all t ≥ 0 and ϕ ∈ [0, 1]. ■

Since E(M2) < b, there exists by continuity a real number ϕ ∈ (0, 1) such
that E(M2) < b1−ϕ. We infer from the lemma that

E

[
θk+1 (t)2

]
≤ E

[
θk (t)2

]
+

2V ar(M)t1+ϕ

γ1−ϕ
1

[
E(M2)
b1−ϕ

]k

.

Hence E

[
θk (t)2

]
has a finite limit and

lim
k→∞

E [θk(t)2] ≤ t2 +
2V ar(M)t1+ϕ

γ1−ϕ
1

+∞∑

k=0

[
E(M2)
b1−ϕ

]k

.
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We infer immediately that limt→0 lim supk→∞ t−1
E[θk(t)2] = 0. By (A.13),

lim supk P{w(θk, δn) ≥ ε} converges to zero as n → ∞.

A.5.3 Proof of Proposition 10
We begin by showing:

Lemma 2 If E[θ∞(t)q] is finite for some instant t > 0, then E[θ∞(t′)q]
is also finite for every t′ ∈ (0,∞).

Proof If t′ ≤ t, we know that θ∞(t′) ≤ θ∞(t), and we infer that
E[θ∞(t′)q] is also finite. The next step is to show that E[θ∞(nt)q] is also
finite for every n > 2. We note that

θ∞(nt)q =

{
n∑

i=1

[θ∞((i + 1)t) − θ∞(it)]

}q

is bounded above by3 max(nq−1, 1)
∑n−1

i=0 {[θ∞((i + 1)t) − θ∞(it)]q. This
implies

E [θ∞(nt)q] ≤ max(nq−1, 1)E[θ∞(t)q] (A.14)

is finite. ■

The critical moment qcrit = sup{q : E[θ∞(t)q] < ∞} does not depend on t.
Inequality (A.14) also suggests the concavity of E [θ∞(t)q] as t varies. We
easily show:

Lemma 3 (Moment concavity/convexity) The function t �−→
E [θ∞(t)q] is concave in t if q ∈ (0, 1), linear if q = 1, and convex if q ∈
(1, qcrit).

Proof Let λk̄(t) = E [θk̄(t)q]. If q ≥ 1, we observe that

λ′
k̄(t + h) = E

⎡

⎣qσ2
k̄(Mt+h)

(∫ t+h

0
θk̄(s)ds

)q−1
⎤

⎦

≥ E

⎡

⎣qσ2
k̄(Mt+h)

(∫ t+h

h

θk̄(s)ds

)q−1
⎤

⎦=λ′
k̄(t).

The function λk̄(t) is therefore convex for all k̄, and we conclude that
E [θ∞(t)q] is convex. A similar argument holds if q ≤ 1. ■

3
Recall that (

∑n
i=1 xi)q ≤ max(nq−1, 1)

∑n
i=1 xq

i for any n ≥ 1, (x1, .., xn) ∈ R
n
+,

q ≥ 0.
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For any k̄ ∈ {1, . . .∞}, let Θk̄(γ1) denote the trading time θk̄(1) at t = 1
in continuous-time MSM with frequency parameters γ1 and b.

Lemma 4 (Invariance property) Trading time satisfies

θ∞(t) d= tΘ∞(tγ1) (A.15)

for all t ∈ [0,∞) and γ1 > 0.

Proof For any finite k̄, trading time is given by θk̄(t) ≡
∫ t

0 σ2
k̄
(Ms)ds.

Consider the change of variables u = s/t. We infer that

θk̄(t) ≡ t

∫ 1

0
σ2

k̄(Mut)du.

The state vector M ′
u = Mut is driven by arrivals of intensity tγ1, . . . ,

tγ1b
k̄−1. We conclude that θk̄(t) d= tΘk̄(tγ1) for all k̄, implying θ∞(t) d=

tΘ∞(tγ1). ■

When the frequency γ is close to zero, the first-stage multiplier is constant
on the unit interval with high probability, which suggests that Θ∞(γ) ≈
M Θ∞(bγ) and thus E[Θ∞(γ)q] ≈ E(Mq) E[Θ∞(bγ)q]. This intuition can
be used to show:

Lemma 5 (Scaling) E [Θ∞(γ)q] ∼ E(Mq) E [Θ∞(bγ)q] as γ → 0.

Proof We consider g(γ) = E [Θ∞(γ)q]. Let t1 < . . . < tN denote the
dates in the unit interval when a first-stage multiplier is drawn. We also
define t0 = 0 and tN+1 = 1. Simple conditioning implies

g(γ) = E(Mq) g(bγ) e−γ +
∞∑

n=1

e−γγn

n!
E [Θ∞(γ)q|N = n] .

As in the proof of lemma 2, the relation Θ∞(γ) =
∑N

j=0 [θ∞(tj+1) − θ∞(tj)]
implies

Θ∞(γ)q ≤ max
[
(N + 1)q−1, 1

] N∑

j=0

[θ∞(tj+1) − θ∞(tj)]
q
.

The conditional expectation E [Θ∞(γ)q|N = n] is therefore bounded
above by

max
[
(n + 1)q−1, 1

]
(n + 1)E(Mq)g(bγ).



216 Appendices

and thus

1 ≤ eγg(γ)
E(Mq) g(bγ)

≤ 1 +
∞∑

n=1

γn

n!
(n + 1)max(q,1).

This implies g(γ) ∼ E(Mq) g(bγ) when γ → 0. ■

The qth moment of trading time satisfies E {[θ∞(t)]q} ∼ [E(Mq)/bq]
E {[θ∞(bt)]q}. Combined with Lemma 3, this property implies that
E {[θ∞(t)]q} ∼ cqt

τθ(q)+1
as t → 0. We also infer from Lemma 3 that

τθ(q) > 0 for all admissible moments greater than unity, implying that
τθ(qcrit) ≥ 0.

A.5.4 Proof of Corollary 1
We know that the restriction of (θk̄) on any bounded subinterval [0, T ] is
uniformly equicontinuous and has a continuous limiting process. Theorem
16.8 in Billingsley (1999) implies that the sequence θk̄ is also tight on
D[0,∞). We conclude that the sequence θk̄ converges in D[0,∞) to a limit
process θ∞ with continuous sample paths.

A.5.5 Proof of Proposition 11
Our proof is based on the following result, proved in Billingsley (1999).

Theorem 2 If

[θ∗
k(t1), .., θ∗

k(tp)]
d→ [θ(t1), .., θ(tp)] (A.16)

holds for all t1, .., tp, and if

lim
δ→0

lim sup
k→∞

P{w(θ∗
k, δ) ≥ ε} = 0 (A.17)

for each positive ε, then θ∗
k weakly converges to θ.

We successively establish the convergence of the marginals (A.16) and the
tightness condition (A.17).

Convergence of the Marginals

The proof is based on coupled trading times. We assume without loss of
generality that T = 1 and σ̄ = 1. Consider the sequence {θk̄}∞

k̄=1 used in
the construction of the continuous time trading time θ∞, and assume for
simplicity that {θk̄}∞

k̄=1 is defined on [0,∞). Stage k relies on the starting
time tk,0 = 0, and arrival times tk,n (n ≥ 1). The difference between two
consecutive arrivals, Ek,n+1 = tk,n+1−tk,n, has an exponential distribution
with density γk exp(−γkt). By a slight abuse of notation, we denote by Mk,n

the value of the multiplier over the interval [tk,n; tk,n+1).
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We can similarly construct a coupled trading time θ∗
k̄

with discretized
arrival times. Let [x] denote for all x ∈ R the unique integer such that
[x] ≤ x < [x] + 1. For a given integer c > 1, consider the uniform grid 0,
1/ck̄, .., 1. We discretize the sequence {tk,n} on the grid by letting
sk,0 = 0, and

sk,n =
n∑

i=1

[ck̄Ek,i] + 1
ck̄

for every n ≥ 1.

We observe that the random variable ck̄(sk,n+1 − sk,n) has a geometric
distribution with parameter γk,k̄ = 1 − exp(−γ1b

k−1/ck̄) since

P

{
sk,n+1 − sk,n =

m

ck̄

}
= P

{
m − 1

ck̄
≤ Ek,n+1 <

m

ck̄

}
= (1−γk,k̄)m−1γk,k̄.

The multiplier over [sk,n, sk,n+1) is set equal to the value Mk,n of the
multiplier on the fixed interval [tk,n; tk,n+1) in the continuous construction.

Let N∗
k denote the highest integer n such that sk,n < 1 in the kth stage

of the discrete-time construction. For any n1, .., nk̄, let Δ∗(n1, .., nk̄) be the
length of the largest subinterval of [0, 1] over which multipliers are given
by M1,n1 , . . . , Mk̄,nk̄

.4 We know that

θ∗
k̄(1) =

N∗
1∑

n1=0

. . .

N∗
k̄∑

nk̄=0

M1,n1 . . . Mk̄,nk̄
Δ∗(n1, .., nk̄).

For the continuous-time construction, we can similarly define Nk̄ and
Δ(n1, .., nk̄), and write

θk̄(1) =
N1∑

n1=0

. . .

Nk̄∑

nk̄=0

M1,n1 . . . Mk̄,nk̄
Δ(n1, .., nk̄).

Let Hk = max(N∗
k , Nk). The intervals attached to a given set of multipliers

in the paired constructions differ in length by:

δn1,..,nk
= Δ∗(n1, .., nk) − Δ(n1, .., nk).

With this notation, the discretized and continuous versions of trading time
differ by

θ∗
k̄(1) − θk̄(1) =

H1∑

n1=0

. . .

Hk̄∑

nk̄=0

M1,n1 . . . Mk̄,nk̄
δn1,..,nk̄

. (A.18)

4
That is, Δ∗(n1, .., nk̄) is the length of the intersection of [sk,nk

; min(1, sk,nk+1)),
k ∈ {1, .., k̄}.
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As is shown below, the first or second moment of
∣∣θ∗

k̄
(1) − θk̄(1)

∣∣ converges
to zero as k̄ → ∞. Since this argument applies equally well to all time
intervals, we conclude that θ∗

k̄
(t) d→ θ∞(t) for all t.

First Moment. We note that

E
∣∣θ∗

k̄(1) − θk̄(1)
∣∣ ≤ E

⎛

⎝
∑

n1,...,nk̄

∣∣δn1,..,nk̄

∣∣

⎞

⎠.

The average number of nonzero mismatches δn1,..,nk̄
in the unit interval

is of order bk̄, and their size is of order 1/ck̄. As in Calvet and Fisher
(2001), we can therefore verify that the first moment E

∣∣θ∗
k̄
(1) − θk̄(1)

∣∣ is
bounded above by a multiple of (b/c)k̄. Hence E

∣∣θ∗
k̄
(1) − θk̄(1)

∣∣ → 0 under
Condition 5.

Second Moment. We note that

E

{[
θ∗

k̄(1) − θk̄(1)
]2} ≤

[
E(M2)

]k̄
E

⎛

⎝
∑

m1,...,mk̄,n1,...,nk̄

δm1,..,mk̄
δn1,..,nk̄

⎞

⎠.

(A.19)

The number of nonzero δm1,..,mk̄
δn1,..,nk̄

is of order bk̄, while their size is of

order c−2k̄. We can verify that the second moment E

{[
θ∗

k̄
(1) − θk̄(1)

]2} is

bounded above by a multiple of
[
E(M2)b/c2

]k̄ and therefore converges to
zero under Condition 6.

Tightness

Let δ = c−l. As in the proof of Proposition 9, we infer from Theorem 7.4
in Billingsley (1999) that for any k ≥ 1,

P{w(θ∗
k̄, δ) ≥ ε} ≤ δ−1

P
{
θ∗

k̄(δ) ≥ ε/3
}

.

Since θ∗
k̄
(δ) d→ θ∞(δ), the function lim supk P{w(θ∗

k̄
, δ) ≥ ε} is bounded

above by δ−1
P {θ∞ (δ) ≥ ε/3}. Given a number q > 0 satisfying τθ(q) > 0,

Chebyshev’s inequality implies that lim supk̄ P{w(θ∗
k̄
, δ) ≥ ε} is bounded

above by (3/ε)q δ−1
E [θ∞ (δ)q]. Letting δ → 0, we infer that δ−1

E [θ∞ (δ)q] ∼
cqδ

τθ(q) → 0 and conclude that condition (A.17) is satisfied. We have thus
established that θ∗

k̄
weakly converges to θ∞ as k̄ → ∞.

A.5.6 MSM with Dependent Arrivals
To aid the discussion, let At denote the set of arrival instants for
component k. In Calvet and Fisher (1999, 2001), we specify that if an
arrival occurs in component k at instant t, then arrivals are triggered in
all higher-frequency components k′ > k. Hence Ak ⊆ Ak′ for all k′ > k.
In addition, we assume that arrivals that are specific to stage-k can occur
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with intensity γ1b
k−1. Weak convergence of the “dependent” construction

then holds under Condition 5 or Condition 6.
We note that for any k > 1, the average number of stage-k arrivals

is larger in the “dependent” construction than in the “independent”
MSM construction. Specifically, the cumulative intensity of level-k arrivals,
including arrivals triggered by lower frequencies, is

γ1

k∑

j=1

bj−1 = γ1
bk − 1
b − 1

> γ1b
k−1.

For large values of b, the average number of arrivals is approximately the
same in the “dependent” and “independent” constructions. For b close to
one, on the other hand, the cumulative arrival intensities is substantially
larger than under independence.

This suggests that a dependent arrivals construction more directly com-
parable to the “independent” construction would specify the total Poisson
intensity at level k to be given by (7.1). To achieve this, we can specify
that for k > 1 the intensity of stage-k arrivals (that are not triggered by
lower-frequency events) be equal to γ1

(
bk−1 − bk−2

)
. An interesting fea-

ture of this construction is that it allows a dependent arrivals construction
where b can approach one without causing the cumulative arrival intensity
to diverge.

A.5.7 Autocovariogram of Log Volatility in MSM
Since multipliers are independent, the autocovariogram is:

Cov [ωΔ(t), ωΔ(t + τ)] =
1
4

k̄∑

k=1

Cov [ln(Mk,t); ln(Mk,t+τ )] .

Assume that t is on the grid and that τ = nΔ. The probability of
no-arrival on the kth multiplier is (1 − γk,Δ)n and therefore Cov [ln(Mk,t) ;
ln(Mk,t+τ )] = 4λ2(1 − γk,Δ)n. This implies the exact formula:

Cov [ωΔ(t), ωΔ(t + τ)] = λ2
k̄∑

k=1

e−bk−1τ/T1 .

A.5.8 Limiting MRW Process
In the MRW continuous lognormal cascade, the magnitude process ωΔ(u)
is defined as the integral of a Gaussian process dW (t, s) over a cone C(t)
in the plane of time and scales:

ωΔ(u) =
∫ T

Δ

∫ u+s

u−s

dW (v, s).
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The integral is truncated at Δ and T to guarantee convergence. The
Gaussian process has mean E [dW (v, s)] = −(λ2/s2)dvds, and covariance

Cov [dW (v, s); dW (v′, s′)] = (λ2/s2)δ(v − v′)δ(s − s′)dvds,

where δ denotes the Dirac function. The limiting trading time

θ(t) = lim
Δ→0

∫ t

0
e2ωΔ(u)du.

satisfies the exact moment-scaling relation E [θ(t)q] = cθ(q)tτθ(q)+1 at all
instants t ≤ T . We refer the reader to Bacry, Kozhemyak and Muzy (2008)
for an excellent review of these developments.

The fact that exact scaling holds only on a bounded interval in MRW
stems from a fundamental limitation of multiscaling. As shown in the
Appendix to Chapter 6, Hölder’s inequality implies that moment-scaling,
whether exact or asymptotic, cannot be maintained as t goes to infinity
for a nonlinear τθ(q). For MSM, the asymptotic scaling relation (7.5) holds
remarkably accurately for practical ranges of frequencies (see Chapter 8),
and hence in typical empirical applications the difference in scaling between
the two models is probably quite difficult to distinguish.

A.6 Appendix to Chapter 9

A.6.1 Full-Information Economies

Stochastic Discount Factor

As Epstein and Zin (1989) show, a utility-maximizing agent with budget
constraint Wt+1 = (Wt − Ct)(1 + Rt+1) has stochastic discount factor

SDFt+1 =

[
δ

(
Ct+1

Ct

)− 1
ψ

]θ [
1

1 + Rt+1

]1−θ

,

where Rt+1 is the simple net return on the optimal portfolio.
In our setup, the representative agent can be viewed as holding a

long-lived claim on the aggregate consumption stream {Ct}∞
t=0. The tree

has price PcCt and yields the return 1 + Rc,t+1 = (1 + 1/Pc)Ct+1/Ct. The
stochastic discount factor is thus

SDFt+1 = δθ(1 + 1/Pc)θ−1
(

Ct+1

Ct

)−α

.

The condition Et[SDFt+1(1 + Rc,t+1)] = 1 implies that δθ(1 + 1/Pc)θ

E[(Ct+1/Ct)
1−α] = 1, or equivalently,

1 + 1/Pc = δ−1{E[(Ct+1/Ct)
1−α]}− 1

θ .
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We conclude that Equation (9.3) holds.

Bayesian Updating and Closed-Form Likelihood

At any instant t, the econometrician has probabilities Π̂t = (Π̂1
t , . . . , Π̂

d
t )

over the state space conditional on the set of past returns Rt = {r1, . . . , rt}.
Bayes’ rule implies that these probabilities can be computed recursively:

Π̂t+1 ∝ Π̂t [A ∗ F (rt+1)] , (A.20)

where ∗ denotes element-by-element multiplication, A = (ai,j)1≤i,j≤d is
the matrix of transition probabilities ai,j = P (Mt+1 = mj |Mt = mi), and
F (r) is the matrix with elements Fi,j (r) ≡ frt+1(r|Mt = mi, Mt+1 = mj).
The log-likelihood of the return process is therefore

lnL (r1, . . . , rT ) =
T∑

t=1

ln
{

Π̂t−1 [A ∗ F (rt)]1′
}

. (A.21)

Loglinearized Economy

We now develop intuition for the multifrequency equilibrium by loglineariz-
ing the pricing equation. Specifically, assume that the price-dividend ratio
is loglinear in the volatility components:

lnQ(Mt) ≈ q̄ −
k̄∑

k=1

qk(Mk,t − 1). (A.22)

Equilibrium fixed-point condition (9.6) implies:

Proposition 16 The coefficients of the loglinear solution satisfy

qk =
ασc,d

2
1 − γk

1 − (1 − γk)ρ
, (A.23)

ln
(

eq̄

1 + eq̄

)
≡ μ̄d − rf − ασc,d, (A.24)

where ρ = eq̄/(1 + eq̄) and σc,d = σcσ̄dρc,d.

Proof By (9.6), the price-dividend ratio satisfies the loglinearized
Euler equation:

lnQ(Mt) = μ̄d − rf − ασc,d + ln Et

{
[1 + Q(Mt+1)]e−ασcρc,d[σd(Mt+1)−σ̄d]

}
.

(A.25)
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We assume that the distribution M is concentrated around 1, and we
look for a linear approximate solution to this fixed-point equation. The
conditional expectation

Et

{
[1 + eq̄−

∑k̄
k=1 qk(Mk,t+1−1)]e−ασcρc,d[σd(Mt+1)−σ̄d]

}
(A.26)

is approximately

(1 + eq̄)Et

[
1 −

∑(
ρqk +

ασc,d

2

)
(Mk,t+1 − 1)

]
.

Since Et(Mk,t+1 − 1) = (1 − γk)(Mk,t − 1), we infer that (A.26) is approxi-

mately equal to (1 + eq̄)
[
1 −

∑k̄
k=1(1 − γk)

(
ρqk + ασc,d

2

)
(Mk,t − 1)

]
. The

loglinearized Euler equation (A.25) can thus be rewritten as:

q̄ −
k̄∑

k=1

qk(Mk,t − 1) ≈ μ̄d − rf − ασc,d + ln(1 + eq̄)

−
k̄∑

k=1

(1 − γk)
(
ρqk +

ασc,d

2

)
(Mk,t − 1).

We infer that Equations (A.23)–(A.24) hold. ■

The price-dividend ratio (A.22) is therefore a persistence-weighted sum
of the volatility components. High-frequency components have negligible
effects on the P/D ratio: qk → 0 when γk → 1. On the other hand, for very
persistent components, the coefficient qk is large since ρ is empirically close
to one at the usual frequencies.

Smooth Probabilities

The econometrician’s smoothed probabilities satisfy the backward recursion

Ψ̂i
t = Π̂i

t

d∑

j=1

aij

Ψ̂j
t+1

Π̂j
t+1

[
Fi,j (rt+1)

frt+1 (rt+1|Rt)

]
, (A.27)

i ∈ {1, . . . , d}, and the final condition Ψ̂T = Π̂T .

Ex post Decomposition

We condition the return Equation (9.9) with respect to the econometrician’s
information set RT :

rt+1 = μ̄d − rf + E

[
ln

1 + Q(Mt+1)
Q(Mt)

− σd(Mt+1)2

2

∣∣∣∣RT

]
+ êd,t+1.
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The definition of smoothed probabilities implies

rt+1 = μ̄d − rf + EΨ̂t+1

(
ln[1 + Q(Mt+1)] − σd(Mt+1)2/2

)

− EΨ̂t
lnQ(Mt) + êd,t+1.

Since EΨ̂t
rt+1 = μ̄d −rf +EΨ̂t

(ln[1+Q(Mt+1)]−σd(Mt+1)2/2− lnQ(Mt)),
we conclude that (9.11) holds.

The Campbell-Hentschel Model

The CH specification is based on a QGARCH(1, 2) process for dividend
news (Engle, 1990; Sentana, 1995). Excess returns satisfy

rt+1 = μ + γσ2
t + (1 + 2λb)ηd,t+1 − λ

(
η2

d,t+1 − σ2
t

)
, (A.28)

where the dividend news ηd,t+1 is N
(
0, σ2

t

)
, with

σ2
t = � + α1 (ηd,t − b)2 + α2 (ηd,t−1 − b)2 + βσ2

t−1,

λ =
γρ (α1 + ρα2)

1 − ρ (α1 + ρα2 + β)
.

The parameter ρ is calibrated to the empirical price-dividend ratio, and the
sevenparameters (μ, γ, �, α1, α2, b, β) are estimatedbymaximum likelihood.

The conditional return Etrt+1 = μ+γσ2
t increases in conditional volatil-

ity and γ, which is related to risk aversion. Feedback appears in (A.28)
through a quadratic term in dividend news, λ(2bηd,t+1 + σ2

t − η2
d,t+1).

After an extreme innovation ηd,t+1, the investor knows that volatility will
increase, and price drops. The location parameter b differentiates QGARCH
from traditional GARCH. When b > 0, negative dividend news ηd,t has a
higher impact on volatility than positive news of the same size.

A.6.2 Learning Economies
Consider the volatility state and investor probability distribution (Mt,Πt)
at the end of period t. The state of the economy in the following period is
computed in three steps.

First, we compute the latent state of nature at date t+1. That is, we draw
the volatility state Mt+1 given Mt, and sample k̄ +2 independent standard
normals (z1,t+1; . . . ; zk̄,t+1; εd,t+1; ηc,t+1). The Gaussian consumption noise

is εc,t+1 = ρc,dεd,t+1+
√

1 − ρ2
c,dηc,t+1. We then compute the consumption,

dividend, and signal in period t + 1.
Second, we compute the corresponding investor belief. The investor

observes (δt+1, ct+1 − ct, dt+1 − dt) and uses Bayes’ rule to derive her
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new probability distribution over volatility states: Πj
t+1 ∝ f(δt+1, ct+1 −

ct, dt+1 − dt|Mt+1 = mj)
∑d

i=1 ai,jΠi
t.

Third, we compute the corresponding excess return using (9.16).

A.6.3 Multifrequency Consumption Risk
In the presence of consumption switches, the tree has price Pc(M ′

t)Ct, and
the stochastic discount factor is given by

SDFt+1 = δθ

[
1 + Pc(M ′

t+1)
Pc(M ′

t)

]θ−1(
Ct+1

Ct

)−α

.

We index the consumption states by i = 1, . . . , N = 2	̄. Let πi,j denote the
transition probability from state i to state j. The price-consumption ratio
satisfies the fixed-point equation

Pc(i) = δ

⎛

⎝
N∑

j=1

πi,j [1 + Pc(j)]
θ
e(1−α)gc(j)+σ2

c(j)(1−α)2/2

⎞

⎠
1/θ

. (A.29)

The interest rate rf = − ln Et(SDFt+1) is then

rf (i) = −θ ln δ − ln

⎧
⎨

⎩
∑

j

πi,j

[
1 + Pc(j)

Pc(i)

]θ−1

e−αgc(j)+α2σ2
c(j)/2

⎫
⎬

⎭ .

Finally, the price-dividend ratio of the stock satisfies the fixed-point
equation

Q(Mt) = δθ
Et

{[
1 + Pc(M ′

t+1)
Pc(M ′

t)

]θ−1

eφ(Mt+1,M ′
t+1)[1 + Q(Mt+1)]

}
,

(A.30)

where φ(Mt+1, M ′
t+1) = μd(Mt+1) − αgc(M ′

t+1) + α2σ2
c (M ′

t+1) / 2 − ασc

(M ′
t+1)σd(Mt+1)ρc,d.

A.7 Appendix to Chapter 10

A.7.1 Proof of Proposition 13
The price-dividend ratio satisfies

Q(Mt) = E

(∫ +∞

0

Λt+s

Λt

Dt+s

Dt
ds

∣∣∣∣Mt

)
.
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Since

d ln Λt =
[
−rf (Mt) − α2σ2

C(Mt)/2
]
dt − ασC(Mt)dZC(t),

d lnDt =
[
gD(Mt) − σ2

D(Mt)/2
]
dt + σD(Mt)dZD(t),

we infer that

ln
Λt+s

Λt
+ ln

Dt+s

Dt
=
∫ s

0

[
gD(Mt+h) − rf (Mt+h)

− σ2
D(Mt+h) + α2σ2

C(Mt+h)
2

]
dh

+
∫ s

0
[σD(Mt+h)dZD(t + h) − ασC(Mt+h)dZC(t + h)]

is conditionally Gaussian with mean
∫ s

0

[
gD(Mt+h) − rf (Mt+h) −

σ2
D(Mt+h)+α2σ2

C(Mt+h)
2

]
dh and variance

∫ s

0 [α2σ2
C(Mt+h) + σ2

D(Mt+h) −
2αρC,DσC(Mt+h)σD(Mt+h)]dh. We then easily check that

E

(
Λt+s

Λt

Dt+s

Dt

∣∣∣∣Mt

)
= Ete

∫ s
0 [gD(Mt+h)−rf (Mt+h)−αρC,DσC(Mt+h)σD(Mt+h)]dh.

A.7.2 Multivariate Extensions
The asset pricing models in the main text are based on univariate MSM
and assume either i.i.d. consumption or Lucas tree economies. We now
introduce an extension of MSM that permits intermediate comovements of
consumption and dividends. As in multivariate MSM (see Chapter 4 and
Appendix to Chapter 7), we assume that the consumption and dividend
processes have constant drifts but stochastic volatilities

σC(Mt) = σ̄C(Mα
1,tM

α
2,t . . . Mα

	̄,t)
1/2,

σD(Mt) = σ̄D(Mβ
1,tM

β
2,t . . . Mβ

k̄,t
)1/2,

where �̄ ≤ k̄. The specification permits correlation in volatility across series
through the bivariate distribution M and correlation in returns through the
Brownian motions ZC and ZD. This flexible setup permits us to construct
a more general class of jump-diffusions for stock prices. We note that the
model reduces to i.i.d. consumption if �̄ = 0, and to a Lucas tree economy
if �̄ = k̄ and multipliers are perfectly correlated.
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The generalized model might also be useful for option pricing. In our
environment, the price of a European option f(PT ) is therefore given by5

f0 = E0

[
ΛT

Λ0
f(PT )

]
.

As in Hull and White (1987), let f [(Mt)t∈[0,T ]] = E0 [ΛT f(PT )/Λ0|
(Mt)t∈[0,T ]

]
denote the option price conditional on the state history. The

law of iterated expectations implies f0 = E0f
(
(Mt)t∈[0,T ]

)
, which can be

useful in empirical settings.

A.7.3 Proof of Proposition 14
Given an initial state νt, the P/D ratio of the Lucas tree economy can be
written as

Q(ε) = E

(∫ +∞

0
e−δ′s− α(1−α)

2

∫ s
0 (σ2

D[Mt+h(ε)]−σ̄2
D)dhds

∣∣∣∣ νt

)
.

We note that Q(0) = 1/δ′. By the dominated convergence theorem, the
function Q is differentiable and

Q′(0) = −q1E

⎧
⎨

⎩

∫ +∞

0
e−δ′s

⎡

⎣
∫ s

0

k̄∑

k=1

(νk,t+h − 1)dh

⎤

⎦ ds

∣∣∣∣∣∣
νt

⎫
⎬

⎭.

Since Et(νk,t+h − 1) = e−γkh(νk,t − 1), we infer that

Q′(0) = −q1

k̄∑

k=1

(νk,t − 1)
(∫ +∞

0
e−δ′s

∫ s

0
e−γkhdh ds

)

= −q1

k̄∑

k=1

νk,t − 1
δ′(δ′ + γk)

.

Hence

Q(ε) = Q(0)

⎛

⎝1 − q1

k̄∑

k=1

νk,t − 1
δ′ + γk

ε

⎞

⎠+ o(ε).

We take the log and conclude that (10.7) holds. A similar argument holds
in the i.i.d. consumption case.

5
See Anderson and Raimondo (2005), David and Veronesi (2002), Garcia, Luger,

and Renault (2003) and Garleanu, Pedersen, and Poteshman (2006) for recent work on
consumption-based option pricing.
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A.7.4 Proof of Proposition 15
Consider

Qk̄(t) ≡ E

[∫ +∞

0
e−ρse−λ[θk̄(t+s)−θk̄(t)]ds

∣∣∣∣Mt

]
,

where λ = α(1 − α)/2 > 0. We easily check that Qk̄(t) is a positive and
bounded submartingale:

Qk̄(t) ≤ Ek̄

[
Qk̄+1(t)

]
≤ 1/ρ.

The P/D ratio Qk̄(t) therefore converges to a limit distribution, which we
now easily characterize.

Consider the function Φ : D[0,∞) → D[0,∞) defined for every cadlag
function f by the integral transform

(Φf)(t) =
∫ +∞

0
exp {−ρs − λ[f(t + s) − f(t)]} ds.

The function Φ is bounded with respect to the Skorohod distance since
(Φf)(t) ∈ [0, 1/ρ] for all t. We also check that it is continuous. Since θk →
θ∞, we infer that Φθk weakly converges to Φθ∞. Hence, Qk̄(t) → Q∞(t),
and the proposition holds.
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