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Created by Josh On, a San Francisco-based de-
signer, the interactive website TheyRule.net 
uses a network representation to illustrate the 
interlocking relationship of the US economic 
class. By mapping out the shared board mem-
bership of the most powerful U.S. companies, 
it reveals the influential role of a small num-
ber of individuals who sit on multiple boards. 
Since its release in 2001, the project is inter-
changeably viewed as art or science.
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SECTION 7.1

Angelina Jolie and Brad Pitt, Ben Affleck and Jennifer Garner, Harri-

son Ford and Calista Flockhart, Michael Douglas and Catherine Zeta-Jones, 

Tom Cruise and Katie Holmes, Richard Gere and Cindy Crawford (Figure 
7.1). An odd list, yet instantly recognizable to those immersed in the head-

line-driven world of celebrity couples. They are Hollywood stars that are or 

were married. Their weddings (and breakups) has drawn countless hours 

of media coverage and sold millions of gossip magazines. Thanks to them 

we take for granted that celebrities marry each other. We rarely pause to 

ask: Is this normal? In other words, what is the true chance that a celebrity 

marries another celebrity?

Assuming that a celebrity could date anyone from a pool of about a 

hundred million (108) eligible individuals worldwide, the chances that 

their mate would be another celebrity from a generous list of 1,000 other 

celebrities is only 10-5. Therefore, if dating were driven by random encoun-

ters, celebrities would never marry each other. 

Even if we do not care about the dating habits of celebrities, we must 

pause and explore what this phenomenon tells us about the structure of 

the social network. Celebrities, political leaders, and CEOs of major corpo-

rations tend to know an exceptionally large number of individuals and are 

known by even more. They are hubs. Hence celebrity dating (Figure 7.1) and 

joint board memberships (Figure 7.0) are manifestations of an interesting 

property of social network: hubs tend to have ties to other hubs.

As obvious this may sound, this property is not present in all networks. 

Consider for example the protein-interaction network of yeast, shown in 

Figure 7.2. A quick inspection of the network reveals its scale-free nature: 

numerous one- and two-degree proteins coexist with a few highly connect-

ed hubs. These hubs, however, tend to avoid linking to each other. They link 

instead to many small-degree nodes, generating a hub-and-spoke pattern. 

This is particularly obvious for the two hubs highlighted in Figure 7.2: they 

almost exclusively interact with small-degree proteins.

INTRODUCTION

Figure 7.1
Hubs Dating Hubs

Celebrity couples, representing a highly vis-
ible proof that in social networks hubs tend 
to know, date and marry each other (Images 
from http://www.whosdatedwho.com).
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A brief calculation illustrates how unusual this pattern is. Let us as-

sume that each node chooses randomly the nodes it connects to. Therefore 

the probability that nodes with degrees k and k′ link to each other is

Equation (7.1) tells us that hubs, by the virtue of the many links they 

have, are much more likely to connect to each other than to small degree 

nodes. Indeed, if k and k′  are large, so is pk,k’ . Consequently, the likelihood 

that hubs with degrees k=56 and k’ = 13 have a direct link between them 

is pk,k’ = 0.16, which is 400 times larger than p1,2 = 0.0004, the likelihood 

that a degree-two node links to a degree-one node. Yet, there are no direct 

links between the hubs in Figure 7.2, but we observe numerous direct links 

between small degree nodes.

Instead of linking to each other, the hubs highlighted in Figure 7.2 al-

most exclusively connect to degree one nodes. By itself this is not unex-

pected: We expect that a hub with degree k = 56 should link to N1 p1, 56 ≈ 12 

nodes with k = 1. The problem is that this hub connects to 46 degree one 

neighbors, i.e. four times the expected number.

In summary, while in social networks hubs tend to “date” each other, in 

the protein interaction network the opposite is true: The hubs avoid linking 

to other hubs, connecting instead to many small degree nodes. While it is 

dangerous to derive generic principles from two examples, the purpose of 

this chapter is to show that these patterns are manifestations of a general 

property of real networks: they exhibit a phenomena called degree correla-
tions. We discuss how to measure degree correlations and explore their im-

pact on the network topology.

(7.1)pk , ′k = k ′k
2L
.

DEGREE CORRELATIONS INTRODUCTION

The protein interaction map of yeast. Each 
node corresponds to a protein and two pro-
teins are linked if there is experimental evi-
dence that they can bind to each other in the 
cell. We highlighted the two largest hubs, with 
degrees k = 56 and k′ = 13. They both connect 
to many small degree nodes and avoid linking 
to each other.

The network has N = 1,870 proteins and L = 
2,277 links, representing one of the earliest 
protein interaction maps [1, 2]. Only the larg-
est component is shown. Note that the protein 
interaction network of yeast in TABLE 4.1 rep-
resents a later map, hence it contains more 
nodes and links than the network shown in 
this figure. Node color corresponds to the es-
sentiality of each protein: the removal of the 
red nodes kills the organism, hence they are 
called lethal or essential proteins. In contrast 
the organism can survive without one of its 
green nodes. After [3].

Hubs Avoiding Hubs

Figure 7.2

Pajek

k = 56
k’ =

 13
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ASSORTATIVITY
AND DISASSORTATIVITY

SECTION 7.2

Just by the virtue of the many links they have, hubs are expected to link 

to each other. In some networks they do, in others they don’t. This is il-

lustrated in Figure 7.3, that shows three networks with identical degree se-

quences but different topologies:

•  Neutral Network

Figure 7.3b shows a network whose wiring is random. We call this net-

work neutral, meaning that the number of links between the hubs co-

incides with what we expect by chance, as predicted by (7.1). 

•  Assortative Network

The network of Figure 7.3a has precisely the same degree sequence as 

the one in Figure 7.3b. Yet, the hubs in Figure 7.3a tend to link to each 

other and avoid linking to small-degree nodes. At the same time the 

small-degree nodes tend to connect to other small-degree nodes. Net-

works displaying such trends are assortative. An extreme manifesta-

tion of this pattern is a perfectly assortative network, in which each 

degree-k node connects only to other degree-k nodes (Figure 7.4).

•  Disassortative Network

In Figure 7.3c the hubs avoid each other, linking instead to small-de-

gree nodes. Consequently the network displays a hub and-spoke char-

acter, making it disassortative.

In general a network displays degree correlations if the number of links 

between the high and low-degree nodes is systematically different from 

what is expected by chance. In other words, the number of links between 

nodes of degrees k and k′ deviates from (7.1).

DEGREE CORRELATIONS
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(a,b,c) Three networks that have precisely the 
same degree distribution (Poisson pk), but dis-
play different degree correlations. We show 
only the largest component and we highlight  
in orange the five highest degree nodes and 
the direct links between them.

(d,e,f) The degree correlation matrix eij for an 
assortative (d), a neutral (e) and a disassorta-
tive network (f) with Poisson degree distri-
bution, N=1,000, and 〈k〉=10.  The colors cor-
respond to the probability that a randomly 
selected link connects nodes with degrees k1 
and k2. 

(a,d) Assortative Networks
For assortative networks eij is high along the 
main diagonal. This indicates that nodes of 
comparable degree tend to link to each other: 
small-degree nodes to small-degree nodes and 
hubs to hubs. Indeed, the network in (a) has 
numerous links between its hubs as well as be-
tween its small degree nodes. 

(b,e) Neutral Networks 
In neutral networks nodes link to each other 
randomly. Hence the density of links is sym-
metric around the average degree, indicating 
the lack of  correlations in the linking pattern.  

(c,f) Disassortative Networks  
In disassortative networks eij is higher along 
the secondary diagonal, indicating that hubs 
tend to connect to small-degree nodes and 
small-degree nodes to hubs. Consequently 
these networks have a hub and spoke charac-
ter, as seen in (c). 

Figure 7.3

Degree Correlation Matrix
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The information about potential degree correlations is captured by the 

degree correlation matrix, eij, which is the probability of finding a node 

with degrees i and j at the two ends of a randomly selected link. As eij is a 

probability, it is normalized, i.e.

In (5.27) we derived the probability qk that there is a degree-k node at the 

end of the randomly selected link, obtaining 

We can connect qk to eij via

In neutral networks, we expect

A network displays degree correlations if eij deviates from the random 

expectation (7.5). Note that (7.2) - (7.5) are valid for networks with an arbi-

trary degree distribution, hence they apply to both random and scale-free 

networks. 

Given that eij encodes all information about potential degree correla-

tions, we start with its visual inspection. Figures 7.3d,e,f show eij for an assor-

tative, a neutral and a disassortative network. In a neutral network small 

and high-degree nodes connect to each other randomly, hence eij lacks any 

trend (Figure 7.3e). In contrast, assortative networks show high correlations 

along the main diagonal, indicating that nodes predominantly connect to 

nodes with comparable degree. Therefore low-degree nodes tend to link to 

other low-degree nodes and hubs to hubs (Figure 7.3d). In disassortative net-

works eij displays the opposite trend: it has high correlations along the sec-

ondary diagonal. Therefore high-degree nodes tend to connect to low-de-

gree nodes (Figure 7.3f).

In summary information about degree correlations is carried by the de-

gree correlation matrix eij. Yet, the study of degree correlations through 

the inspection of eij has numerous disadvantages:

• It is difficult to extract information from the visual inspection of a 

matrix.

• Unable to infer the magnitude of the correlations, it is difficult to 

compare networks with different correlations.

• ejk contains approximately k 2
max/2 independent variables, representing 

a huge amount of information that is difficult to model in analytical 

calculations and simulations.

We therefore need to develop a more compact way to detect degree cor-

relations. This is the goal of the subsequent sections.

ASSORTATIVITY AND DISASSORTATIVITY

In a perfectly assortative network each node 
links only to nodes with the same degree. 
Hence ejk = δjkqk, where δjk is the Kronecker del-
ta. In this case all non-diagonal elements of 
the ejk matrix are zero. The figure shows such 
a perfectly assortative network, consisting of 
complete k-cliques.

Figure 7.4

Perfect Assortativity

(7.2)

(7.3)

(7.4)

(7.5)

qk =
kpk
〈k〉

eij = qiqj .

i, j
∑eij = 1.

eij
j

= qi .

.
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SECTION 7.3

While eij contains the complete information about the degree correla-

tions characterizing a particular network, it is difficult to interpret its 

content. In this section is to introduce the degree correlation function that 

offers a simpler way to quantify degree correlations.

Degree correlations capture the relationship between the degrees of 

nodes that link to each other. One way to quantify their magnitude is to 

measure for each node i the average degree of its neighbors (Figure 7.5)

The degree correlation function calculates (7.6) for all nodes with degree 

k [4, 5]

where P(k’|k) is the conditional probability that following a link of a k-de-

gree node we reach a degree-k' node. Therefore knn(k) is the average degree 

of the neighbors of all degree-k nodes.To quantify degree correlations we 

inspect the dependence of knn(k) on k. 

•  Neutral Network

For a neutral network (7.3)-(7.5) predict

This allows us to express knn(k) as

Therefore, in a neutral network the average degree of a node’s neigh-

bors is independent of the node’s degree k and depends only on the 

global network characteristics ⟨k⟩ and ⟨k2⟩. So plotting knn(k) in func-

tion of k should result in a horizontal line at ⟨k2⟩/⟨k⟩, as observed for 

MEASURING DEGREE
CORRELATIONS

(7.6)

(7.8)

(7.7)

(7.9)

To determine the degree correlation function 
knn(ki) we calculate the average degree of a 
node’s neighbors. The figure illustrates the 
calculation of knn(ki) for node i. As the degree 
of the node i is ki = 4, by averaging the degree 
of its neighbors j1, j2, j3 and j4, we obtain knn(4) = 
(4 + 3 + 3 + 1)/4 = 2.75.

Figure 7.5

Nearest Neighbor Degree: knn

knn (ki ) =
1
ki
∑
j=1

N

Aijk j

knn (k) = ′k
′k
∑ P( ′k | k)

P( ′k | k) = ek ′k

ek ′k
′k
∑ = ek ′k

qk
= q ′k qk

qk
= q ′k

knn (k) = ′k
′k
∑ q ′k = ′k

′k
∑ ′k p( ′k )

〈k〉
= 〈k2 〉

〈k〉
.

.

.

j2

j1

j4

j3

i

j2
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the power grid (Figure 7.6b). Equation (7.9) also captures an intriguing 

property of real networks: our friends are more popular than we are, 

a phenomenon called the friendship paradox (BOX 7.1).

•  Assortative Network

In assortative networks hubs tend to connect to other hubs, hence the 

higher is the degree k of a node, the higher is the average degree of 

its nearest neighbors. Consequently for assortative networks knn(k) 

increases with k, as observed for scientific collaboration networks 

(Figure 7.6a).

•  Disassortative Network

In disassortative network hubs prefer to link to low-degree nodes. 

Consequently knn(k) decreases with k, as observed for the metabolic 

network (Figure 7.6c).

The behavior observed in Figure 7.6 prompts us to approximate the de-

gree correlation function with [4]

If the scaling (7.10) holds, then the nature of degree correlations is deter-

mined by the sign of the correlation exponent μ:

•  Assortative Networks: μ > 0

A fit to knn(k) for the science collaboration network provides μ = 0.37 

± 0.11 (Figure 7.6a).

•  Neutral Networks: μ = 0

According to (7.9) knn(k) is independent of k. Indeed, for the power grid 

we obtain μ = 0.04 ± 0.05, which is indistinguishable from zero (Figure 
7.6b).

•  Disassortative Networks: μ < 0

For the metabolic network we obtain μ = − 0.76 ± 0.04 (Figure 7.6c). 

In summary, the degree correlation function helps us capture the pres-

ence or absence of correlations in real networks. The knn(k) function also 

plays an important role in analytical calculations, allowing us to predict 

the impact of degree correlations on various network characteristics (SEC-
TION 7.6). Yet, it is often convenient to use a single number to capture the 

magnitude of correlations present in a network. This can be achieved ei-

ther through the correlation exponent μ defined in (7.10), or using the de-

gree correlation coefficient introduced in BOX 7.2.

The degree correlation function knn(k) for three 
real networks. The panels show knn(k) on a log-
log plot to test the validity of the scaling law 
(7.10).

(a) Collaboration Network 
The increasing knn(k) with k indicates that 
the network is assortative.

(b) Power Grid 
The horizontal knn(k) indicates the lack of 
degree correlations, in line with (7.9) for 
neutral networks.

(c) Metabolic Network 
The decreasing knn(k) documents the net-
work’s disassortative nature.

On each panel the horizontal line corresponds 
to the prediction (7.9) and the green dashed 
line is a fit to (7.10). 

Figure 7.6

Degree Correlation Function
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BOX 7.2
DEGREE CORRELATION COEFFICIENT

If we wish to characterize degree correlations using a single number, 

we can use either μ or the degree correlation coefficient. Proposed by 

Mark Newman [8,9], the degree correlation coefficient is defined as

with

Hence r is the Pearson correlation coefficient between the degrees 

found at the two end of the same link. It varies between −1 ≤ r ≤ 1: For 

r < 0 the network is assortative, for r = 0 the network is neutral and 

for r > 0 the network is disassortative. For example, for the scientific 

collaboration network we obtain r = 0.13, in line with its assortative 

nature; for the protein interaction network r = −0.04, supporting its 

disassortative nature and for the power grid we have r = 0. 

The assumption behind the degree correlation coefficient is that 

knn(k) depends linearly on k with slope r. In contrast the correlation 

exponent μ assumes that knn(k) follows the power law (7.10). Naturally, 

both cannot be valid simultaneously. The analytical models of SEC-
TION 7.7 offer some guidance, supporting the validity of (7.10). As we 

show in ADVANCED TOPICS 7.A, in general r correlates with μ.

(7.11)

(7.12)

r =
jk
∑ jk(ejk − qjqk )

σ 2

σ 2 =
k
∑k2qk −

k
∑kqk
⎡
⎣⎢

⎤
⎦⎥

2

BOX 7.1
FRIENDSHIP PARADOX

The friendship paradox makes 

a suprising statement: On av-
erage my friends are more pop-
ular than I am [6,7]. This claim 

is rooted in (7.9), telling us that 

the average degree of a node’s 

neighbors is not simply ⟨k⟩, but 

depends on ⟨k2⟩ as well. 

Consider a random network, for 

which ⟨k2⟩ = ⟨k⟩(1 + ⟨k⟩).  Accord-

ing to (7.9) knn(k) = 1+⟨k⟩. There-

fore the average degree of a 

node’s neighbors is always high-

er than the average degree of a 

randomly chosen node, which is 

⟨k⟩. 

The gap between ⟨k⟩ and our 

friends’ degree can be partic-

ularly large in scale-free net-

works, for which ⟨k2⟩/⟨k⟩ signifi-

cantly exceeds ⟨k⟩ (Figure 4.8). 
Consider for example the actor 

network, for which ⟨k2⟩/⟨k⟩  = 565 

(Table 4.1). In this network the av-

erage degree of a node's friends 

is hundreds of times the degree 

of the node itself.

The friendship paradox has a 

simple origin: We are more like-

ly to be friends with hubs than 

with small-degree nodes, simply 

because hubs have more friends 

than the small nodes. 

.
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SECTION 7.4

Throughout this book we assumed that networks are simple, meaning 

that there is at most one link between two nodes (Figure 2.17). For example, 

in the email network we place a single link between two individuals that 

are in email contact, despite the fact that they may have exchanged multi-

ple messages. Similarly, in the actor network we connect two actors with a 

single link if they acted in the same movie, independent of the number of 

joint movies. All datasets discussed in Table 4.1 are simple networks. 

In simple networks there is a puzzling conflict between the scale-free 

property and degree correlations [10, 11]. Consider for example the scale-

free network of Figure 7.7a, whose two largest hubs have degrees 

k = 55 and k' = 46. In a network with degree correlations ekk' the expected 

number of links between k and k' is

For a neutral network ekk, is given by (7.5), which, using (7.3), predicts

Therefore, given the size of these two hubs, they should be connected 

to each other by two to three links to comply with the network’s neutral 

nature. Yet, in a simple network we can have only one link between them, 

causing a conflict between degree correlations and the scale-free property. 

The goal of this section is to understand the origin and the consequences 

of this conflict. 

For small k and k' (7.14) predicts that Ekk’ is also small, i.e. we expect less 

than one link between the two nodes. Only for nodes whose degree exceeds 

some threshold ks does (7.14) predict multiple links. As we show in ADVANCED 
TOPICS 7.B, ks, called structural cutoff, scales as

STRUCTURAL CUTOFFS

(7.13)

(7.14)

Ek ′k = ek ′k 〈k〉N

Ekk ' = kpkk ' pk '

k
N =

55
300

46
300

3
300 = 2.8 .

.
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STRUCTURAL CUTOFFS

(a) A scale-free network with N=300, L=450, 
and γ=2.2, generated by the configuration 
model (Figure 4.15). By forbidding self-loops 
and multi-links, we made the network sim-
ple. We highlight the two largest nodes in 
the network. As (7.14) predicts, to maintain 
the network’s neutral nature, we need ap-
proximately three links between these two 
nodes. The fact that we do not allow multi-
links (simple network representation) 
makes the network disassortative, a phe-
nomena called structural disassortativity.

(b) To illustrate the origins of structural cor-
relations we start from a fixed degree se-
quence, shown as individual stubs on the 
left. Next we randomly connect the stubs 
(configuration model). In this case the ex-
pected number of links between the nodes 
with degree 8 and 7 is 8x7/28 ≈ 2. Yet, if we 
do not allow multi-links, there can only be 
one link between these two nodes, making 
the network structurally disassortative.

Figure 7.7

Structural Disassortativity

a

(a)

(b)
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In other words, nodes whose degree exceeds (7.15) have Ekk’ > 1, a conflict 

that as we show below gives rise to degree correlations.

To  understand the consequences of the structural cutoff we must first 

ask if a network has nodes whose degrees exceeds (7.15). For this we compare 

the structural cutoff, ks, with the natural cutoff, kmax, which is the expected 

largest degree in a network. According to (4.18), for a scale-free network  

kmax ∼ N   . Comparing kmax to ks allows us to distinguish two regimes:

• No Stuctural Cutoff

For random networks and scale-free networks with γ ≥ 3 the exponent 

of kmax is smaller than 1/2, hence kmax is always smaller than ks. In oth-

er words the node size at which the structural cutoff turns on exceeds 

the size of the biggest hub. Consequently we have no nodes for which 

Ekk’ > 1. For these networks we do not have a conflict between degree 

correlations and the simple network requirement.

• Stuctural Disassortativity 

For scale-fee networks with γ < 3 we have 1/(γ-1) > 1/2, i.e. ks can be 

smaller than kmax. Consequently nodes whose degree is between ks and 

kmax can violate Ekk’ > 1. In other words the network has fewer links be-

tween its hubs than  (7.14) would predict. These networks will therefore 

become disassortative, a phenomenon we call structural disassorta-
tivity. This is illustrated in Figures 7.8a,b that show a simple scale-free 

network generated by the configuration model. The network shows 

disassortative scaling, despite the fact that we did not impose degree 

correlations during its construction.

We have two avenues to generate networks that are free of structural 

disassortativity:

(i) We can relax the simple network requirement, allowing multiple 

links between the nodes. The conflict disappears and the network 

will be neutral (Figures 7.8c,d).

(ii) If we insist having a simple scale-free network that is neutral or as-

sortative, we must remove all hubs with degrees larger than ks. This 

is illustrated in Figures 7.8e,f: a network that lacks nodes with k ≥ 100 

is neutral.

Finally, how can we decide whether the correlations observed in a par-

ticular network are a consequence of structural disassortativity, or are 

generated by some unknown process that leads to degree correlations? De-

gree-preserving randomization (Figure 4.17) helps us distinguish these two 

possibilities:

(i) Degree Preserving Randomization with Simple Links (R-S)

We apply degree-preserving randomization to the original network 

1
γ 1

ks (N ) ∼ (〈k〉N )
1/2 . (7.15)
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The figure illustrates the tension between the 
scale-free property and degree correlations. 
We show the degree distribution (left pan-
els) and the degree correlation function knn(k) 
(right panels) of a scale-free network with N = 
10,000 and γ = 2.5, generated by the configura-
tion model (Figure 4.15).

(a,b) If we generate a scale-free network with 
the power-law degree distribution shown 
in (a), and we forbid self-loops and multi-
links, the network displays structural dis-
assortativity, as indicated by knn(k) in (b). 
In this case, we lack a sufficient number 
of links between the high-degree nodes 
to maintain the neutral nature of the net-
work, hence for high k the knn(k) function 
must decay.

(c,d) We can eliminate structural disassor-
tativity by relaxing the simple network 
requirement, i.e. allowing multiple links 
between two nodes. As shown in (c,d), in 
this case we obtain a neutral scale-free 
network. 

(e,f) If we impose an upper cutoff by removing 
all nodes with k ≥ ks ≃ 100, as predicted 
by (7.15), the network becomes neutral, as 
seen in (f).

Figure 7.8

Natural and Structural Cutoffs
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To uncover the origin of the observed degree 
correlations, we must compare knn(k) (grey 
symbols), with knn

R-S(k) and kR-M
nn (k) obtained after 

degree-preserving randomization. Two de-
gree-preserving randomizations are informa-
tive in this context:

Randomization with Simple Links (R-S):
At each step of the randomization process we 
check that we do not have more than one link 
between any node pairs.

Randomization with Multiple Links (R-M):
We allow multi-links during the randomiza-
tion processes.

We performed these two randomizations for 
the networks of Figure 7.6. The R-M procedure 
always generates a neutral network, conse-
quently knn

R-M(k) is always horizontal. The true 
insight is obtained when we compare knn(k) 
with knn

R-S(k), helping us to decide if the observed 
correlations are structural:

(a)  Scientific Collaboration Network
The increasing knn(k) differs from the hori-
zontal knn

R-S(k), indicating that the network’s 
assortativity is not structural. Consequent-
ly the assortativity is generated by some 
process that governs the network’s evo-
lution. This is not unexpected: structural 
effects can generate only disassortativity, 
not assortativity.

(b)  Power Grid
The horizontal knn(k), k R-S 

nn(k) and knn
R-M(k) all 

support the lack of degree correlations 
(neutral network).

(c)  Metabolic Network
As both knn(k) and knn

R-S(k) decrease, we con-
clude that the network’s disassortativity is 
induced by its scale-free property. Hence 
the observed degree correlations are struc-
tural. 

Figure 7.9

Randomization and Degree Correlations
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and at each step we make sure that we do not permit more than one 

link between a pair of nodes. On the algorithmic side this means 

that each rewiring that generates multi-links is discarded. If the 

real knn(k) and the randomized knn
 R−S(k) are indistinguishable, then 

the correlations observed in a real system are all structural, ful-

ly explained by the degree distribution. If the randomized knn 
R−S

 (k)  

does not show degree correlations while knn(k) does, there is some 

unknown process that generates the observed degree correlations.

(ii) Degree Preserving Randomization with Multiple Links (R-M) 

For a self-consistency check it is sometimes useful to perform de-

gree-preserving randomization that allows for multiple links be-

tween the nodes. On the algorithmic side this means that we allow 

each random rewiring, even if it leads to multi-links. This process 

eliminates all degree correlations.

We performed the randomizations discussed above for three real net-

works. As Figure 7.9a shows, the assortative nature of the scientific collabo-

ration network disappears under both randomizations. This indicates that 

the assortative correlations of the collaboration network is not linked to 

its scale-free nature. In contrast, for the metabolic network the observed 

disassortativity remains unchanged under R-S (Figure 7.9c). Consequently 

the disassortativity of the metabolic network is structural, being induced 

by its degree distribution.

In summary, the scale-free property can induce disassortativity in sim-

ple networks. Indeed, in neutral or assortative networks we expect multi-

ple links between the hubs. If multiple links are forbidden (simple graph), 

the network will display disassortative tendencies. This conflict vanishes 

for scale-free networks with γ ≥ 3 and for random networks. It also vanish-

es if we allow multiple links between the nodes.

(b)
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SECTION 7.5

To understand the prevalence of degree correlations we need to inspect 

the correlations characterizing real networks. In Figure 7.10 we show the 

knn(k) function for the ten reference networks, observing several patterns:

•  Power Grid

For the power grid knn(k) is flat and indistinguishable from its ran-

domized version, indicating a lack of degree correlations (Figure 7.10a). 
Hence the power grid is neutral.

•  Internet

For small degrees (k ≤ 30) knn(k) shows a clear assortative trend, an 

effect that levels off for high degrees (Figure 7.10b). The degree correla-

tions vanish in the randomized version of the Internet map. Hence 

the Internet is assortative, but structural cutoffs eliminate the effect 

for high k.

•  Social Networks

The three networks capturing social interactions, the mobile phone 

network, the science collaboration network and the actor network, all 

have an increasing knn(k), indicating that they are assortative (Figures 
7.10c-e). Hence in these networks hubs tend to link to other hubs and 

low-degree nodes tend to link to low-degree nodes. The fact that the 

observed knn(k) differs from the knn  (k), indicates that the assortative 

nature of social networks is not due to their scale-free the degree dis-

tribution.

•  Email Network

While the email network is often seen as a social network, its knn(k) 
decreases with k, documenting a clear disassortative behavior (Figure 
7.10f). The randomized knn  (k) also decays, indicating that we are ob-

serving structural disassortativity, a consequence of the network’s 

scale-free nature.

CORRELATIONS IN 
REAL NETWORKS

R-S

R-S
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•  Biological Networks

The protein interaction and the metabolic network both have a nega-

tive μ, suggesting that these networks are disassortative. Yet, the scal-

ing of knn (k) is indistinguishable from knn (k), indicating that we are 

observing structural disassortativity, rooted in the scale-free nature 

of these networks (Figure 7.10 g,h).

•  WWW

The decaying knn(k) implies disassortative correlations (Figure 7.10i). 
The randomized knn (k) also decays, but not as rapidly as knn(k). Hence 

the disassortative nature of the WWW is not fully explained by its de-

gree distribution.

•  Citation Network

This network displays a puzzling behavior: for k ≤ 20 the degree cor-

relation function knn(k) shows a clear assortative trend; for k > 20, 

however, we observe disassortative scaling (Figure 7.10j). Such mixed 

behavior can emerge in networks that display extreme assortativity 

(Figure 7.13b). This suggests that the citation network is strongly as-

sortative, but its scale-free nature induces structural disassortativity, 

changing the slope of knn(k) for k ≫ ks. 

In summary, Figure 7.10 indicates that to understand degree correla-

tions, we must always compare knn(k) to the degree randomized knn (k). It 

also allows us to draw some interesting conclusions:

(i)  Of the ten reference networks the power grid is the only truly neu-

tral network. Hence most real networks display degree correlations.

(ii) All networks that display disassortative tendencies (email, protein, 

metabolic) do so thanks to their scale-free property. Hence, these are 

all structurally disassortative. Only the WWW shows disassortative 

correlations that are only partially explained by its degree distribu-

tion.

(iii) The degree correlations characterizing assortative networks are not 

explained by their degree distribution. Most social networks (mobile 

phone calls, scientific collaboration, actor network) are in this class 

and so is the Internet and the citation network.

A number of mechanisms have been proposed to explain the origin 

of the observed assortativity. For example, the tendency of individuals to 

form communities, the topic of CHAPTER 9, can induce assortative correla-

tions [12]. Similarly, the society has endless mechanisms, from profession-

al committees to TV shows, to bring hubs together, enhancing the assorta-

tive nature of social and professional networks. Finally, homophily, a well 

documented social phenomena [13], indicates that individuals tend to as-

sociate with other individuals of similar background and characteristics, 

hence individuals with comparable degree tend to know each other. This 

degree-homophily may be responsible for the celebrity marriages as well  

(Figure 7.1).

R-S

R-S

R-S 
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The degree correlation function knn(k) for the 
ten reference networks (Table 4.1). The grey 
symbols show the knn(k) function using linear 
binning; purple circles represent the same data 
using log-binning (SECTION 4.11). The green dot-
ted line corresponds to the best fit to (7.10) with-
in the fitting interval marked by the arrows at 
the bottom. Orange squares represent kR-S 

nn  (k) 
obtained for 100 independent degree-preserv-
ing randomizations, while maintaining the 
simple character of these networks. Note that 
we made directed networks undirected when 
we measured knn(k). To fully characterize the 
correlations emerging in directed networks 
we must use the directed correlation function 
(BOX 7.3).

Figure 7.10

Randomization and Degree Correlations
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BOX 7.3
CORRELATIONS IN DIRECTED NETWORKS

The degree correlation function (7.7) is defined for undirected net-

works. To measure correlations in directed networks we must take 

into account that each node i is characterized by an incoming k in and 

an outgoing k out degree [14]. We therefore define four degree correla-

tion functions, knn
α,β(k), where α and β refer to the in and out indices 

(Figures 7.11 a-d). In Figure 7.11e we show knn 
α,β(k) for citation networks, in-

dicating a lack of in-out correlations and the presence of assortativity 

for small k for the other three correlations (in-in, out-in, out-out).

DEGREE CORRELATIONS DEGREE CORRELATIONS IN REAL NETWORKS

i

i

(a)-(d) The four possible correlations charac-
terizing a directed network. We show 
in purple and green the (α, β) indices 
that define the appropriate correla-
tion function [14]. For example, (a) 
describes the knn 

in,in(k) correlations be-
tween the in-degrees of two nodes 
connected by a link. 

(e)  The k α, β
nn  (k) correlation function for ci-

tation networks, a directed network. 
For example knn 

in,in(k)  is the average in-
degree of the in-neighbors of nodes 
with in-degree kin. These functions 
show a clear assortative tendency for 
three of the four functions up to de-
gree k ≃ 100. The empty symbols cap-
ture the degree randomized k α, β

nn  (k) for 
each degree correlation function (R-S 
randomization).

Figure  7.11
Correlations in Directed Network
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SECTION 7.6

To explore the impact of degree correlations on various network char-

acteristics we must first understand the correlations characterizing the 

network models discussed thus far. It is equally important to develop algo-

rithm that can generate networks with tunable correlations. As we show in 

this section, given the conflict between the scale-free property and degree 

correlations, this is not a trivial task. 

DEGREE CORRELATIONS IN STATIC MODELS
Erdős-Rényi Model

The random network model is neutral by definition. As it lacks hubs, 

it does not develop structural correlations either. Hence for the Erdős-

Rényi network knn(k) is given by (7.9), predicting μ = 0 for any ⟨k⟩ and N.  

Configuration Model 

The configuration model (Figure 4.15) is also neutral, independent of the 

choice of the degree distribution pk. This is because the model allows for 

both multi-links and self-loops. Consequently, any conflicts caused by 

the hubs are resolved by the multiple links between them. If, however, 

we force the network to be simple, then the generated network will de-

velop structural disassortativity (Figure 7.8).

Hidden Parameter Model

In the model ejk is proportional to the product of the randomly chosen 

hidden variables ηj and ηk (Figure 4.18). Consequently the network is tech-

nically uncorrelated. However, if we do not allow multi-links, for scale-

free networks we again observe structural disassortativity. Analytical 

calculations indicate that in this case [18]

    knn(k) ~ k−1, 

i.e. the degree correlation function follows (7.10) with μ = − 1.

Taken together, the static models explored so far generate either neu-

tral networks, or networks characterized by structural disassortativity 

following (7.16).

GENERATING
CORRELATED NETWORKS

(7.16)
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DEGREE CORRELATIONS IN EVOLVING NETWORKS
To understand the emergence (or the absence) of degree correlations in 

growing networks, we start with the initial attractiveness model (SEC-
TION 6.5), which includes as a special case the Barabási-Albert model. 

Initial Attractiveness Model
Consider a growing network in which preferential attachment follows 

(6.23), i.e. Π(k) ∼ A + k, where A is the initial attractiveness. Depending on 

the value of A, we observe three distinct scaling regimes [15]: 

(i) Disassortative Regime: γ < 3  

If  − m < A < 0  we have

Hence the resulting network is disassortative, knn(k) decaying follow-

ing the power-law [15, 16]

(ii) Neutral Regime: γ = 3  

If A = 0 the initial attractiveness model reduces to the Barabási-Al-

bert model. In this case

Consequently knn(k) is independent of k, hence the network is neu-

tral.

(iii) Weak Assortativity: γ > 3
If A > 0 the calculations predict

As knn(k) increases logarithmically with k, the resulting network dis-

plays a weak assortative tendency, but does not follow (7.10).

In summary, (7.17) - (7.20) indicate that the initial attractiveness model 

generates rather complex degree correlations, from disassortativity to 

weak assortativity. Equation (7.19) also shows that the network gener-

ated by the Barabási-Albert model is neutral. Finally, (7.17) predicts a 

power law k-dependence for knn(k), offering analytical support for the 

empirical scaling (7.10).

Bianconi-Barabási Model

With a uniform fitness distribution the Bianconi-Barabási model gen-

erates a disassortative network [5] (Figure 7.12). The fact that the ran-

domized version of the network is also disassortative indicates that the 

model's disassortativity is structural. Note, however, that the real knn(k) 

The degree correlation function of the Bian-
coni-Barabási model for N = 10,000, m = 3 and 
uniform fitness distribution (SECTION 6.2). As 
the green dotted line indicates, follwing (7.10) 
indicates, the network is disassortative, con-
sistent with μ ≃ -0.5. The orange symbols cor-
respond to knn (k). As knn (k) also decreases, the 
bulk of the observed disassortativity is struc-
tural. But the difference between knn(k) and knn 
(k) suggests that structural effects cannot fully 
account for the observed degree correlation.

R-S     

R-S R-S

Figure  7.12
Correlations in the Bianconi-Barabási Model(7.17)
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GENERATING CORRELATED NETWORKS

The algorithm generates networks with 
maximal degree correlations.

(a)  The basic steps of the algorithm.  
(b) knn(k) for networks generated by the al-
gorithm for a scale-free network with N = 
1,000, L = 2,500, γ = 3.0.  
(c, d)  A typical network configuration 
and the corresponding Aij matrix for the 
maximally assortative network generated 
by the algorithm, where the rows and col-
umns of Aij were ordered according to in-
creasing node degrees k.
(e,f) Same as in (c,d) for a maximally disas-
sortative network. 

The Aij matrices (d) and (f) capture the in-
ner regularity of networks with maximal 
correlations, consisting of blocks of nodes 
that connect to nodes with similar degree 
in (d) and of blocks of nodes that connect to 
nodes with rather different degrees in (f).

Xulvi-Brunet & Sokolov Algorithm
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and the randomized knn 
R-S

  (k) do not overlap, indicating that the disassor-

tativity of the model is not fully explained by its scale-free nature.

TUNING DEGREE CORRELATIONS
Several algorithms can generate networks with desired degree correla-

tions [8, 17, 18]. Next we discuss a simplified version of the algorithm 

proposed by Xalvi-Brunet and Sokolov that aims to generate maximally 

correlated networks with a predefined degree sequence [19, 20, 21]. It 

consists of the following steps (Figure 7.13a):

•  Step 1: Link Selection

Choose at random two links. Label the four nodes at the end of these 

two links with a, b, c, and d such that their degrees are ordered as

ka ≥ kb ≥ kc ≥ kd.

•  Step 2: Rewiring

Break the selected links and rewire them to form new pairs. Depend-

ing on the desired degree correlations the rewiring is done in two  

ways:

•  Step 2A: Assortative

By pairing the two highest degree nodes (a with b) and the two 

lowest degree nodes (c with d), we connect nodes with compara-

ble degrees, enhancing the network’s assortative nature.

•  Step 2B: Disassortative

By pairing the highest and the lowest degree nodes (a with d and 

b with c), we connect nodes with different degrees, enhancing 

the network’s disassortative nature.

By iterating these steps we gradually enhance the network’s assortative 

(Step 2A) or disassortative (Step 2B) features. If we aim to generate a simple 

network (free of multi-links), after Step 2 we check whether the particular 

rewiring leads to multi-links. If it does, we reject it, returning to Step 1. 

The correlations characterizing the networks generated by this algo-

rithm converge to the maximal (assortative) or minimal (disassortative) 

value that we can reach for the given degree sequence (Figure 7.13b). The 

model has no difficulty creating disassortative correlations (Figures 7.13e,f). 
In the assortative limit simple networks display a mixed knn(k): assortative 

for small k and disassortative for high k (Figures 7.13b). This is a consequence 

of structural cutoffs: For scale-free networks the system is unable to sus-

tain assortativity for high k. The observed behavior is reminiscent of the 

knn(k) function of citation networks (Figure 7.10j).

The version of the Xalvi-Brunet & Sokolov algorithm introduced in Fig-
ure 7.13 generates maximally assortative or disassortative networks. We 

can tune the magnitude of the generated degree correlations if we use the 

algorithm discussed in Figure 7.14.



In summary, static models, like the configuration or hidden parameter 

model, are neutral if we allow multi-links, and develop structural disas-

sortativity if we force them to generate simple networks. To generate net-

works with tunable correlations, we can use for example the Xalve-Brunet 

& Sokolov algorithm. An important result of this section is (7.16) and (7.18), 
offering the analytical form of the degree correlation function for the hid-

den paramenter model and for a growing network, in both case predicting 

a power-law k-dependence. These results offer analytical backing for the 

scaling hypothesis (7.10), indicating that both structural and dynamical ef-

fects can result in a degree correlation function that follows a power law.

INTRODUCTION24DEGREE CORRELATIONS
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We can use the Xalvi-Brunet & Sokolov algo-
rithm  to tune the magnitude of degree cor-
relations. 

(a) We execute the deterministic rewiring step 
with probability p, and with probability 1 − 
p we randomly pair the a, b, c, d nodes with 
each other. For p = 1 we are back to the al-
gorithm of Figure 7.13, generating maximal 
degree correlations; for p < 1 the induced 
noise tunes the magnitude of the effect. 

(b) Typical network configurations generated 
for p = 0.5. 

(c) The knn(k) functions for various p values for 
a network with N = 10,000, ⟨k⟩ = 1, and γ = 
3.0. 

Note that the correlation exponent μ depends 
on the fitting region, especially in the assor-
tative case.

Figure  7.14
Tuning Degree Correlations
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SECTION 7.7

As we have seen in Figure 7.10, most real networks are characterized by 

some degree correlations. Social networks are assortative; biological net-

works display structural disassortativity. These correlations raise an im-

portant question: Why do we care? In other words, do degree correlations 

alter the properties of a network? And which network properties do they 

influence? This section addresses these important questions.

An important property of a random network is the emergence of a 

phase transition at ⟨k⟩ = 1, marking the appearance of the giant compo-

nent (SECTION 3.6). Figure 7.15 shows the relative size of the giant component 

for networks with different degree correlations, documenting several pat-

terns [8, 19, 20]:

•  Assortative Networks 

For assortative networks the phase transition point moves to a lower 

⟨k⟩, hence a giant component emerges for ⟨k⟩ < 1. The reason is that it 

is easier to start a giant component if the high-degree nodes seek out 

each other.

•  Disassortative Networks

The phase transition is delayed in disassortative networks, as in these 

the hubs tend to connect to small degree nodes. Consequently, disas-

sortative networks have difficulty forming a giant component.

• Giant Component  

For large ⟨k⟩ the giant component is smaller in assortative networks 

than in neutral or disassortative networks. Indeed, assortativity forc-

es the hubs to link to each other, hence they fail to attract to the giant 

component the numerous small degree nodes.

These changes in the size and the structure of the giant component 

have implications to the spread of diseases [22, 23, 24], the topic of CHAPTER 
10. Indeed, as we have seen in Figure 7.10, social networks tend to be assorta-

tive. The high degree nodes therefore form a giant component that acts as 

THE IMPACT OF DEGREE
CORRELATIONS

Relative size of the giant component for an 
Erdős-Rényi network of size N=10,000 (green 
curve), which is then rewired using the 
Xalvi-Brunet & Sokolov algorithm with p = 0.5 
to induce degree correlations (Figure 7.14). The 
figure indicates that as we move from assor-
tative to disassortative networks, the phase 
transition point is delayed and the size of the 
giant component increases for large ⟨k⟩. Each 
point represents an average over 10 indepen-
dent runs.

Figure  7.15

Degree Correlations and the Phase 
Transition Point
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a “reservoir” for the disease, sustaining an epidemic even when on average 

the network is not sufficiently dense for the virus to persist.

The altered giant component has implications for network robustness 

as well [25]. As we discuss in CHAPTER 8, the removal of a network's hubs 

fragments a network. In assortative networks hub removal makes less 

damage because the hubs form a core group, hence many of them are re-

dundant. Hub removal is more damaging in disassortative networks, as in 

these the hubs connect to many small-degree nodes, which fall off the net-

work once a hub is deleted.

Let us mention a few additional consequences of degree correlations:

•  Figure 7.16 shows the path-length distribution of a random network re-

wired to display different degree correlations. It indicates that in as-

sortative networks the average path length is shorter than in neutral 

networks. The most dramatic difference is in the network diameter, 

dmax, which is significantly higher for assortative networks. Indeed, 

assortativity favors links between nodes with similar degree, result-

ing in long chains of k = 2 nodes, enhancing dmax (Figure 7.13c).

•  Degree correlations influence a system’s stability against stimuli and 

perturbations [26] as well as the synchronization of oscillators placed 

on a network [27, 28].

• Degree correlations have a fundamental impact on the vertex cover 

problem [29], a much-studied problem in graph theory that requires 

us to find the minimal set of nodes (cover) such that each link is con-

nected to at least one node in the cover (BOX 7.4).

• Degree correlations impact our ability to control a network, altering  

the number of input signals one needs to achieve full control [30].

In summary, degree correlations are not only of academic interest, but 

they influence numerous network characteristics and have a discernable 

impact on many processes that take place on a network.

Distance distribution for a random network 
with size N = 10, 000 and ⟨k⟩ = 3. Correlations 
are induced using the Xalvi-Brunet & Sokolov 
algorithm with p = 0.5 (Figure 7.14). The plots 
show that as we move from disassortative to 
assortative networks, the average path length 
decreases, indicated by the gradual move of 
the peaks to the left. At the same time the di-
ameter, dmax, grows. Each curve represents an 
average over 10 independent networks. 

Figure  7.16

Degree Correlations and Path Lengths
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BOX 7.4
VERTEX COVER AND MUSEUM GUARDS

Imagine that you are the director of an open-air museum located in a 

large park. You wish to place guards on the crossroads to observe each 

path. Yet, to save cost you want to use as few guards as possible. How 

many guards do you need?

Let N be the number of crossroads and m < N is the number of guards 

you can afford to hire. While there are (m) ways of placing the m guards 

at N crossroads, most configurations leave some paths unsupervised 

[31]. 

The number of trials one needs to place the guards so that they cover 

all paths grows exponentially with N. Indeed, this is one of the six ba-

sic NP-complete problems, called the vertex cover problem. The vertex 

cover of a network is a set of nodes such that each link is connected 

to at least one node of the set (Figure  7.17). NP-completeness means 

that there is no known algorithm which can identify a minimal vertex 

cover substantially faster than using as exhaustive search, i.e. check-

ing each possible configuration individually. The number of nodes in 

the minimal a vertex cover depends on the network topology, being 

affected by the degree distribution and degree correlations [29].

DEGREE CORRELATIONS THE IMPACT OF DEGREE CORRELATIONS

Formally, a vertex cover of a network is a 
set C of nodes such that each link of the 
network connects to at least one node 
in C. A minimum vertex cover is a vertex 
cover of smallest possible size. The figure 
above shows examples of minimum ver-
tex covers in two small networks, where 
the set C is shown in purple. We can check 
that if we turn any of the purple nodes 
into green nodes, at least one link will not 
connect to a purple node. 

Figure  7.17

The Minimum Cover

N
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SECTION 7.8

Degree correlations were first discovered in 2001 in the context of the 

Internet by Romualdo Pastor-Satorras, Alexei Vazquez, and Alessandro 

Vespignani [4, 5], who also introduced the degree correlation function 

knn(k) and the scaling (7.10). A year later Kim Sneppen and Sergey Maslov 

used the full p(ki,kj), related to the eij matrix, to characterize the degree 

correlations of protein interaction networks [32]. In 2003 Mark Newman 

introduced the degree correlation coefficient [8, 9] together with the assor-

tative, neutral, and disassortative distinction. These terms have their roots 

in social sciences [13]:

Assortative mating reflects the tendency of individuals to date or marry 

individuals that are similar to them. For example, low-income individuals 

marry low-income individuals and college graduates marry college grad-

uates. Network theory uses assortativity in the same spirit, capturing the 

degree-based similarities between nodes: In assortative networks hubs 

tend to connect to other hubs and small-degree nodes to other small-de-

gree nodes. In a network environment we can also encounter the tradition-

al assortativity, when nodes of similar properties link to each other (Figure 
7.18).

Disassortative mixing, when individuals link to individuals wo are unlike 

them, is also common in some social and economic systems. Sexual net-

works are perhaps the best example, as most sexual relationships are be-

tween individuals of different gender. In economic settings trade typically 

takes place between individuals of different skills: the baker does not sell 

bread to other bakers, and the shoemaker rarely fixes other shoemaker's 

shoes.

Taken together, there are several reasons why we care about degree cor-

relations in networks (BOX 7.5):

•  Degree correlations are present in most real networks (SECTION 7.5).

SUMMARY

BOX 7.5
AT A GLANCE: 
DEGREE CORRELATIONS

Degree Correlation Matrix eij 

Neutral networks:

Degree Correlation Function

Neutral networks:

Scaling Hypothesis

μ > 0: Assortative
μ = 0: Neutral
μ < 0: Disassortative

Degree Correlation Coefficient

r > 0: Assortative
r  = 0: Neutral
r  < 0: Disassortative

eij = qiqi =
ki pki k j pkj

〈k〉2

knn (k) =∑
k '
k ' p(k ' | k)

knn (k) =
〈k2 〉
〈k〉

knn (k) ∼ k
µ

r =
jk(ejk − qjqk )

σ 2
jk
∑
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•  Once present, degree correlations change a network’s behavior (SEC-
TION 7.7).

• Degree correlations force us to move beyond the degree distribution, 

representing quantifiable patters that govern the way nodes link to 

each other that are not captured by pk alone.

Despite the considerable effort devoted to characterizing degree cor-

relations, our understanding of the phenomena remains incomplete. For 

example, while in SECTION 7.6 we offered an algorithm to tune degree cor-

relations, the problem is far from being fully resolved. Indeed, the most ac-

curate description of a network's degree correlations is contained in the eij 

matrix. Generating networks with an arbitrary eij remains a difficult task. 

Finally, in this chapter we focused on the knn(k) function, which cap-

tures two-point correlations. In principle higher order correlations are also 

present in some networks (BOX 7.6). The impact of such three or four point 

correlations remains to be understood. 

The network behind the US political 
blogosphere illustrates the  presence of 
assortative mixing, as used in sociolo-
gy, meaning that nodes of similar char-
acteristics tend to link to each other. In 
the map each blue node corresponds to 
liberal blog and red nodes are conserva-
tive. Blue links connect liberal blogs, red 
links connect conservative blogs, yellow 
links go from liberal to conservative, and 
purple from conservative to liberal. As 
the image indicates, very few blogs link 
across the political divide, demonstrating 
the strong assortativity of the political 
blogosphere. 

After [33].

Figure  7.18

Politics is Never Neutral
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BOX 7.6
TWO-POINT, THREE-POINT CORRELATIONS

The complete degree correlations characterizing a network are 

determined by the conditional probability P(k(1), k(2), ..., k(k)|k) that a 

node with degree k connects to nodes with degrees k(1), k(2), ..., k(k).

Two-point Correlations

The simplest of these is the two-point correlation discussed in this 

chapter, being the conditional probability P(k’|k) that a node with 

degree k is connected to a node with degree k′.  For uncorrelated 

networks this conditional probability is independent of k, i.e. P(k’| 

k) = k’pk’/⟨k⟩ [18]. As the empirical evaluation of P(k′|k) in real net-

works is cumbersome, it is more practical to analyze the degree 

correlation function knn(k) defined in (7.7).

Three-point Correlations

Correlations involving three nodes are determined by P(k(1),k(2)|k). 
This conditional probability is connected to the clustering coeffi-

cient. Indeed, the average clustering coefficient C(k) [22, 23] can 

be formally written as the probability that a degree-k node is con-

nected to nodes with degrees k(1) and k(2), and that those two are 

joined by a link, averaged over all the possible values of k(1) and k(2),

where pk    is the probability that nodes k(1) and k(2) are connected, 

provided that they have a common neighbor with degree k [18]. 

For neutral networks C(k) is independent of k, following

k(1), k(2)

C(k) = ∑
k(1) ,k(2 )

P(k (1),k (2) | k)p
k(1) ,k(2 )
k

C =
k2 k( )2

k 3 N

,

.
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SECTION 7.9

HOMEWORK

7.1. Detailed Balance for Degree Correlations

Express the joint probability ekk', the conditional probability P(k'|k) and 

the probability qk, discussed in this chapter, in terms of number of nodes 

N, average degree 〈k〉, number of nodes with degree k, Nk, and the number 

of links connecting nodes of degree k and k', Ekk' (note that Ekk' is twice the 

number of links when k = k'). Based on these expressions, show that for any 

network we have

7.2. Star Network

Consider a star network, where a single node is connected to N – 1 de-

gree one nodes. Assume that N≫1.

(a) What is the degree distribution pk of this network?

(b) What is the probability qk that moving along a randomly chosen 

link we find at its end a node with degree k?

(c) Calculate the degree correlation coefficient r for this network. 

Use the expressions of ekk' and P(k'|k) calculated in HOMEWORK 7.1.

(d) Is this network assortative or disassortative? Explain why.

7.3. Structural Cutoffs

Calculate the structural cutoff ks for the undirected networks listed in 

Table 4.1. Based on the plots in Figure 7.10, predict for each network whether 

ks is larger or smaller than the maximum expected degree kmax. Confirm 

your prediction by calculating kmax.

7.4. Degree Correlations in Erdős-Rényi Networks

Consider the Erdős-Rényi G(N,L) model of random networks, intro-

duced in CHAPTER 2 (BOX 3.1 and SECTION 3.2), where N labeled nodes are con-

nected with L randomly placed links. In this model, the probability that 

there is a link connecting nodes i and j depends on the existence of a link 

between nodes l and s.

=e q P k k( ' | ).kk k'
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(a) Write the probability that there is a link between i and j, eij and 

the probability that there is a link between i and j conditional on 

the existence of a link between l and s.

(b) What is the ratio of such two probabilities for small networks? 

And for large networks?

(c) What do you obtain for the quantities discussed in (a) and (b) if 

you use the Erdős-Rényi G(N,p) model?

Based on the results found for (a)-(c) discuss the implications of using 

the G(N,L) model instead of the G(N,p) model for generating random net-

works with small number of nodes.
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SECTION 7.10

In BOX 7.2 we defined the degree correlation coefficient r as an alterna-

tive measure of degree correlations [8, 9]. The use of a single number to 

characterize degree correlations is attractive, as it offers a way to compare 

the correlations observed in networks of different nature and size. Yet, to 

effectively use r we must be aware of its origin.

The hypothesis behind the correlation coefficient r implies that the 

knn(k) function can be approximated by the linear function

This is different from the scaling (7.10), which assumes a power law de-

pendence on k. Equation (7.21) raises several issues:

•  The initial attractiveness model predicts a power law (7.18) or a log-

arithmic k-dependence (7.20) for the degree correlation function. A 

similar power law is derived in (7.16) for the hidden parameter model. 

Consequently, r forces a linear fit to an inherently nonlinear func-

tion. This linear dependence is not supported by numerical simula-

tions or analytical calculations. Indeed, as we show in Figure 7.19, (7.21) 
offers a poor fit to the data for both assortative and disassortative 

networks.

•  As we have seen in Figure 7.10, the dependence of knn(k) on k is complex, 

often changing trends for large k thanks to the structural cutoff. A 

linear fit ignores this inherent complexity. 

• The maximally correlated model has a vanishing r for large N, despite 

the fact that the network maintains its degree correlations (BOX 7.7). 

This suggests that the degree correlation coefficient has difficulty de-

tecting correlations characterizing large networks.

ADVANCED TOPICS 7.A
DEGREE CORRELATION
COEFFICIENT

(7.21)knn (k) ∼ rk .

NETWORK N r μ

Internet

WWW

Power Grid

Mobile Phone Calls

Email

Science Collaboration

Actor Network

Citation Network

E. Coli Metabolism

Protein Interactions

192,244 0.02

-0.05

0.003

0.21

-0.08

0.13

0.31

-0.02

-0.25

0.04

0.56

-1.11

0.0

0.33

-0.74

0.16

0.34

-0.18

-0.76

-0.1

325,729

4,941

36,595

57,194

23,133

702,388

449,673

1,039

2,018

Table  7.1
Degree Correlations in Reference Networks

The table shows the estimated r and μ for the 
ten reference networks. Directed networks 
were made undirected to measure r and μ. Al-
ternatively, we can use the directed correlation 
coefficient to characterize such directed net-
works (BOX 7.8).
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Relationship Between μ and r
On the positive side, r and μ are not independent of each other. To show 

this we calculated r and μ for the ten reference networks (TABLE 7.1). 

The results are plotted in Figure 7.20, indicating that μ and r correlate for 

positive r. Note, however, that this correlation breaks down for negative 

r. To understand the origin of this behavior, next we derive a direct rela-

tionship between μ and r. To be specific we assume the validity of (7.10) 
and determine the value of r for a network with correlation exponent μ.

We start by determining a from (7.10). We can write the second moment 

of the degree distribution as

which leads to

We now calculate r for a network with a given μ:

〈k2 〉 = 〈knn (k)k〉 =∑
k
akµ+1pk = a〈k

µ+1〉 ,

k
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Figure 7.19
Degree Correlation Function

The degree correlation function knn(k) for three 
real networks. The left panels show the cumu-
lative function knn(k) on a log-log plot to test the 
validity of  (7.10). The right panels show knn(k) 
on a lin−lin plot to test the validity of (7.21), i.e. 
the assumption that knn(k) depends linearly on 
k. This is the hypothesis behind the correlation 
coefficient r. The slope of the dotted line corre-
sponds to the correlation coefficient r. As the 
lin-lin plots on the right illustrate, (7.21) offers 
a poor fit for both assortative and disassorta-
tive networks.

a = 〈k2 〉
〈kµ+1〉
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Correlation Between r and N

To illustrate the relationship between r and μ, 
we estimated μ by fitting the knn(k) function to 
(7.10), whether or not the power law scaling was 
statistically significant. 
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For μ = 0 the term in the last parenthesis vanishes, obtaining r = 0. 

Hence if μ = 0 (neutral network), the network will be neutral based on r 
as well. For k > 1  (7.22) suggests that for μ > 0 the parenthesis is positive, 

hence r > 0, and for μ < 0 the parenthesis is negative, hence r < 0. There-

fore r and μ predict degree correlations of similar kind.

In summary, if the degree correlation function follows (7.10), then the 

sign of the degree correlation exponent μ will determine the sign of the 

coefficient r:

μ < 0 → r < 0
μ = 0 → r = 0
μ > 0 → r > 0

Directed Networks

To measure correlations in directed networks we must take into account 

that each node i is characterized by an incoming ki 
in and an outgoing ki

out 

degree. We therefore define four degree correlation coefficients, rin,in, 

rin,out, rout,in, rout,out, capturing all possible combinations between the in-

coming and outgoing degrees of two connected nodes (Figures 7.21a-d). 
Formally we have [14]

where α and β refer to the in and out indices and q←j
α   in the probability 

of finding a node with α-degree j by following a random link backward 

and q→k
β  in the probability of finding a β-link with degree k by following 

a random link forward. σ←
α and σ→

β  are the corresponding standard de-

viations. To illustrate the use of (7.23), in Figure 7.21e we show the four 

correlation coefficients for the five directed reference networks (TABLE 
7.1). Note, however, that for a complete characterization of degree cor-

relations it is desirable to measure the four knn(k) functions as well (BOX 
7.3).

In summary, the degree correlation coefficient assumes that knn(k) 
scales linearly with k, a hypothesis that lacks numerical and analytical 

support. Analytical calculations predict the power-law form (7.10) or the 

weaker logarithmic dependence (7.20). Yet, in general the sign of r and μ do 

agree. Consequently, we can use r to get a quick sense of the nature of the 

potential correlations present in a network. Yet, the accurate characteri-

zation of the underlying degree correlations requires us to measure knn(k). 

,rα ,β =
∑
jk
jk(ejk

α ,β − q←
α
jq→

β
k )

σ←
ασ→

β
(7.23)

(7.22)

r = k

kakµqk
k2 2

k 2

r
2 = k

a kµ+2 pk

k
k2 2

k 2

r
2 =

k2

kµ+1
kµ+2

k
k2 2

k 2

r
2 =

= 1
σ r
2

k2

k
kµ+2

kµ+1 −
k2

k
⎛

⎝
⎜

⎞

⎠
⎟ .

BOX 7.7
THE PROBLEM WITH LARGE NET-
WORKS

The Xalvi-Brunet & Sokolov al-

gorithm helps us calculate the 

maximal (rmin) and the minimal 

(rmax) correlation coefficient for 

a scale-free network, obtaining 

[21]

where                                                  

 

These expressions indicate that:

(i) For large N both rmin and rmax 

vanish, even though the cor-

responding networks were 

rewired to have maximal 

correlations. Consequently 

the correlation coefficient r 

is unable to capture the cor-

relations present in large 

networks. 

(ii) Scale-free networks with γ 

< 2.6 always have negative 

r. This is a consequence of 

structural correlations (SEC-
TION 7.4). 

Given r’s limitations, we must 

inspect knn(k) to best character-

ize a large network's degree cor-

relations.  

rmin ∼

−c1(γ ,k0 ) for γ < 2
−N (2−γ )/(γ −1) for 2 < γ < 3
−N (γ −4)/(γ −1) for 3< γ < 4
−c2 (γ ,k0 ) for 4 < γ ,

⎧

⎨

⎪
⎪

⎩

⎪
⎪

rmax ∼
−N (−γ −2)/(γ −1) for 2 < γ < γ r

N −1/(γ 2−1) for γ r < γ < 3,

⎧
⎨
⎪

⎩⎪

γ r ≈
1
2
+ 17 / 4 ≈ 2.56.
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(a)-(d) The purple and green links indicate the 
α, β indices that define the appropriate 
correlation coefficient for a directed net-
work. 

(e)        The correlation profile of the five direct-
ed networks. While citation networks 
have negligible correlations, all four cor-
relation coefficients document strong 
assortative behavior for mobile phone 
calls and strong disassortative behavior 
for metabolic networks. The case of the 
WWW is interesting: while three of its 
correlation coefficients are close to zero, 
there is a strong assortative tendency for 
the in-out degree combination.

Figure  7.21
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SECTION 7.11

As discussed in SECTION 7.4, the fundamental conflict between the scale-

free property and degree correlations leads to a structural cutoff in simple 

networks. In this section we derive (7.15), calculating how the structural 

cutoff depends on the system size N [11]. 

We start by defining

where Ekk′ is the number of links between nodes of degrees k and k’ for k≠k’ 
and twice the number of connecting links for k=k’, and

is the largest possible value of Ekk′. The origin of (7.25) is explained in Figure 
7.22. Consequently, we can write rkk’ as

As mkk’ is the maximum of Ekk′, we must have rkk′ ≤ 1 for any k and k’. 
Strictly speaking, in simple networks degree pairs for which rkk′ > 1 cannot 

exist. Yet, for some networks and for some k, k’ pairs rkk′ is larger than one. 

This is clearly non-physical and signals some conflict in the network con-

figuration. Hence, we define the structural cutoff ks as the solution of the 

equation

Note that as soon as k > Npk’ and k’ > Npk , the effects of the restriction 

on the multiple links are felt, turning the expression for rkk′ into

ADVANCED TOPICS 7.B
STRUCTURAL CUTOFFS

(7.24)

(7.25)

(7.26)

(7.27)

(7.28)

kNk= 9            k Nk   = 8            Nk Nk   = 12  

mNkk   = min{kNk, k Nk   , Nk Nk  } =8

The maximum number of links one can have 
between two groups. The figure shows two 
groups of nodes, with degree k=3 and k’=2.  
The total number of links between these two 
groups must not exceed: 

(a)  The total number of links available in k=3 
group, which is kNk=9. 

(b)  The total number of links available in k’=2 
group, which is k’Nk’=8. 

(c)  The total number of links one can poten-
tially place between the two groups, which 
is NkNk’. 

In the example shown above the smallest of 
the three is k’Nk' = 8 of (b). 

Figure 7.22
Calculating mkk'

rkk ' =
Ekk '

mkk '

mkk ' = min kNk ,k 'Nk ,NkNk '{ }

rk ′k = Ek ′k

mk ′k

= 〈k〉ek ′k

min kP(k), ′k P( ′k ),NP(k)P( ′k ){ } .

rksks = 1.

rk ′k = 〈k〉ek ′k

Npk pk '
.

,
(a) (b) (c)
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For scale-free networks these conditions are fulfilled in the region k, k’ > 

(aN)1/(γ+1), where a is a constant that depends on pk. Note that this value is 

below the natural cutoff. Consequently this scaling provides a lower bound 

for the structural cutoff, in the sense that whenever the cutoff of the de-

gree distribution falls below this limit, the condition rkk’ < 1 is always sat-

isfied.

For neutral networks the joint distribution factorizes as

Hence, the ratio (7.28) becomes

Therefore, the structural cutoff needed to preserve the condition rkk’ ≤ 1 has 

the form [11, 34, 35, 36]

which is (7.15). Note that (7.31) is independent of the degree distribution of 

the underlying network. Consequently, for a scale-free network ks(N) is in-

dependent of the degree exponent γ.

(7.29)

(7.30)

(7.31)

ek ′k = k ′k pk pk '
〈k〉2

rk ′k = k ′k
〈k〉N

.

ks (N ) ~ (〈k〉N )
1/2 ,

.
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