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and the Barkhausen effect
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We study the dynamics of a ferromagnetic domain wall driven by an external magnetic field through a
disordered medium. The avalanchelike motion of the domain walls between pinned configurations produces a
noise known as the Barkhausen effect. We discuss experimental results on soft ferromagnetic materials, with
reference to the domain structure and the sample geometry, and report Barkhausen noise measurements on
Fe21Co64B15 amorphous alloy. We construct an equation of motion for a flexible domain wall, which displays
a depinning transition as the field is increased. The long-range dipolar interactions are shown to set the upper
critical dimension todc53, which implies that mean-field exponents~with possible logarithmic correction! are
expected to describe the Barkhausen effect. We introduce a mean-field infinite-range model and show that it is
equivalent to a previously introduced single-degree-of-freedom model, known to reproduce several experimen-
tal results. We numerically simulate the equation ind53, confirming the theoretical predictions. We compute
the avalanche distributions as a function of the field driving rate and the intensity of the demagnetizing field.
The scaling exponents change linearly with the driving rate, while the cutoff of the distribution is determined
by the demagnetizing field, in remarkable agreement with experiments.@S0163-1829~98!08833-X#
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I. INTRODUCTION

The Barkhausen effect1 was first observed in 1919 record
ing the noise produced by the sudden reversal of Weiss
mains in a ferromagnet. Since then, the Barkhausen e
has been widely used as a nondestructive method to
magnetic materials and a detailed statistical analysis of
noise properties has been performed.2,3 In addition to its
practical and technological applications, the Barkhausen
fect has recently attracted a growing interest as an exam
of a complex dynamical system displaying scaling behav
It has been experimentally observed that a histogram
Barkhausen jump sizes follows a power law,4–7 a result
which has analogies with other driven disordered syste
ranging from flux lines in type-II superconductors8 to
microfractures9 and earthquakes,10 where the dynamics take
place in avalanches. While the ambitious goal to build
common theoretical framework for all these phenomena
still far from being reached, theoretical analysis of each s
tem might shed light on the entire issue.

In the case of the Barkhausen effect, the task is to exp
the statistical properties of the noise, such as jump size
tributions and power spectra, in terms of the microsco
details of the magnetization process. In general, three dif
ent mechanisms are involved during the process:11 domain
nucleation and coalescence, coherent spin rotation, and
main wall motion. Their different relevance along the hy
teresis loop is in general very complicated and not ea
predictable, as it depends on material properties, annea
conditions, and the geometry of the sample. The Barkhau
PRB 580163-1829/98/58~10!/6353~14!/$15.00
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noise is mainly due to the domain wall motion; therefore it
customary to study soft magnetic materials where a w
defined domain structure is present and coherent spin r
tion does not take place: in this case, once the structur
formed, the magnetization process takes place by motio
domain walls, rather than nucleation of new domains, wh
has a higher energetic cost due to magnetostatic interact

The classical theoretical approach to the problem focu
on the motion of the domain walls and their interaction w
the disorder present in the medium. The simple schemat
tion of the domain wall as a point moving in a random pi
ning field12 has been successfully used in the past to exp
several properties of ferromagnetic materials, such as
Rayleigh law.13 A theoretical analysis of the Barkhausen e
fect has been carried out in the same spirit.14 Most of the
measured properties can be reproduced by the model
posed by Alessandro, Beatrice, Bertotti, and Monto
~ABBM !.15 The crucial hypothesis of this model is that th
pinning field is a random walk in space. This assumption
consistent with experiments2 but its microscopic justification
is still unclear. In fact, an estimate16 of the correlation length
of the impurities typically present in the material gives
value much smaller than the one employed in Ref. 15,
plying that a Brownian pinning field can only be consider
to be aneffectivepicture.

Recently, Urbachet al.17 and Narayan18 have proposed
relating the properties of the Barkhausen effect to the de
ning transition of an elastic surface in a random medium
topic that has been studied extensively in recent years.19 The
comparison between the values of the exponents predi
6353 © 1998 The American Physical Society
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6354 PRB 58ZAPPERI, CIZEAU, DURIN, AND STANLEY
for the depinning transition and most experimental data w
however, unsatisfactory.

A completely different approach has been undertaken
Sethna and co-workers,20–22 who study field-driven nucle-
ation in a nonequilibrium random-field Ising model~RFIM!.
In this model domain nucleation and growth are treated
the same way. When the external field is increased fr
negative saturation, the spins flip to align with the local ma
netization, eventually causing avalanches of neighbor
spins. A thorough investigation of this model shows th
there is a second-order critical point controlled by the am
tude of the disorder.21 The power law distributions of the
Barkhausen noise would then be related to the proximity
this critical point.22 This model neglects dipolar interaction
and demagnetizing effects which are known to play a cru
role in the formation of domains, and so its applicability
most experimental situations seems questionable.

Here we approach the problem studying the motion o
flexible domain wall driven through a disordered mediu
One of our aims is to bridge the gap between ‘‘classica
approaches to ferromagnetism12,13 and modern theories o
surface growth in disordered media.19 In this way, we are
able to clarify several assumptions present in phenome
logical models of domain wall dynamics and to understa
their limitations.

We consider the case of an anisotropic material mag
tized along the easy axis, with 180° domain walls separa
regions of opposite magnetization~Fig. 1!. The disorder,
due, for example, to nonmagnetic inclusions or resid
stresses, pins the domain wall motion which is driven by
external magnetic field. We assume that the disorder is
calized and is either uncorrelated in space or is only sh
range correlated. The domain wall is assumed to be flexi
the stiffness being due to ferromagnetic and magnetos
interactions,12,23,24and can therefore deform because of t
local configurations of the disorder. The resulting equation
motion is different from the one proposed by Urbachet al.,17

who treated incompletely dipolar interactions. Narayan18 has
also considered dipolar interactions in this context, but
approximate analysis does not apply tod53—the physical
dimension for most of the experiments.

We shall find that the scaling properties of th
Barkhausen noise arise from the critical behavior expec
close to a depinning transition. The dipolar interactions g
erate a long-range term in the equation of motion wh
reduces the upper critical dimension fromdc55, obtained
for elastic interfaces,25,26 to dc53. Indeed, we shall see tha
mean-field critical exponents describe quite well a la
amount of experimental data.

The geometry of the sample has an important effect on
experimental results. A true depinning transition can only
observed when demagnetizing effects, opposing the mo
of the wall, are absent or very small. Otherwise, when
external field is increased at a constant rate, the wall is dri
to a stationary motion around the depinning transition. T
scaling is controlled by the external field driving rate and
the intensity of the demagnetizing field, which in gene
depends on the shape of the sample. In particular, the dri
field determines the exponents of the jump distributio
while the cutoff is controlled by the demagnetizing field.

We first introduce a mean-field interface model, in whi
s,
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the interaction range is infinite. Since the upper critical
mension is dc53, we expect that its critical propertie
should agree with the three-dimensional model. Intere
ingly, we find the infinite-range model to be equivalent to t
ABBM model. This observation explains why the ABBM
model works so well in describing the experimental data
provides aneffectiveone-degree-of-freedom description
the complex motion of a flexible interface. The elastic inte
actions along the wall moving in anuncorrelatedmedium
give rise to an effectivecorrelatedpinning field experienced
by the center of mass of the wall. In other words, the lon
range correlations in the effective pinning field are not due
the correlation in the impurities present in the material. W
note that a similar idea underlies the variational replica
proach forequilibrium elastic interfaces in random media,27

where one describes the complicated interactions betw
many degrees of freedom of the interface as a single par
in an effective potential.

Finally, we simulate the full three-dimensional interfa
model and confirm the value of the upper critical dimensio
We find that the results on the three-dimensional model
not fully agree with the mean-field predictions. In particula
the correct scaling of the cutoff cannot be predicted by
infinite-range and ABBM models. The results of the simu
tions, however, agree remarkably well with experiments.

The paper is organized as follows: In Sec. II we discu
the experiments on the Barkhausen effect, introducing
various scaling exponents. We briefly report experiments
an as-cast Fe21Co64B15 amorphous alloy. In Sec. III we con
struct the equation of motion for the dynamics of the dom
wall. In Sec. IV we derive the upper critical dimension a
the mean-field exponents. In Sec. V we derive scaling re
tions between the critical exponents. In Sec. VI we study
dynamics of the infinite-range model as a function of t
driving rate and the demagnetizing field. In Sec. VII w
present the result of numerical simulations. Section VIII
devoted to conclusions and discussion of open problems
brief report of a subset of these results appears in Ref. 2

II. EXPERIMENTAL RESULTS

The experimental results on the Barkhausen effect fo
an enormous body of literature that spans almost the en
century,1–4 but precise experimental results for the statist
of Barkhausen jumps have been reported only recently5–7

The distribution of Barkhausen jump sizes, measured at
driving rates, shows typically a power law behavior, but t
scaling exponents reported in the literature span a wide ra
of values.29 For this reason, it is important to carefully dis
cuss the various experimental conditions, material proper
and statistical uncertainties before direct comparison wit
theory could be made.

Under well-defined experimental conditions the resu
show a remarkable degree ofuniversality: the scaling expo-
nents do not depend on the particular sample used.5,6,15,29–32

The measurements are taken only in the central part of
hysteresis loop around the coercive field, where domain w
motion is dominant while domain nucleation and coher
spin rotations are negligible.15 The typical domain structure
observed in these conditions is reported in Fig. 1. Exp
ments were performed using a triangular wave form for
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PRB 58 6355DYNAMICS OF A FERROMAGNETIC DOMAIN WALL: . . .
external field and different driving rates were employed.
The signal amplitude distribution, directly related to t

domain wall velocity, decays as a power law5,6,15,30

P~v !;v2~12c!exp~2v/v0!, ~1!

wherec is proportional to the field driving rate andv0 is the
value of the cutoff. The avalanche sizes ~the area under the
jump! and durationT distributions also decay as power law
and are very well fitted by5,6,29

P~s!;s2t f ~s/s0!, t53/22c/2, ~2!

P~T!;T2ag~T/T0!, a522c. ~3!

These laws have been tested for a variety of materials, s
as amorphous~Co-base and Fe-base!29,33 and polycrystal
~Fe-base! alloys.5,6 In Fig. 2, we report the size and duratio
distributions measured in an as-cast Fe21Co64B15 amorphous
alloy for different field driving rates. The experiments ha
been performed using the setup described in Ref. 6.
exponents agree perfectly with Eqs.~2! and ~3!.

The dependence of the exponents on the field driv
rate34 can explain the variability in the experimental valu
reported in literature, since many experiments were p
formed using a single linear driving rate17 or a sinusoidal
one. Moreover, one should also be aware that the prope
of the noise and thus the scaling exponents and the cutoff
change considerably through the hysteresis loop15,35 when
domain nucleation and coherent spin rotations become
evant.

To test the effect of the demagnetizing field, we perfo
experiments on strips with different lengths of an as-c
Fe21Co64B15 amorphous alloy. The intensity of the demagn
tizing field decreases for longer samples. We find that

FIG. 1. The domain structure of Fe21Co64B15 amorphous alloy
observed by scanning electron microscope, using type-II magn
contrast. The domains are separated by walls parallel to the ma
tization. This is the typical structure observed in soft ferromagn
materials.
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cutoff of distributions scales ass0;1/k andT0;1/k1/2 ~Fig.
3!, wherek is proportional to the intensity of the demagn
tizing field ~see Sec. III!. We obtain the same results contro
ling k by changing the air gap between the sample an
magnetic yoke. A complete account of these experime
will be deferred to a forthcoming publication.

The power spectrumS( f ) of the noise does not show i
general such a marked robustness and is not described
frequency-independent exponent: at low frequencyf ,

tic
ne-
c

FIG. 2. Distributions of Barkhausen jump sizes~a! and dura-
tions ~b! measured in an as-cast Fe21Co64B15 amorphous alloy for
different driving rates. The lines are the fit witht53/22c/2 and
a522c. The distributions have been obtained recording 63105

avalanches.

FIG. 3. ~a! Distribution of Barkhausen jump durations measur
in Fe21Co64B15 amorphous alloy for different sample lengths.~b!
The data collapse shows thatT0;k20.5.
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S~ f !; f c, ~4!

wherec varies betweenc.0.6 in Fe-Si, toc.1 in amor-
phous alloys.29,31,32 After a crossover frequency, which de
pends onc, it decays with an exponent varying betwe
21.6 and22.6,7,29,31,32When only a single domain wall is
present the power spectrum was found to decay asf 22.2

Moreover, it has been observed that the power spectrum
plitude scales linearly withc. From the point of view of
applications, it is important to distinguish universal prop
ties from material-dependent properties that could be
evant to characterize the sample.

In toroidal or frame geometries the demagnetizing field
practically absent and the magnetization process is quite
ferent from the previous case. The hysteresis loop, instea
showing an extended linear part with a stationa
Barkhausen signal, displays a square form with a h
Barkhausen jump: the domain walls undergo a depinn
transition as a function of the field. When the external fie
H exceeds the coercive fieldHc , the domain walls start to
move with a velocityv that typically scales linearly with the
field:

v;~H2Hc!. ~5!

This law was observed about 50 years ago by William
Shockley, and Kittel36 in a single-crystal Fe-Si frame, an
later confirmed for a variety of other soft ferromagne
materials.37 Before the onset of collective domain wall mo
tion, one observes a series of Barkhausen jumps of incr
ing amplitude,2 but to our knowledge a quantitative analys
in terms of scaling exponents has never been reported.

III. DOMAIN WALL DYNAMICS

The thermodynamic theory of ferromagnetic domains
due to Landau and Lifshitz,38 who explained the presence o
domains by energetic considerations. In a uniformly mag
tized specimen, the discontinuity of the normal componen
magnetization across the boundary of the sample creat
field that raises the total energy of the system. The crea
of domains decreases this energetic contribution at the p
of a higher cost in wall energy. One can obtain a rou
estimate of the number of domains by simply balancing th
two terms.

In order to describe accurately the magnetization proc
it is necessary to analyze in detail the interactions presen
most soft ferromagnetic materials, due to the magnetoc
talline anisotropy or to the shape of the sample, the mag
tization has preferred directions. In the simplest situati
there is a single easy axis of magnetization and the dom
are separated by surfaces parallel to the magnetization, s
ning the sample from end to end~see Fig. 1!. The domain
walls are in general flexible, since local inhomogeneities
impose distortions of the surface, which would be flat in
perfectly ordered system. In some particular geometry
which demagnetizing effects are minimized, it is even p
sible to obtain a single domain wall.2

We study the dynamics of a single 180° domain w
separating two regions with opposite saturation magnet
tions, directed along thex axis. If the surface has no ove
hangs, we can describe the position of the domain wall b
m-
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function h(rW,t) of space and time~see Fig. 4!. The equation
of motion for the wall is given by

G
]h~rW,t !

]t
52

dE~$h~rW,t !%!

dh~rW,t !
, ~6!

whereE($h(rW,t)%) is the total energy functional for a give
configuration of the surface andG is an effective viscosity.
The motion of the domain wall is overdamped, since ed
currents cancel inertial effects, and thermal effects are n
ligible.

We can split the energy into the sum of different cont
butions due to magnetostatic and dipolar fields, ferrom
netic and magnetocrystalline interactions, and disorder
the following, we will express the energy in IS units.

A. Magnetostatic fields

In the presence of an external fieldHW along the easy axis
of magnetization the magnetostatic energy of the system
given by

Em522m0HMsE d2rh~rW,t !, ~7!

whereMs is the saturation magnetization per unit volume
Another contribution to the magnetostatic energy com

from the discontinuity of the normal component of the ma
netization across the boundary of the sample. This gener
an effective magnetic field, the so-called demagnetiz
field, that is opposed to the direction of the total magneti
tion. In some particular geometries~e.g., a uniformly mag-
netized ellipsoid! this field is constant along the sample. F
a generic domain structure, an explicit expression for
demagnetizing field is often not available, but we expect i
first approximation that the intensity of the demagnetizi
field will be proportional to the total magnetization. Consi
ering the field constant through the sample, its energy can
written as

Edm5
2m0NMs

2

V S E d2rh~rW,t ! D 2

, ~8!

where the demagnetizing factorN takes into account the
geometry of the domain structure and the shape of
sample andV is the sample volume. This term was als
considered by Urbachet al.17 The demagnetizing effect ca

FIG. 4. A domain wall separating two regions of opposite ma
netization. The discontinuities of the normal component of the m
netization across the domain wall produce magnetic charges.
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be avoided in suitable geometries, as in frame or toro
specimens, but it is present in many common experime
situations.

B. Dipolar interactions

An effect similar to the one discussed above takes pl
inside the sample, where the local curvature of the surf
can in general give rise to discontinuities in the normal co
ponent of the magnetization. We treat this effect introduc
a ‘‘magnetic charge’’ density, which for a domain wall sep
rating two regions of magnetizationsMW 1 and MW 2 is given
by39

s5~MW 12MW 2!•n̂, ~9!

where n̂ is normal to the surface. This charge is zero on
when the magnetization is parallel to the wall. For sm
bending of the surface, we can express the charge as~see
Fig. 4!

s~rW !52Mscosu.2Ms

]h~rW,t !

]x
, ~10!

whereu is the local angle between the vector normal to
surface and the magnetization. The energy associated w
distribution of chargess is given by

Ed5
m0

8pE d2rd2r 8
s~rW !s~rW8!

urW2rW8u
. ~11!

Inserting the expression fors in Eq. ~11! and integrating
twice by parts, we obtain

Ed5E d2rd2r 8h~rW,t !K~rW2rW8!h~rW8,t !, ~12!

where the nonlocal kernel has the form23

K~rW2rW8!5
m0Ms

2

2purW2rW8u3S 11
3~x2x8!2

urW2rW8u2
D . ~13!

The interaction is long range and anisotropic, as can be s
by considering the Fourier transform

K~p,q!5
m0Ms

2

4p2

p2

Ap21q2
, ~14!

wherep andq are the two components of the Fourier vect
In the preceding derivation we have implicitly assum

that the medium is infinitely anisotropic, so that the mag
tization never deviates from the easy axis. In practice, h
ever, the magnetization will rotate slightly from the easy a
because of the field created by the surface charges. A l
change in the magnetization produces additional volu
charges whose density is given by

r~rW !5¹•MW . ~15!

Néel12 has explicitly treated this effect obtaining an expre
sion for the energy in the form of Eq.~12! with a modified
kernel
al
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K̃~p,q!;
1

AQ

p2

Ap21Qq2
, ~16!

where Q is a material-dependent constant, whose va
ranges from 5 to 10. This calculation shows that the qual
tive features of the interaction do not change if a finite ma
netocrystalline anisotropy is taken into account.

For the analysis we will perform later, it is important t
generalize the kernel in any dimension. It is straightforwa
to show that the kernel ind dimensions scales as

K~qW !}
qi

2

Aqi
21q'

2
, ~17!

whereqi andqW' are the components ofqW parallel and per-
pendicular to the magnetization.40

C. Surface tension and disorder

The magnetocrystalline and exchange interactions are
sponsible for the microscopic energy associated with the
main wall. While a very sharp change of the spin orientat
has a high cost in exchange energy, a very smooth rotatio
the spins between two domains is prevented by the mag
tocrystalline anisotropy. The balance between these two c
tributions determines the width of the domain wall and
surface energy. The total energy due to these contribution
proportional to the area of the domain wall:

Edw5n0E d2rA11u¹h~rW,t !u2, ~18!

where n0 is the surface tension. Expanding this term f
small gradients we obtain

Edw5n0Sdw1
n0

2 E d2r u¹h~rW,t !u2, ~19!

whereSdw is the domain wall area. This is the typical ter
associated with elastic interfaces.

The disorder present in the material in the form of no
magnetic impurities, lattice dislocations, or residual stres
is the reason for the jumps in the magnetization curve and
its hysteretic behavior. All these forms of quenched disor
are difficult to treat in full detail. In general, they can b
modeled by introducing a random potentialV(rW,h), whose
derivative gives the local pinning fieldh(rW,h) acting on the
surface. In the particular case of pointlike defects, the r
dom force is given by

h~rW,h!52U(
i

d2~rW2rW i !d~h2hi !, ~20!

where (rW i ,hi) are the coordinates of the pinning centers a
U is their strength.23,41After coarse graining at a scale larg
than the typical distance between the pinning centers,
disorder becomes a Gaussian uncorrelated random nois

In the case of the depinning transition it has been sho
that the particular form ofV(rW,h) ~i.e., random-bond- or
random-field-type disorder! is not essential.26 On the other
hand, long-range correlations in the pinning field are e
pected to change the critical behavior of the system. Here
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choose the random potential so that the pinning field
Gaussian distributed and short range correlated:

^h~rW,h!h~rW8,h8!&5d2~rW2rW8!R~h2h8!, ~21!

whereR(x) decays very rapidly for large values of the arg
ment.

In Eq. ~6! we neglected thermal effects. In principle on
should add an additional noise term to the equation,42 but it
has been observed experimentally that temperature doe
affect Barkhausen noise measurements.44

We can understand that thermal fluctuations are neglig
by a simple argument. We can roughly estimate the sig
induced by a magnetization reversal of a small part o
domain wall due to thermal effects as

Hp~m0DM !V;kT, ~22!

whereHp is a local coercive field,DM is the magnetization
variation, andV is the volume involved. AssumingHp
;1023 A/m, which is about 1/1000~or less! of the coercive
field in a typical soft magnetic material, andm0DM;1 T,
we getV;10218 m3. If we consider a cubic portion of the
domain wall of sideL;1026 m, we obtain an induced flux
of the order of 10210 V, assuming an average domain wa
velocity of the order of 100mm/s. Even if we assume tha
there are 103 of such cubes in a cross sectionreversing at the
same time and in the same direction, we would obtain a
signal which is lower than the background instrumen
noise.

D. Equation of motion

Collecting all the energetic contributions, we obtain t
equation of motion for the domain wall.28 In order to avoid a
cumbersome notation, we will absorb all the unnecess
factors in the definitions of the parameters. The equa
then becomes

]h~rW,t !

]t
5H2kh̄1n0¹2h~rW,t !

1E d2r 8K~rW2rW8!@h~rW8!2h~rW !#1h~rW,h!,

~23!

where the kernelK is given by Eq.~13!, k[4m0NMs
2 ,45 and

h̄[*d2r 8h(rW8,t)/V. Apart from the nonlocal kernel, thi
equation is similar to the equation proposed by Urba
et al.,17 which in its turn reduces whenk50 to an elastic
interface driven in quenched disorder. When the field
slowly increased, the demagnetizing field provides a res
ing force that keeps the motion around the depinning tra
tion. As we will show later, the nonlocal kernel changes
upper critical dimension, and hence the exponents, from
case of elastic interface.

IV. MEAN-FIELD THEORY AND UPPER
CRITICAL DIMENSION

The mean-field theory provides a good qualitative d
scription of the depinning transition.46–48 We will consider
first the casek50 andH constant, which corresponds to
is
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conventional depinning transition. We will discuss in Sec.
the casek.0, H}t. Here, we proceed as in Refs. 26 and 4
considering an infinite-ranged interaction kernel in the eq
tion of motion. To this end, it is convenient to first discreti
Eq. ~23!:

]hi~ t !

]t
5H1(

j
Ji j @hj~ t !2hi~ t !#1h i~h!, ~24!

whereJi j in Fourier space has the form

J~p,q!5
Ap2

Ap21q2
1n0~p21q2!, ~25!

whereA[m0Ms
2/4p2. The infinite-range model is the sam

as in the elastic interface problem

]hi~ t !

]t
5H1J@ h̄2hi~ t !#1h i~h!, ~26!

whereh̄[( ihi /N, J[A1n0, andN is the system size. The
mean-field behavior depends on the shape of the ran
potential: for cusped potentials one obtains that the velo
of the interface grows linearly forH.Hc :

v;~H2Hc!. ~27!

A complete mean-field analysis, including the form of r
sponse and correlation function, can be found in Refs. 47
49.

To go beyond mean-field theory, Narayan and Fisher26,49

have devised a functional renormalization group scheme
allows one to obtain the value of the upper critical dimens
and an estimate of the scaling exponents. Their metho
based on an expansion around mean-field theory, using
formalism of Martin, Siggia, and Rose. They construct
generating functional for the response and correlation fu
tions, introducing an auxiliary fieldĥ(x,t):

Z5E ~dh!~dĥ!expH i E dd21xdtĥF~h,h!J , ~28!

where

F~h,h!5
]h~x,t !

]t
2n0¹2h~x,t !2E dd21x8K~x2x8!

3@h~x8,t !2h~x,t !#2h~x,h!2H. ~29!

Following Ref. 26, we introduce a new field

f i5(
j

Ji j hj , ~30!

which represents the coarse-grained version ofh, and a cor-
responding auxiliary fieldf̂. After averaging over the disor
der one obtains an effective generating functional

Z̄5E ~df!~df̂ !exp@S̃~f,f̂ !#, ~31!

whose saddle point value corresponds with mean-fi
theory. Narayan and Fisher carried out an expansion aro
the saddle point to obtain a correction to mean-field theo
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In our problem everything works like in Ref. 26, the on
difference being in the form of the interaction kernel@J(q)
}q2 in Ref. 26#. The effective action is in our case50

S̃5E dd21xdtHf̂~x,t !1E dd21qdv

~2p!d
f̂~2q,2v!

3S 2 iv1
Aqi

2

Aqi
21q'

2
1n0q2D f~q,v!

2
1

2E dd21xdtdt8f̂~x,t !

3C@vt2vt81f~x,t !2f~x,t8!#f̂~x,t !, ~32!

where the functionC(x) is the mean-field correlation func
tion. Other terms resulting from the expansion around
saddle point can be seen to be irrelevant.

To obtain the upper critical dimension, we rescale sp
and time,x5bx8, t5bzt8, f5bzf8, f̂5bu2d11f̂8, and
H5b21/nH8, requiring that the Gaussian part of the acti
remain invariant. Simple power counting gives

z51, z5
32d

2
, u5

d23

2
, n5

2

d21
. ~33!

For d.3 all nonlinearities decay to zero at a large leng
scale and the theory is Gaussian, while ford,3 an infinite
set of nonlinear terms becomes relevant. The upper crit
dimension for this problem is thereforedc53. This result
differs from the one obtained for elastic interfaces, for wh
dc55, but agrees with the result for contact line depinning51

The similarity between the two problems lies in the nonlo
kernel that scales linearly with the momentum at long len
scales.

In order to apply these results to the experiments we h
to make sure that the linear part of the kernel dominate
the length scales of interest. Long-range effects become
evant for length scales larger thanL;2pn0 /m0Ms

2 . In typi-
cal ferromagnets,m0Ms;1 andn0;1023 ~in IS units! ~see
p. 713 of Ref. 11!. This impliesL;1029–1028 m, which is
of the order of the domain wall thickness. From this calc
lation we conclude that the effect of the surface tension
be neglected with respect to the long-range kernel.

Above the upper critical dimension mean-field results
valid, while for d5dc we expect logarithmic corrections. T
obtain the value of the exponents below the upper crit
dimension one should perform a functional renormalizat
group along the lines of Refs. 25, 26, and 49. This has b
done in Ref. 51 in the case of a kernel scaling linearly
momentum space. However, in many experimental situat
the dipolar interactions are effectively three-dimensional43 or
the magnetization is perpendicular to the plane of the fi
and this analysis does not apply. The issues of
Barkhausen effect and domain growth in thin films dese
further investigations that are beyond the scope of this pa

V. CRITICAL EXPONENTS FOR CONSTANT
APPLIED FIELD

In this section we derive scaling relations between
exponents that characterize the depinning transition. W
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the external field is increased monotonically and adiab
cally the interface moves in avalanches of increasing s
The exponents describing avalanche distributions can
compared with experiments on the Barkhausen effect.
have to keep in mind that most experiments are perform
with a nonzero applied field rate in the presence of a dem
netizing field. We expect, however, that the distributions
H5Hc should scale as in the casec→0 andk→0.

The avalanche size distribution close to the depinn
transition scales as

P~s!;s2t f ~s/s0!, ~34!

where the cutoff scales ass0;(H2Hc)
21/s and is related to

the correlation lengthj by

s0;jd211z, ~35!

wherez is the roughness exponent~Fig. 5!. The correlation
length diverges at the depinning transition as

j;~H2Hc!
2n, ~36!

which implies

1

s
5n~d211z!. ~37!

The average avalanche size also diverges at the transitio

^s&;~H2Hc!
2g, ~38!

whereg is related tot ands by

g5
~22t!

s
. ~39!

An additional scaling relation can be obtained consider
the susceptibility26 which is proportional tôs& and scales as

d^h&
dH

;~H2Hc!
2~11nz!. ~40!

This relation together with Eq.~39! implies

t522
11nz

n~d211z!
. ~41!

The other exponent relevant for the Barkhausen effect
scribes the distribution of avalanche durations:

P~T!;T2ag~T/T0!, ~42!

FIG. 5. The interface moves between two pinned configurat
in an avalanche of sizes; l d211z.
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where the cutoff diverges at the transition asT0;(H
2Hc)

21/s̃. From Eq.~36! and the relationT0;jz we obtain
s̃51/zn and

a511
n~d21!21

zn
. ~43!

We note that all relations~35!–~43! are valid also for other
interface problems providedd<dc .

For our case ind53, which corresponds to the uppe
critical dimension, we havez50, z51, andn51, which
inserted in the previous expressions givet53/2 anda52.
These exponents agree very well with experimental result
the limit of adiabaticdriving (c→0). Moreover, we obtain
that the average avalanche size scales with the duration

^S~T!&;T2, ~44!

which has been recorded experimentally in Ref. 6. It is
teresting to compare these results with the exponents
tained for three-dimensional elastic interfaces. In that c
the e expansion givesz52/3, z514/9, andn53/4 which
imply t51.25 anda51.43.25,26,52Simulations give slightly
different values,t.1.3 anda.1.5.52 In any case, the value
are significantly lower than the experimental results.

When the experiment is performed in absence of dem
netizing fields, as, for example, in frame geometries, it
possible in principle to measure the exponent close to
depinning transition. In this regard, several experiments,
cussed in Sec. II, support the mean-field predictionv;(H
2Hc). Vergneet al.2 have observed the growth of the siz
of the Barkhausen jumps as the field is increased. Fro
measurement of this kind it should be possible to obtain
estimate of the exponentg. We believe that similar experi
ments are crucial to confirm the presence of a depinn
transition.

Finally, we discuss the properties of the power spectr
of the velocity signal. A similar analysis, in the context
flux line depinning, is reported by Tanget al.53 The height
autocorrelation function scales as

^h~rW,t !h~rW8,t8!&;ut2t8u2z/zf ~ urW2rW8u/ut2t8u1/z!. ~45!

The scaling of the velocity autocorrelation function is o
tained deriving Eq.~45! with respect to time, which gives
power law decay with exponent 2(z/z21). The power spec-
trum of the velocity signal at some fixed space locationrW
scales therefore like

Sv~v!;vc, c5122z/z. ~46!

When the velocity is averaged over the whole system
expect instead

Sv̄~v!;vc̃, c̃512~2z11!/z. ~47!

In mean-field theoryz50, which impliesc51 andc̃50. It
is interesting to compare these results with three-dimensi
elastic interfaces for whichc.0.1 andc̃520.6.54 The di-
rect comparison of these values with experimental result
not straightforward due to the complexity of the measu
spectra. We expect the exponents derived from the depin
transition to describe the low-frequency part of the pow
in

s

-
b-
e

g-
s
e

s-

a
n

g

e

al

is
d
ng
r

spectrum, while for high frequencies we observe a 1f 2

decay.53 For low frequencies experiments find exponen
ranging from 0.5 to 1. This range of value lies between
predictions forc̃ andc. We considered the possibility of
crossover effect, since in the typical experiment the pick
coil is much smaller than the system size. Depending on
domain structure and the coil size the experimental ex
nents could lie anywhere between the averaged and no
eraged results. We tested experimentally this hypothe
varying the size of the pickup coil, but we noticed n
changes in the low-frequency part of the spectrum. To ob
a complete explanation of the power spectrum, we sho
probably take into account the presence of many interac
domain walls and magnetic aftereffect. In particular, the d
main walls interact through demagnetizing fields that
long ranged and oppose the growth of the domains. The
terplay betwen domain growth and long-range interactio
may give rise to the observed ‘‘anticorrelated’’ low
frequency power spectrum.

VI. DRIVING RATE AND DEMAGNETIZING FIELD

In this section we study the effect of the driving rate a
the demagnetizing field on the dynamics of the model. W
study here the infinite-range model, which ind53 should
have the same critical behavior as the long-range model,
it is much simpler to analyze.

As discussed in Ref. 17 the demagnetizing field has
effect of keeping the interface close to the depinning tran
tion. We will show that the intensity of the demagnetizin
field is a relevant parameter controlling the avalanche ch
acteristic length. Criticality is reached only when this para
eter is vanishingly small. A finite driving rate changes co
tinuously the critical exponents, as in the ABBM model15

We will numerically show that the infinite-range model r
produces the results of the ABBM model and we will prese
an argument explaining the reason for this behavior. T
observation explains the success of the ABBM model in
ting experimental data.

The dynamics of the infinite-range model is described
the following equation:

]hi~ t !

]t
5H~ t !2kh̄1J@ h̄2hi~ t !#1h i~h!, ~48!

where the external fieldH(t) is increased at a constant ra
and the demagnetizing fieldHd52kh̄ has been included.

To show the equivalence with the ABBM model, we su
over i both sides of Eq.~48! and obtain an equation for th
total magnetizationm:

dm

dt
5 c̃t2km1(

i 51

N

h i~h!, ~49!

where the time dependence of the field is now explicit. T
equation has the same form as the ABBM model provid
we can interpret( ih i as an effective pinningW(m), with
Brownian correlations. When the interface moves betwe
two pinned configurationW changes as
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W~m8!2W~m!5(
i 51

n

Dh i , ~50!

where the sum is restricted to then sites that have effectively
moved~i.e., their disorder is changed!. The total number of
such sites scales asn; l d21 and in mean-field theory is pro
portional to the avalanche sizes5um82mu ~since s
; l d211z and z50). Assuming that theDh i are uncorre-
lated and have random signs, we obtain a Brownian effec
pinning field:55

^uW~m8!2W~m!u2&5Dum82mu, ~51!

whereD quantifies the fluctuation inW. The Brownian pin-
ning field, observed experimentally in SiFe alloys and us
in the ABBM model to describe the motion of the doma
wall, is not due to a long-range correlated disorder presen
the material. It is instead the result of the collective moti
of the interface and therefore represents only aneffective
descriptionof the disorder.

The main predictions of the ABBM model can be o
tained as follows. We derive Eq.~49! with respect to time
and definev[dm/dt:

dv
dt

5 c̃2kv1v f ~m!, ~52!

where f (m)[dW/dm is an uncorrelated random field. Ex
pressing Eq.~52! as a function ofv andm only,

dv
dm

5
c̃

v
2k1 f ~m!, ~53!

we obtain a Langevin equation for a random walk in a co
fining potential, given byE(v)5kv2 c̃ ln(v). In the limit of
largem, v is given by the Boltzmann distribution

P~v,m→`!;exp@2E~v !/D#5vcexp~2kv/D !, ~54!

wherec[ c̃/D.
The distribution in the time domain is obtained by

simple transformation and it is given by15

P~v ![P~v,t→`!5
kcvc21exp~2kv/D !

DcG~c!
. ~55!

Equation~55! predicts that the domain wall moves at co
stant average velocitŷv&5 c̃/k. The relative fluctuations o
the velocity diverge in the adiabatic limitc→0:

A^v2&2^v&2

^v&
5A1

c
. ~56!

This divergence is due to the singularity atlow velocities
of Eq. ~55! and reflects the presence of a depinning tran
tion. For c,1 the velocity distribution is a power law with
an upper cutoff that diverges ask→0. In this regime, the
domain wall moves in avalanches whose size and durat
are also distributed as power laws. The avalanche size d
bution is directly related to the distribution of first retu
times of a random walk in the confining potentialE(v).
e

d

in

-

i-

ns
ri-

Using scaling relations, it has been shown6,55 that the ava-
lanche exponents scale as a function ofc as

t53/22c/2 a522c, ~57!

in agreement with experimental results.
The scaling of the cutoff of the avalanche distributio

can be obtained as follows. Fork50, the cutoff in the size
distribution scales withH as s0;(H2Hc)

21/s, and simi-
larly for the distribution of durations. Whenk.0, the inter-
face experiences an effective fieldH2kh̄ which keeps it on
average below the depinning transition. We assume that
distance from the critical pointHc is of the order of

DH5H2Hc;kDh̄, ~58!

whereDh̄ is the average variation of the height correspon
ing to a variationDH in the field. SinceDh̄;^s&DH, the
average avalanche size scales as 1/k, which implies

s0;k22. ~59!

Using similar arguments we can also show that the cutof
avalanche durations scales asT0;k21 in mean-field theory.
These results do not agree with the experiments presente
Sec. II. We will show in the next section that they are
peculiarity of mean-field theory and are not obeyed by
equation ind53.

Finally, we note that avalanches are observed only
small driving rates (c,1). Forc.1 the motion is smoothe
with fluctuations that decrease asc increases, in agreemen
with experiments.15

VII. SIMULATIONS

A. Infinite-range model

We simulate the infinite-range model in order to confir
its equivalence with the ABBM model. We first integra
numerically Eq.~48!, using the Runge-Kutta method and
random potential composed of parabolas with cu
singularities.49,26 We study the velocity signal as a functio
of the driving ratec̃, and find that on increasingc̃, the dy-
namics crosses over from avalanche-dominated motion
low c̃ to a smoother motion at largerc̃ ~see Fig. 6!. We are
able to integrate the model only for relatively small values
N; therefore it is not possible to observe the scaling of a
lanche distributions, which appear to be dominated by fin
size effects.

We then introduce an automaton version of the infini
range model, which can be simulated for much larger sys
sizes, and study it for different values ofc andk. From the
results of the ABBM model, we expect that the velocity d
tribution is described by Eq.~55!. In the limit c→0, the
cutoff in the exponential isv05k/D. We extractv0 from the
velocity distribution@see Fig. 7~a!# and we plot it for differ-
ent values ofk in Fig. 7~b!. As expected, we observe a line
decay and we find a value 1/D51.360.1. We then compute
the avalanche size and duration distribution in thec→0 limit
as a function ofk. The data collapse perfectly~see Figs. 8
and 9! using the scaling forms predicted in the previous s
tion:
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P~s,k!;s23/2f ~sk2!, ~60!

P~T,k!;T22g~Tk!. ~61!

Next, we simulate the model as a function ofc̃ and find
scaling exponents that depend linearly on the driving ra
The avalanche size distribution shows a power law for m
than four decades. Therefore, it provides a reliable estim
of c, using the relationt53/22c/2. We computet from the
distribution as a function ofc̃ and observe a linear behavio

FIG. 6. The velocity of the interface as a function of time, f

different values ofc̃. The data have been obtained by integrati
the equation of motion with the cusped potential forN5256.

FIG. 7. ~a! The distribution of velocities in the infinite-rang
automaton model as a function ofk for N532696,c50. ~b! The
scaling of the 1/v0 cutoff with k. The line is a fit with slope 1/D
.1.3.
e.
e
te

t53/22 c̃/(2D), with 1/D.1.2, which is consistent with
the scaling of the cutoff of the velocity distribution@Fig.
7~b!#. The value ofc obtained above can then used to fit t
velocity and avalanche duration distributions and the res
are consistent with the theory~see Figs. 10 and 11!.

Finally, we compute the power spectrum for different va
ues ofc. We observe a 1/f 2 decay at large frequency and
constant part at low frequencies. The peak amplitude sc
linearly with c as in experiments.15

B. Long-range model

A numerical integration of Eq.~23! poses serious numeri
cal problems due to the presence of a long-range nonl
kernel. Therefore, we study an automaton version of
model, which should belong to the same universality cla
In the automaton model the height is discretized and
local velocity can assume only the valuesv50,1. For each
configuration of the system, we compute the local force
cording to Eq.~23!. Periodic boundary conditions are im
posed on the lattice and therefore we must sum the nonl
kernel over the images as discussed in Ref. 56. To mode
disorder, we associate with each site on the interface a
dom number chosen from a Gaussian distribution.

When the local force on a site is larger than zero,
corresponding height is increased by one unit and we cho
a new value for the disorder. Care must be taken in choos
the values of the parameters, in order to avoid instabilit
present in the discretization of the kernel.57

FIG. 8. ~a! The distribution of avalanche sizes in the infinit
range automaton model as a function ofk for N532696,c50. A
line corresponding tot53/2 is plotted for comparison.~b! The
corresponding plot, using scaled variables, showing excellent
collapse.



rn
d
si

on

r

s

ing

s
e

d

e

lle

u-

e-

-

ng-

PRB 58 6363DYNAMICS OF A FERROMAGNETIC DOMAIN WALL: . . .
We consider first the casek50 to confirm the predictions
about the upper critical dimension. We increase the exte
filed adiabatically up toHc ~i.e., when the interface is pinne
we increase the external field until the most unstable
reaches the threshold for movement!, and we compute the
integrated avalanche size distribution. This distributi
scales as

Pint~s!5E
0

Hc
dHP~s,H !;s2~t1s!, ~62!

FIG. 9. ~a! The distribution of avalanche durations in th
infinite-range automaton model as a function ofk for N532696,
c50. A line corresponding toa52 is plotted for comparison.~b!
The corresponding plot, using scaled variables, showing exce
data collapse.

FIG. 10. The distribution of velocities in the infinite-range a
tomaton model as a function ofc for N532696, k50.0075. The
lines are the theoretical predictions 12c.
al

te

which yields as22 decay in mean-field theory. Similarly, fo
the integrated duration distribution we find aT23 decay. The
simulation results confirm the predictions of the theory~see
Fig. 12!.

Next, we study the model in the adiabatic limit (c→0) as
a function of k. We compute the distribution of velocitie
~Fig. 13! and avalanches sizes~Fig. 14! and durations~Fig.
15! as a function of the demagnetizing fieldk. The scaling
exponents are in agreement with the results of the depinn
transition in the mean field,t53/2 anda52.

However, the scaling of the cutoff of the distribution
does not agree with the predictions of the ABBM model. W
find insteads0;k21 andT0;k21/2. This behavior persists in
simulations performed atc.0, where the exponentt anda
still scale withc as in the ABBM model. To obtain a goo
data collapse, the scaling functions in Eqs.~60! and ~61!
have to be replaced by

nt

FIG. 11. ~a! The distribution of avalanche sizes in the infinit
range automaton model for different driving rates forN532 696,
k50.0075. The fit of the power law part yieldst53/22c/2, with

c5 c̃/D and 1/D.1.2. ~b! The corresponding distribution of ava
lanche durations. The power law part is fit with an exponenta
522c.

FIG. 12. The integrated avalanche size distribution in the lo
range automaton model fork50 and L561. A line with slope
22 is plotted for reference.
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P~s,k!;s23/2g1~sk!, ~63!

P~T,k!;T22g2~Tk1/2!, ~64!

which are the scaling forms obtained experimentally~see
Sec. II!.

The precise reason for these results is still not comple
clear. Recent simulations of a model similar to ours, stud

FIG. 13. The velocity distribution in the long-range automat
model for c50 andL561. A line with slope21 is reported for
reference. In the inset we show the linear-logarithmic plot of
same distribution in order to show the exponential cutoff.

FIG. 14. ~a! The avalanche size distribution forc50 as a func-
tion of k for the long-range automaton model withL561. A line
with slope23/2 is reported for reference.~b! The corresponding
plot, using scaled variables, showing excellent data collapse.
ly
d

in the context of dry friction, suggest that the effective pi
ning field for the long-rangemodel is not Brownian.59 In
Ref. 59 the cutoff of the distributions was related to t
shape of the force distribution, but it is not clear if a simil
analysis can be applied directly to our case, due to the
ferent driving mechanism employed in Ref. 59. A simil
discrepancy between mean-field results and the behavio
the upper critical dimension could be relevant also in ot
situations.58

VIII. DISCUSSION

In this paper we have studied the dynamics of a flexi
domain wall as it moves through a disordered medium.
have derived an equation of motion, taking into account
effect of different energetic contributions. A crucial role
played by dipolar interactions that give rise to a demagne
ing field and to a long-range interaction kernel. In absence
a demagnetizing field, the domain wall shows a depinn
transition as a function of the field. The long-range intera
tion kernel set the upper critical dimension todc53, so that
mean-field scaling should describe the experiments on
Barkhausen effect.

The predictions of the present theory compare well w
the distribution of Barkhausen jump durations and sizes
with the velocity distribution. In particular, we discuss th

e

FIG. 15. ~a! The avalanche duration distribution as a function
k in the long-range automaton model forc50 andL561. A line
with slope22 is reported for reference.~b! The corresponding plot,
using scaled variables, showing excellent data collapse.
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linear dependence of the exponents on the field driv
rate5,6,31,32and the scaling of the cutoff with the demagnet
ing field. The agreement between theory and experimen
in both cases quantitative. In toroidal geometries, when
demagnetizing field is zero, we predict a linear depende
of the domain wall velocity on the applied field, in agre
ment with several experiments on soft ferromagne
materials.37

We show that the phenomenological model introduced
ABBM ~Ref. 15! is equivalent to the infinite-range doma
wall. The Brownian correlated random pinning field used
Ref. 15 and experimentally observed in Ref. 2 is shown
arise in the effective description of the motion of the cen
of mass of the domain wall. This result clarifies the origin
the correlated disorder which could not be explained a
simple result of the correlations between the impuritie16

While the infinite-range model—and therefore the ABB
model—quantitatively explains many features of t
Barkhausen effect, it does not give the correct dependenc
the demagnetizing field, which is instead provided by
complete three-dimensional description.

The power spectrumof the Barkhausen noise does n
show a marked universality and therefore cannot be c
pletely explained by our approach. In particular, we obtai
1/f 2 decay at large frequencies, which has only been
served in experiments with a single domain wall.2 Other ex-
perimental results seem to suggest that the exponent cha
when the number of domain walls increases.6,31,32Moreover,
the magnetic aftereffect,11 and flux propagation could als
affect the results. To obtain a quantitative explanation
these results, one should analyze the dynamics of m
coupled domain walls.

The presence of many domain walls should affect
power spectrum, but not the avalanche distributions. Whe
domain wall starts to move, the demagnetizing field
creases, creating a larger pinning force on the other w
Therefore, on short time scales the interactions between
walls are irrelevant. For this reason, the avalanche distr
tion for a single domain wall agrees with experiments p
formed with many domain walls.

With our approach we can address several other is
raised in the literature about the Barkhausen effect. The
tial reproducibility of the Barkhausen signal observed in
cent experiments16,44,60is explained by the quenched natu
of the disorder. Pushing the wall back and forth through
same disordered region of the sample results in the s
signal. Deviations from this ideal behavior can be expec
due to small variations in the initial conditions, thermal
fects, or differences in the driving rate. To understand th
features it is crucial to consider a flexible domain wall
stead of a rigid wall,15 for which always perfect reproduc
ibility is expected.
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The recent theoretical revival of the study of th
Barkhausen effect is mostly due to the claim of Ref. 4 th
this phenomenon is an example of self-organized critical
~SOC!.61 This claim was challanged in Ref. 22 which, base
on the results obtained for the RFIM, concluded that scali
in the Barkhausen effect is due to the presence of a ‘‘pla
old’’ critical point. The question concerns the origin of th
cutoff in the power law distributions. According to the analy
sis of Refs. 20–22, the cutoff would be determined by th
variance of the random-field distribution. As far as we know
no experimental evidence of a critical point of this kind ha
been reported in the literature.

We have experimentally observed that the cutoff of th
distributions is determined by the demagnetizing field,
agreement with our theoretical analysis. In our model, t
critical point is reached by fine-tuning to zero the drivin
rate and the demagnetizing field, performing the limitsc
→0 andk→0 in the given order. It is interesting to remar
that the picture revealed by our approach is similar to t
behavior observed in sandpile models,61 which are the pro-
totypical SOC models. As was pointed out in Ref. 62, crit
cality in sandpile models arises by the fine-tuning to zero
the driving rateh̃ ~i.e., the number of grains added to th
system per unit time! and the dissipatione ~the fraction of
grain lost in a ‘‘toppling’’ event!, which also determines the
cutoff of the avalanche distributions. The analogy betwe
the Barkhausen effect and sandpile model is evident if w
identify c with h̃ andk with e.

The present approach to the Barkhausen effect, based
the depinning of a ferromagnetic domain wall, applies
three-dimensional soft ferromagnetic materials, which a
frequently used in experimental studies of the Barkhaus
effect. For hard ferromagnet and rare earth materials, wh
strong local anisotropies prevent the formation of straig
domain walls, a different approach is needed. Disorder
spin models like those presented in Refs. 20–22 seem m
appropriate. We did not discuss here the issue of dom
nucleation and growth in thin films~two-dimensional ferro-
magnets!. Depending on the material properties and th
sample geometry, the domain walls are either fractal or se
affine as in our case. In the second case, we expect that
framework of the depinning transition could be relevant.
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