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Ivan Živić,1 Sava Milošević,2 and H. Eugene Stanley3

1Faculty of Natural Sciences and Mathematics, University of Kragujevac, 34000 Kragujevac, Serbia, Yugoslavia
2Faculty of Physics, University of Belgrade, P.O. Box 368, 11001 Belgrade, Serbia, Yugoslavia

3Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215
~Received 21 May 1998!

We present an exact and Monte Carlo renormalization group ~MCRG! study of trails on an infinite family of
the plane-filling ~PF! fractals, which appear to be compact, that is, their fractal dimension d f is equal to 2 for
all members of the fractal family enumerated by the odd integer b (3<b,`). For the PF fractals, we
calculate exactly ~for 3<b<7) the critical exponents n ~associated with the mean squared end-to-end dis-
tances of trails! and g ~associated with the total number of different trails!. In addition, we calculate n and g

through the MCRG approach for b<201 and b<151, respectively. The MCRG results for 3<b<7 deviate
from the exact results at most 0.04% in the case of n and 0.14% in the case of g . Our results show clearly that
n first increases for small values of b ~up to b59) and then starts to decrease, resembling the large b behavior
of n for self-avoiding walks ~SAWs! on the PF fractals. Similarly, our results show that the trail critical
exponent g , being always larger than the SAW Euclidean value 43/32, monotonically increases with b and for
large b displays virtually the same behavior as the corresponding critical exponent g for SAWs on the PF
fractals. We comment on a possible relevance of the comparative study of the criticality of trails and SAWs on
the PF family of fractals to the problem of the uniqueness of the universality class for trails and SAWs on the
two-dimensional Euclidean lattices, by discussing the fractal-to-Euclidean crossover behavior of n and g .
@S1063-651X~98!07910-0#

PACS number~s!: 05.40.1j, 05.50.1q, 64.60.Ak, 61.41.1e

I. INTRODUCTION

The self-avoiding walk ~SAW! on a lattice is a random
walk that must not contain self-intersections, which implies
that the walker must not cross a site more than once. It has
been extensively studied as a challenging problem in statis-
tical physics and, in particular, as a satisfactory model of a
linear polymer chain in a good solvent @1#. In the latter case,
the forbidden self-intersections of the SAW path correspond
to the excluded-volume interactions of monomers that com-
prise the polymer chain. A random walk model, with a less
restrictive excluded-volume interaction, has been introduced
@2# under the name of self-avoiding trail, or simply trail, for
which no lattice bond is allowed to be visited more that once
while lattice sites may be revisited. From the geometrical
point of view, the lattice trail model has the same relation-
ship to the SAW model as does the bond percolation model
to the lattice site percolation model. The criticality of both
the SAW and the trail model, that is, their asymptotic prop-
erties for a large number N of steps, appears to belong to the
category of difficult problems in the critical phenomena stud-
ies. In that context, one of the main issues has been whether
SAWs and trails belong to the same universality class. How-
ever, to answer this question properly it is necessary to ob-
tain reliable results for the critical exponents of trails since
the critical exponents for SAWs have been rather firmly es-
tablished, at least for the two-dimensional Euclidean lattices
@3#.

To learn critical exponents of trails on the Euclidean lat-
tices, various approaches have been applied, including rigor-
ous analysis @4#, exact enumeration techniques @5,6#, mo-
mentum space renormalization group ~RG! and the e
expansion @7#, Monte Carlo ~MC! studies, and scanning

simulation methods @8–10#, and transfer-matrix studies
@11,12#. In spite of the numerous studies, few exact results
for trails have been obtained. For this reason, it is desirable
to study a family of fractal lattices whose members allow, in
principle, an exact treatment of the problem and whose char-
acteristics approach ~via the fractal-to-Euclidean crossover!
properties of a Euclidean lattice. In addition, it is desirable to
accomplish the latter task on a family of fractals for which
the SAW problem can be well analyzed.

In this paper we report an exact RG study and the Monte
Carlo renormalization group ~MCRG! study of trails on an
infinite family of plane-filling ~PF! fractals that appear to be
compact, that is, their fractal dimension d f is equal to 2 for
all members of the fractal family enumerated by the odd
integer b (3<b,`). For the PF fractals, we calculate ex-
actly and through the MCRG approach the critical exponents
n ~associated with the mean squared end-to-end distances of
trails! and g ~associated with the total number of different
trails!. We perform our calculations for as many members of
the fractal family as possible in order to study the behavior
of the critical exponents in the fractal-to-Euclidean crossover
region, which asymptotically appears when b→` . For the
sake of comparison of the obtained results for trails with
those of SAWs, we extend here the set of data that has been
previously found in a study of SAWs on the same family of
fractals @13#.

The present paper is organized as follows. We define the
PF family of fractals in Sec. II, where we also present the
framework of our exact and MCRG approach to the evalua-
tion of the critical exponents n and g of trails on the PF
fractals, together with some specific results. In Sec. III we
compare the critical exponents n and g for the trails and
SAWs and present pertinent conclusions.
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II. TRAILS ON THE PLANE-FILLING
FRACTAL LATTICES

In this section we apply the exact RG and the MCRG
method to calculate asymptotic properties of trails on the PF
fractal lattices. Each member of the PF fractal family is la-
beled by an odd integer b (3<b,`) and can be con-
structed in stages. At the initial stage (r51) the lattices are
represented by the corresponding generators ~see Fig. 1!. The
rth stage fractal structure can be obtained iteratively in a
self-similar way, that is, by enlarging the generator by a fac-
tor br21 and by replacing each of its segments with the
(r21)th stage structure ~see Fig. 1!, so that the complete
fractal is obtained in the limit r→` . The shape of the fractal
generators and the way the fractals are constructed imply that
each member of the family has fractal dimension d f equal to
2. Thus they appear to be compact objects ~with no voids!
embedded in a two-dimensional Euclidean space, that is,
they resemble square lattices with various degrees of inho-
mogeneity distributed self-similarly.

The basic asymptotic properties of trails, analogously to
the case of SAWs, are described by two critical exponents n
and g . The critical exponent n is associated with the scaling
law ^RN

2 &;N2n for the mean squared end-to-end distance for
N-step trails, whereas the critical exponent g is associated
with the scaling law CN;mNNg21 for the total number CN
of distinct trails of N steps ~averaged over all possible posi-
tions of the starting point!. Here m is the trail connectivity
constant and it is assumed that N is a very large number. We
calculate these critical exponents in the framework of the RG
method, in which we study the corresponding generating
functions that can be defined by introducing the weight fac-
tor x ~fugacity! for each step of the trail. The generating
functions

C~x ![ (
N51

`

CNxN ~1!

and

L~x ![ (
N52

`

^RN
2 &CNxN/C~x !, ~2!

whose leading singular terms, when x approaches 1/m from
below, are of the form

C~x !;~12xm !2g ~3!

and

L~x !;~12xm !22n. ~4!

In order to calculate n and g we have found that it is useful
to introduce two restricted partition functions A (r) and B (r)

~see Fig. 2!. The two restricted partition functions represent
partial sums of statistical weights of all possible trails within
the rth stage fractal structure for the two kinds of trails de-
picted in the Fig. 2. The corresponding initial conditions

A ~0 !
5Ax , B ~0 !

5x ~5!

are relevant to the fractal unit segment (r50). For arbitrary
r , the self-similarity of the fractals under study implies the
recursion relations

A ~r !
5 f A~A ~r21 !,B ~r21 !! ~6!

and

B ~r !
5 f B~B ~r21 !!, ~7!

where the explicit forms of the functions f A and f B are ~due
to the underlying self-similarity! independent of the specific
value of r . These equations comprise the renormalization
group for the trail problem.

We start by applying the above RG framework to find the
trail critical exponent n for the PF fractals. First we shall
present the corresponding exact calculation and then we shall
present the MCRG approach. To this end, we need to ana-
lyze Eq. ~7! at the corresponding fixed point. It can be shown
that f B is a simple polynomial, so from Eq. ~7!

B85(
N

aNBN, ~8!

where we have used the prime for rth-order partition func-
tion and no indices for the (r21)th-order partition function.
Here one should observe that the foregoing RG set of equa-
tions has the same general form in the case of SAWs and in
the case of trails. The specific differences between the two
cases appear in the values of the coefficients aN , which are
the numbers of all possible trails ~SAWs! of N steps that
traverse the fractal generator.

FIG. 1. First three fractal generators (r51) of the plane-filling
~PF! family of fractals and the second stage (r52) of the b55 PF
fractal.

FIG. 2. Diagrammatic representation of the two restricted parti-
tion functions for an rth stage of the fractal construction of a mem-
ber of the PF family. The fractal interior structure is not shown.
Thus, for example, A (r) represents the trail that starts somewhere
within the rth stage fractal structure and leaves it at its upper right
link to rest of fractal.
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Knowing the RG equation ~8!, the critical exponent n
follows from

n5

ln b

ln l1
, ~9!

where l1 is the relevant eigenvalue of the RG equation ~8! at
the nontrivial fixed point 0,B*,1 @13,14#, that is,

l15

dB8

dB U
B*

. ~10!

Consequently, evaluation of n starts with determining the
coefficients aN of Eq. ~8! and finding the pertinent fixed
point value B*, which is, according to the initial conditions
~5!, equal to the critical fugacity x*51/m . In the case of
trails, we have been able to find exact values of aN for
3<b<7, which are given in the Appendix ~whereas in
the case of SAWs we reported the corresponding values for
3<b<9 in the Appendix of @13#!.

Comparing the two cases ~trails versus SAWs!, one can
see that aN for trails are always bigger than aN for SAWs,
which indicates that the case of exact enumeration of all
possible trails is more difficult than the enumeration of
SAWs. This difference springs from the definition of the two
kinds of walks wherefrom it follows that SAWs, for a given
number of steps, comprise a subset of trails. Knowing aN ,
for a given b , we apply Eqs. ~8!–~10! to learn the critical
fugacity x* ~that is, B*) and the critical exponent n . Our
results for B* and n , for b53,5, and 7, are ~0.654 93,
0.686 50!, ~0.554 15, 0.716 52!, and ~0.503 04, 0.720 72!, re-
spectively.

To overcome the computational problem of learning exact
values of aN , we apply the MCRG method for b>9. It has
been justified in a number of cases @13,15,16# that, due to
both the inherent self-similarity and the finite ramification of
the underlying lattices, this method should work better in the
case of fractals than in the case of regular lattices. The es-
sence of the MCRG method @13,15# consists of treating B8,
given by Eq. ~8!, as the grand canonical partition function
that comprise all possible trails ~SAWs! that traverse the
fractal generator at two fixed apices. In this spirit, Eq. ~8!
allows us to write the relation

dB8

dB
5

B8

B
^N~B !& , ~11!

where ^N(B)& is given by

^N~B !&5

1

B8
(
N

NaNBN, ~12!

which can be considered as the average number of steps,
made at fugacity B , by all possible trails ~SAWs! that cross
the fractal generator. Comparing Eq. ~10! with Eq. ~11! we
obtain the equality l15^N(B*)& and thereby we obtain

n5

ln b

ln^N~B*!&
. ~13!

This is the formula that enables us to calculate n via the
MCRG method, that is, without calculating explicitly the co-
efficients aN .

For a given fractal ~with scaling factor b), we begin by
determining the critical fugacity B*. To this end, we start the
Monte Carlo simulation with an initial guess for the fugacity
B0 in the region 0,B0,1. Here B0 can be interpreted as the
probability of making the next step along an available direc-
tion from the vertex that the walker has reached. Let us as-
sume that S0 is the total number of the MC simulations of
walks ~at the chosen B0) and let S0

t of them be those that
traverse the fractal generator. Hence the ratio S0

t /S0 is the
renormalized fugacity B08 of the coarse-grained fractal struc-
ture. In this way we obtain the value of the sum ~8! without
specifying the set aN . Then the next values Bn (n>1) at
which the MC simulation should be performed can be found
by using the ‘‘homing’’ procedure @17#, which can be closed
at the stage when the difference Bn2Bn21 becomes less than
the statistical uncertainty associated with Bn21 . Conse-
quently, B* can be identified with the last value Bn found in
this way. Performing the MC simulation at the value B*, we
can record all possible trails ~SAWs! that traverse the fractal
generator. Then, knowing such a set of walks, we can repre-
sent the average value of the length of a walk ~that traverses
the generator! via the corresponding average number of steps
^N(B*)&. Accordingly, we can learn the value of the critical
exponent n through the formula ~13!. In Table I we present
our MCRG results for the trail critical exponent n , together
with the related critical fugacity B*, for the PF fractal lat-

TABLE I. MCRG results for trails on the PF fractals enumer-
ated by the scaling parameter b . The corresponding MCRG fixed
point values B* and the critical exponents n and g are given in the
second, third, and fourth columns, respectively.

b B* n g

3 0.6548560.00018 0.6867460.00024 1.427460.0020
5 0.5540160.00013 0.7165460.00015 1.588460.0023
7 0.5031560.00009 0.7204560.00012 1.646860.0025
9 0.4732060.00008 0.7209860.00010 1.684760.0028
11 0.4539060.00006 0.7205460.00009 1.721960.0030
13 0.4404160.00006 0.7201660.00009 1.755460.0033
15 0.4303560.00016 0.7193260.00026 1.779260.0039
17 0.4227660.00005 0.7187960.00008 1.802560.0037
21 0.4115760.00012 0.7179860.00023 1.836560.0045
25 0.4041360.00010 0.7166260.00021 1.873260.0049
31 0.3966960.00006 0.7153060.00014 1.925760.0053
35 0.3929060.00008 0.7147860.00019 1.938860.0059
41 0.3888860.00002 0.7137260.00004 1.977560.0060
51 0.3841660.00005 0.7127860.00012 2.009060.0070
61 0.3813060.00006 0.7115760.00016 2.049960.0080
71 0.3790360.00006 0.7105060.00015 2.079160.0085
81 0.3774560.00005 0.7102160.00014 2.111560.0092
91 0.3766260.00005 0.7093860.00014 2.125160.0115
101 0.3751760.00004 0.7092960.00014 2.134160.0098
121 0.3737360.00004 0.7081760.00012 2.124560.0092
151 0.3723660.00002 0.7077260.00008 2.147560.0159
171 0.3717060.00003 0.7071660.00011
201 0.3710060.00003 0.7059560.00011
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tices with b<201. Here we note that, comparing the MCRG
results for 3<b<7 with the exact results reported above, we
can see that there is no deviation larger than 0.04%.

We now apply the RG method to find the trail critical
exponent g for the PF fractals, which determines the singular
part ~3! of the generating function C(x) defined by Eq. ~1!.
To learn the singular behavior of C(x), in the vicinity of B*,
one needs to know the corresponding behavior of the re-
stricted partition functions A (r) and B (r) @13#. Since in the
previous paragraphs we have learned the behavior of B (r), it
remains to analyze here the recursion relations ~6!. The con-
figuration of possible trail paths imply the following struc-
ture of the recursion relation

A ~r !
5a~B ~r21 !!A ~r21 !, ~14!

where a(B (r21)) is a polynomial in B (r21). This formula
allows us to find the critical exponent g . Hence we first note
that in the case under study, according to the procedure de-
tailed in previous papers @13,14,18#, g can be expressed in
the form

g52
ln~l2 /b !

ln l1
, ~15!

where

l25a~B*! ~16!

is the RG eigenvalue of the polynomial a(B (r21)) defined by
Eq. ~14!, with B* being the fixed point value of Eq. ~8!.
Therefore, it remains either to find means to determine ex-
actly an explicit expression for the polynomial a(B (r21)) or
to surpass this step and to evaluate only the single needed
value a(B*).

In order to obtain an explicit expression of the polynomial
a(B (r21)), we note that its form, due to the underlying self-
similarity of the PF fractals, should not depend on r and so in
what follows we assume r51. We then can verify the ex-
pression

a~B !511(
N

QNBN, ~17!

where QN is the number of all trails ~SAWs! of N steps that
start at any bond within the generator (r51) and leaves it at
a fixed exit, which implies that the above sum starts with the
N51 term. By enumeration of all relevant walks, the coef-
ficients QN can be evaluated exactly up to certain finite b . In
the Appendix we present specific values of QN for 3<b
<7. Using the data given in the Appendix, together with
Eqs. ~15!–~17! ~and previously found B* and l1), we have
obtained the values g51.429 40 ~for b53), g51.589 44
~for b55), and g51.646 20 ~for b57).

For a sequence of b>9, the exact determination of the
polynomial ~17! ~that is, knowledge of the coefficients QN)
can be hardly reached using the present-day computers.
However, to calculate l2 one does not need a complete

knowledge of polynomial a(B). In fact, to obtain l2 , one
needs only values of this polynomial at the fixed point @see
Eq. ~16!#. On the other hand, the polynomial that appears in
Eq. ~14! can be considered to be a grand partition function of
an appropriate ensemble and, consequently, within the
MCRG method @13,19# the requisite value of the polynomial
can be determined directly. Details of the way to ascertain
values of a(B*) are quite similar to the way applied previ-
ously @13,19#, and here we are not going to elaborate on it
further. Owing to the fact that we can obtain a(B*) through
the MC simulations and knowing l1 from the preceding cal-
culation of n , we can apply Eqs. ~15! and ~16! to learn g . In
Table I we present our MCRG results for g for 3<b<151.
Hence, comparing the MCRG values for g from Table I, for
b53, 5, and 7, with the exact results found in this work, one
can see that the MCRG values deviate at most 0.14% from
the available exact values.

III. DISCUSSION AND SUMMARY

We have studied critical properties of trails on the infinite
family of the PF fractals whose each member has fractal
dimension d f equal to the Euclidean value 2. In particular,
we have calculated the trails’ critical exponents n and g via
an exact RG ~for 3<b<7) and via the MCRG approach ~up
to b<201 for n and up to b<151 for g). Specific results for
the trails’ critical exponents are presented in Table I. To
compare our results with the corresponding results for SAWs
on the same family fractals, we have first extended the
known @13# sequence of results (3<b<121) for the critical
exponent n and the critical fugacity B* for SAWs by calcu-
lating these two quantities for b5151, 171, and 201 via the
MCRG method. The corresponding results for (B*,n) are
~0.384 76, 0.727 75!, ~0.383 99, 0.726 31!, and ~0.383 16,
0.724 86!. Consequently, in Fig. 3 we show n to be a func-
tion of 1/b for both SAWs and trails. Notice that n for SAWs
(nSAW) in the region of b studied is always larger than n for
trails (n trail), which implies that the mean end-to-end dis-
tance for SAWs is always larger than the mean end-to-end
distance for trails

FIG. 3. Results for the critical exponent n for trails ~solid
squares!, obtained in this work, and results for SAWs ~open
squares!, obtained in Ref. @13# and supplemented in this work for
b5151, 171, and 201. The horizontal broken line represents the
Euclidean value n53/4. The solid lines serve as guides to the eye.
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^RSAW &.^R trail&. ~18!

The above relation arises from the fact that in the case of
trails the walker can cross twice a large number of the lattice
sites, thereby making its path more packed. Next it appears
~see Fig. 3! that the trails critical exponent n trail , being al-
ways smaller than the Euclidean value 3/4, is a nonmono-
tonic function the scaling parameter b . However, one can
notice that, for large b , the behavior of n trail becomes similar
to the behavior of nSAW , that is, both of them display a
monotonic decrease with b . Here we encounter, as it might
be expected, the question as to what happens with both criti-
cal exponents (nSAW and n trail) in the fractal-to-Euclidean
crossover when b→` . According to the finite-size scaling
arguments @13,14#, the critical exponent n SAW approaches,
from below, the Euclidean value 3/4 when b→` . From the
above comparison and on the grounds of the established uni-
versality of trails and SAWs on the Euclidean lattices
@4,5,8,9,11,12#, one may suppose that n trail will display the
same behavior in the limit b→` , but this assumption should
be a topic of future investigations.

Continuing the comparison of the criticality of SAWs and
trails on the PF fractals, we show in Fig. 4 our results for the
critical fixed points B* ~which are equal to the reciprocal of
the connectivity constant m) for both types of walks. We
observe that B SAW* are always larger than B trail* , that is,
mSAW* ,m trail* , which is expected because the trail walk has
by definition more possibilities to continue walking from a
given site. However, we also observe ~see Fig. 4! that BSAW*
and B trail* behave quite similarly as functions of 1/b and that
these functions become almost linear for large b . This allows
us to estimate the limiting values of BSAW* and B trail* for b
→` , which should be compared with the corresponding val-
ues for the square lattice. Our detailed numerical analysis
reveals that BSAW* has the asymptotic value 0.379 15
60.000 40, which should be compared with the Euclidean
value 0.379 052 3~3! for the square lattice, obtained in @20#.
Similarly, in the case of trails on the PF fractals, we have
found that B trail* has the limiting value 0.367 3560.000 04,

which is in a good agreement with the corresponding result
0.367 5760.000 01 for the square lattice @12#.

To complete our comparison of the two types of random
walks ~trails and SAWs! on the PF fractals, we plot the cor-
responding values of the critical exponent g as functions of
the fractal enumerator b ~see Fig. 5!. One can see that in both
cases g , being always larger than the Euclidean value 43/32
@3#, monotonically increases with b . In the case of SAWs we
demonstrated @13#, through the finite-size scaling argument,
that g will continue to increase with b , approaching the non-
Euclidean value 103/32 in the limit b→` . From Fig. 5 we
see that the difference between the two sets ~for trails and
SAWs! becomes smaller with increasing b and so we expect
similar asymptotic behavior in the region of very large b .
However, to test such an expectation ~which is similar to the
case of the critical exponent n) would require much new
work, including the invention of the pertinent finite-size scal-
ing arguments. Finally, as regards Fig. 5, we note that the
inequality gSAW.g trail does not imply that the number of
SAWs, for a given large number of steps N , can be larger
than the number of trails. This observation arises from the
previously established inequality mSAW,m trail ~see Fig. 4!
and from the power law behavior mNNg21 ~for the number
of walks! expected to be valid in both cases.

In conclusion, our comparative study of trails and SAWs
on the PF family of fractals shows that the two types of
random walks display similar critical properties: similar be-
haviors of the critical exponents (n and g) and the connec-
tivity constant, as functions of the fractal scaling parameter
b . In addition, the observed similarity becomes more pro-
nounced for large b , that is, close to the fractal-to-Euclidean
crossover region (b→`), which in a way corroborates the
current inference @4,5,8,9,11,12# that SAWs and trails ~on the
two-dimensional Euclidean lattices! belong to the same uni-
versality class.

APPENDIX: COEFFICIENTS OF THE RG
TRANSFORMATION

We present coefficients of the RG transformations that
have been used to calculate the critical exponents n and g for
the trails on the PF family of fractals. First, we give the
coefficients aN that appear in the RG relation ~8!:

FIG. 4. Results for the fixed point values B* ~the reciprocal
connectivity! for trails ~solid squares!, obtained in this work, and
data for SAWs ~open squares!, obtained in Ref. @13# and supple-
mented in this work for b5151, 171, and 201. The solid lines serve
as guides to the eye. As regards the limiting values for b→` and
their relation to the Euclidean values, see the text.

FIG. 5. Results for the critical exponent g for trails ~solid
squares!, obtained in this work, and data for SAWs ~open squares!,
obtained in Ref. @13#. The horizontal broken line represents the
Euclidean value g543/32 for a two-dimensional lattice.
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b53, a351, a552, a956,

b55, a551, a7512, a9520, a11562,

a135138, a155186, a175416, a195198,

a2151056, a2552592,

b57, a751, a9530, a115182, a135598,

a1552362, a1756960, a19522 180, a21559 396,

a235144 364, a255323 354, a275654 690,

a2951 273 764, a3152 068 716, a3353 536 168,

a3554 747 076, a3759 159 256, a3958 367 376,

a41522 322 808, a43510 525 376,

a45549 701 344, a49583 090 912.

In what follows we present the coefficients QN of the RG
relation ~17!:

b53, Q153, Q255, Q354, Q458,

Q556, Q656, Q756, Q856,

b55, Q153, Q255, Q3515, Q4533,

Q5552, Q65112, Q75160, Q85300, Q95436,

Q105736, Q115894, Q1251362, Q1351520,

Q1452140, Q1552250, Q1652770,

Q1752630, Q1853430, Q1953296, Q2053648,

Q2152592, Q2252592, Q2352592, Q2452592,

b57, Q153, Q255, Q3515, Q4533,

Q5591, Q65209, Q75444, Q851020,

Q951930, Q1054310, Q1157764,

Q12516 580, Q13529 010, Q14557 942,

Q15596 872, Q165183 248, Q175292 676,

Q185527 616, Q195798 676, Q2051 362 976,

Q21519 657 00, Q2253 190 292,

Q2354 376 352, Q2456 738 484,

Q2558 827 122, Q26512 960 066,

Q27516 118 644, Q28522 632 952,

Q29526 977 068, Q30536 086 864,

Q31541 361 132, Q32553 569 348,

Q33559 243 924, Q34573 567 212,

Q35578 272 896, Q36597 043 904,

Q37598 256 232, Q385114 855 912,

Q395114 120 664, Q405136 780 568,

Q415119 775 488, Q425129 361 024,

Q435120 561 856, Q445132 792 256,

Q45583 090 912, Q46583 090 912,

Q47583 090 912, Q48583 090 912.
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