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We investigate the equation of state, diffusion coefficient, and structural order of a family of spherically
symmetric potentials consisting of a hard core and a linear repulsive ramp. This generic potential has two
characteristic length scales: the hard and soft core diameters. The family of potentials is generated by varying
their ratio, �. We find negative thermal expansion �thermodynamic anomaly� and an increase of the diffusion
coefficient upon isothermal compression �dynamic anomaly� for 0���6/7. As in water, the regions where
these anomalies occur are nested domes in the �T ,�� or �T , P� planes, with the thermodynamic anomaly dome
contained entirely within the dynamic anomaly dome. We calculate translational and orientational order pa-
rameters �t and Q6�, and project equilibrium state points onto the �t ,Q6� plane, or order map. The order map
evolves from waterlike behavior to hard-sphere-like behavior upon varying � between 4/7 and 6/7. Thus, we
traverse the range of liquid behavior encompassed by hard spheres ��=1� and waterlike ���4/7� with a
family of tunable spherically symmetric potentials by simply varying the ratio of hard to soft-core diameters.
Although dynamic and thermodynamic anomalies occur almost across the entire range 0���1, waterlike
structural anomalies �i.e., decrease in both t and Q6 upon compression and strictly correlated t and Q6 in the
anomalous region� occur only around �=4/7. Waterlike anomalies in structure, dynamics and thermodynamics
arise solely due to the existence of two length scales, with their ratio � being the single control parameter,
orientation-dependent interactions being absent by design.

DOI: 10.1103/PhysRevE.73.051204 PACS number�s�: 61.20.�p, 05.20.Jj

I. INTRODUCTION

Most liquids become denser when cooled and more vis-
cous when compressed. In contrast, water becomes less
dense when cooled �density, or thermodynamic, anomaly�
and its diffusivity increases upon compression �diffusion, or
dynamic, anomaly�. These anomalies, which disappear at
high enough temperature and pressure, are not unique to wa-
ter. Other liquids with local tetrahedral order �e.g., silica and
silicon� also exhibit thermodynamic and dynamic anomalies
�1�. A possible explanation of these anomalies is the ten-
dency of these substances to form local open structures not
present in simple liquids. However, establishing a precise
and quantitative link between the microscopic structure and
the dynamic and thermodynamic anomalies of tetrahedral
liquids has proved elusive until recently.

Errington and Debenedetti �2� �ED� studied the relation
between microscopic structure and the anomalies of liquid
water by introducing two simple metrics: a translational or-
der parameter t �3�, quantifying the tendency of molecule
pairs to adopt preferential separations, and an orientational
order parameter q �2,4�, quantifying the extent to which a
molecule and its four nearest neighbors adopt a tetrahedral
local structure, as in the case of hexagonal ice. A useful way
of investigating structural order in liquids is to map state
points into the t−q plane. Such a representation was intro-
duced by Torquato and co-workers �5�, who first applied it to
sphere packings and referred to it as an order map. ED used
the order map to investigate structural order in water �2�.
Because of the distinctive features discovered in that study,

in what follows we refer to water-like order maps as the ED
order map. Using molecular dynamics simulation of the
SPC/E �6� model, ED found that the state points accessible to
liquid water define a two-dimensional region in the t−q
plane, meaning that in general t and q are independently
variable in liquid water �i.e., equilibrium state paths exist
along which one order metric varies while the other does
not�. They also found a dome-shaped region in the �T ,��
plane within which isothermal compression leads to a de-
crease in t and q. This decrease in order upon compression
constitutes a structural anomaly: simple liquids, in contrast,
always become more ordered upon compression. ED further
found that dynamic and thermodynamic anomalies define
nested domes in the �T ,�� plane: the structural anomalies
dome contains the dynamic anomalies dome, which in turn
contains the thermodynamic anomalies dome. This means
that whenever the thermal expansion coefficient is negative,
the diffusivity must necessarily increase upon isothermal
compression. ED showed that all state points exhibiting
structural, dynamic or thermodynamic anomalies define a
line on the �t ,q� plane, meaning that when water exhibits
anomalous behavior, its translational and orientational order
metrics become strictly coupled. This is clear evidence of the
relationship between structure and water anomalies. Shell,
Debenedetti, and Panagiotopoulos subsequently found quali-
tatively similar behavior in molten silica’s order map �7�.
However, in the case of silica, it was found that state points
corresponding to anomalous behavior define a narrow stripe
in the �t ,q� plane instead of a strict line. Furthermore, unlike
in water, the region of dynamic anomalies was found to con-
tain that of structural anomalies.
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For simple spherically symmetric liquids, including hard
spheres �5,8� and Lennard-Jones �3�, the order map was
found to be a positively sloped line in the �t ,q� plane, indi-
cating that translational and orientational order are always
strictly and positively correlated. In this case, of course, the
appropriate metric for orientational order does not measure
tetrahedrality; rather, the bond-orientational order parameter
introduced by Steinhardt, Nelson, and Ronchetti �9� was
used. An important result from these studies is the fact that
the order map for the Lennard-Jones system above its critical
density is identical to that of hard spheres. Furthermore, in
these simple systems that do not exhibit thermodynamic or
dynamic anomalies, compression always leads to an increase
in the order metrics.

In 1970 Hemmer and Stell �10� showed that in fluids in-
teracting via pairwise-additive, spherically symmetric poten-
tials consisting of a hard core plus an attractive tail, softening
of the repulsive core can produce additional phase transi-
tions. This pioneering study elicited a considerable body of
work on so-called core-softened potentials �10–18�. This ge-
neric term denotes continuous potentials with inflections in
the repulsive core �11�, discontinuous potentials with the
core softened by shoulders or ramps �10,12,14–17�, or lattice
models with nearest-neighbor-attraction and next-nearest-
neighbor repulsion �18�. It is now well established that such
potentials can generate waterlike density and diffusion
anomalies �10–18�. This important finding implies that
strong orientational interactions, such as those that exist in
water and silica, are not a necessary condition for a liquid to
have thermodynamic and dynamic anomalies.

The above discussion implies the existence of two well-
defined classes of liquids: simple and waterlike. The former,
which interact via spherically symmetric nonsoftened poten-
tials, do not exhibit thermodynamic nor dynamic anomalies,
and their order map is a line. In waterlike liquids, interac-
tions are orientation-dependent; these liquids exhibit dy-
namic and thermodynamic anomalies, and their order map is,
in general, two-dimensional but becomes linear �or quasi-
linear� when the liquid exhibits structural, dynamic or ther-
modynamic anomalies. Intermediate between these well-
defined extremes is the class of core-softened liquids, which
interact via spherically-symmetric potentials but can also ex-
hibit water-like thermodynamic and dynamic anomalies.

Two questions arise naturally from this emerging tax-
onomy of liquid behavior. First, is structural order in core-
softened fluids hard sphere or waterlike? Second, is it pos-
sible to seamlessly connect the range of liquid behavior from
hard spheres to waterlike by a simple and common potential,
simply by changing a physical parameter?

In a recent study �19� we addressed the first question. We
showed that a core-softened potential with two characteristic
length scales not only can give rise to waterlike diffusive and
density anomalies, but also to an ED waterlike order map.
This implies that orientational interactions are not necessary
in order for a liquid to have structural anomalies. In this
work we address the second question. Specifically, we use
the ratio of characteristic length scales as a control parameter
to investigate the evolution of dynamic, thermodynamic and
structural anomalies. In this manner we show that the family
of tunable spherically symmetric potentials so generated

evolves continuously between waterlike and hard sphere
behavior.

This paper is structured as follows. Secs. II–IV provide
details on the interaction potential, simulation method, and
order parameters, respectively. Results are presented in Sec.
V. Conclusions and some suggestions for future work are
provided in Sec. VI.

II. RAMP POTENTIAL

We perform discrete molecular dynamics �MD� simula-
tions to study the equation of state, diffusion coefficient and
structural order as measured by the ED order map, for a fluid
whose particles interact via a pairwise-additive, spherically
symmetric potential that gives rise to both thermodynamic
and dynamic waterlike anomalies. The model was introduced
by Jagla �12�; the potential energy U�r� between a pair of
particles separated by a distance r is given by �see Fig. 1�

U�r� = �� r � �0

U1��1 − r�/�1 �0 � r � �1

0 r � �1
� . �1�

The shorter distance �0 corresponds to the hard core, and the
longer distance �1 characterizes a softer repulsion range that
can be overcome at high pressure. Because of its shape, it is
called the ramp potential. The constant slope of the ramp
potential for �0�r��1 keeps the force between particles f
constant, so the product of separation and force rf will de-
crease when the separation r decreases. This satisfies the
mathematical meaning of core-softening �18� and under
these conditions the thermodynamic �density� anomaly can
be qualitatively explained by invoking the virial theorem
�18�.

Of interest is the ratio between the two characteristic
length scales, �0 and �1

� � �0/�1, �2�

which can vary between 0 and 1. Reference �19� investigated
the one-scale ��=0� and two-scale ��=4/7� ramp potentials.

FIG. 1. The middle figure shows the ramp potential with two
characteristic length scales; �0 corresponds to the hard core, �1

characterizes the onset of soft repulsion. When �=0 �left figure� we
have a pure ramp potential �no hard core�. When �=1 �right figure�
we have a hard sphere potential. �c�0.6 is the ratio near which the
system exhibits waterlike structural, dynamic and thermodynamic
behavior.
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Here we investigate the full range 0���1, with
�=0,2 /7 ,4 /7 ,5 /7 ,6 /7.

III. MD SIMULATION

We use discrete MD simulation; details are given in Ref.
�17�. We use the NVT ensemble �i.e., the number of particles
N, the volume V, and the temperature T of the system are
kept constant� for a system composed of 850 particles with
periodic boundary conditions, and we control the tempera-
ture with the Berendsen thermostat �20�. However, we note
that we use different units than in Ref. �17�: the distance r,
number density �, pressure P and temperature T are all nor-
malized with respect to the soft core distance �1 and the
potential U1 at r=0 �i.e., densities are reported as ��1

3, and
temperature as kT /U1�. We also investigate systems with dif-
ferent number of particles �N=1728� and confirm that the
results do not depend on the number of particles. The simu-
lation ranges of temperature and density fully cover the re-
gion where density, diffusion and structural anomalies occur.

The location of freezing lines for soft potentials requires
special attention �21�. We verify that the systems we have
studied are in the liquid phase by applying the technique
described in Ref. �17�, in which the ramp potential’s phase
diagram is investigated for �=4/7, including both the melt-
ing and homogeneous nucleation lines. In the supercooled
state, the system can be equilibrated for a sufficiently long
time, and quantities such as the pressure and the potential
energy fluctuate without drift about average values that can
be computed with high accuracy. As soon as nucleation oc-
curs, the potential energy decreases sharply, and the pressure
experiences periodic jumps because of finite system size and
the use of periodic boundary conditions. When such an event
occurs we disregard the data obtained after nucleation. More-
over, it has been shown for the hard-sphere �5,8� and
Lennard-Jones systems �3�, that the structural order param-
eters jump discontinuously when the system crystallizes. In
our system we observe only continuous changes in the order
parameters, which clearly indicates that the system is in the
liquid state.

IV. TRANSLATIONAL AND ORIENTATIONAL
ORDER PARAMETERS

A. Translational order parameter

The translational order parameter �2,3,7� is defined as

t � 	
0

sc


g�s� − 1
ds . �3�

Here s�r�1/3 is the radial distance r scaled by the mean
interparticle distance �−1/3, � is the number density, g�s� is
the pair correlation function, and sc a numerical cutoff. We
choose sc so that it corresponds to one-half the simulation
box size, and we verify that our system size is always large
enough so that g�s�=1 at half the box size. For a completely
uncorrelated system, g�s��1, and thus t=0. For systems
with long-range order, the modulations in g�s� persist over
large distances, causing t to grow. Between these limits, t

will change as a consequence of the dependence of g�r� upon
T and �.

B. Orientational order parameter

An orientational order parameter based on spherical har-
monic function was introduced by Steinhardt, Nelson, and
Ronchetti �9� and used in Refs. �3,5,8,22�. In this definition,
all vectors connecting nearest neighbors �i.e., particle pairs
whose separation is less than the first minimum of the radial
distribution function� are considered. Each of these vectors,
also called “bond,” defines an azimuthal and polar angle, and
the corresponding spherical harmonic function is evaluated.
The orientational order parameter used in Refs. �3,5,8,22�
involves the average of each spherical harmonic function
over all bonds.

The orientational order parameter used for water and
silica in Refs. �2,7� involves, first, the evaluation of the local
tetrahedral order for each particle with respect to its four
nearest neighbors, and then, the average of this quantity over
all the molecules of the system. In the definition of the ori-
entational order parameter used in Refs. �3,5,8,22� there is no
such concept of “local order” for an individual particle.
Moreover, the number of bonds associated with each particle
is not fixed, but instead it changes with temperature and pres-
sure. These two differences led, in Ref. �19�, to the introduc-
tion of a slightly modified version of the original orienta-
tional order parameter introduced by Steinhardt and co-
workers in Ref. �9�. The resulting order metric is based on
the idea of a local order for each particle, analogous to Refs.
�2,7�. The ED maps obtained with the original �global� and
modified �local� definitions of orientational order are quali-
tatively similar.

In this work we use the same order parameter introduced
in Ref. �19�. We define 12 bonds connecting each particle to
its 12 nearest neighbors. Each bond is characterized by its
azimuthal and polar angles �	 ,
� and the corresponding
spherical harmonic Y�m�	 ,
� is computed. The orientational
order parameter associated with each particle i is

Q�i �� 4�

2� + 1 �
m=−�

m=�


Ȳ�m
21/2

. �4�

Here, Ȳ�m�	 ,
� denotes the average of Y�m�	 ,
� over the 12
bonds associated with particle i. For �=6 �3�, Q�i has a large
value for most crystals such as fcc, hcp and bcc �9�. The
values of Q6i for each molecule in the system follow a
Gaussian distribution. Q6, the averaged value of Q6i over all
particles i, is used to characterize the local order of the sys-
tem. This definition of order parameter is analogous to that
used in water. For water, the solid at low pressure is hexago-
nal ice where each molecule has four neighbors. The orien-
tational order parameter is maximum in the ice configuration
and decreases as the system becomes less icelike. For the
ramp potential, the solid phase at low pressure has an fcc
structure where each particle has 12 nearest neighbors. Q6
has a maximum value in the fcc lattice �Q6

fcc=0.574� and
decreases as the system becomes less correlated �for uncor-
related systems, Q6=1/�12=0.289�.
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V. RESULTS AND DISCUSSION

A. Structural anomalies and order map

Since the pair correlation function g�r� is used to compute
the translational order parameter t �Eq. �3��, we first discuss
the effect of density on g�r�. Figure 2 shows the effects of
compression on g�r� at low temperature, T=0.04, for the
various values of � considered in this study. In all cases,
there is no inner peak at r=�0 for �=1 and 1.21, and only the
outer peak at r=�1 is present at these densities. The inner
peak at r=�0, which is broad and of modest height at
�=1.66, becomes sharper and more pronounced upon further

compression. Interestingly, structural changes brought about
by compression become progressively longer ranged as �
increases. Thus, for �=0 and 2/7, the major changes in g�r�
involve the development of structure at length scales ��1
associated with the growth of the inner peak at r=�0. How-
ever, for �=4/7, 5 /7 and 6/7, structural changes upon com-
pression also occur at distances larger than �1. In particular,
for �=6/7, the effects of compression are clearly discernible
at r=3�1.

These effects of density on the pair correlation function
underlie the evolution of t upon compression, shown in Figs.
3�a1�–3�e1�. Consider, for example, the T=0.04 isotherm
when �=2/7. It can be seen that t displays a nonmonotonic
dependence on density: it increases upon compression at low
densities, 1.0���1.22, decreases over the intermediate
density range 1.22���1.76, and increases again at high
densities, ��1.76. The initial increase at low densities is
associated with the growth of g��1�. The emergence of struc-
ture associated with the inner �hard� core causes t to decrease
at intermediate densities because the initial, modest growth
of g at r��0 causes 
g−1
 to decrease with respect to its
low-density value of 1 �see Eq. �3��. Upon further compres-
sion, the growth of g��0� above 1 eventually contributes ad-
ditional area to the integral of 
g−1
, causing t to increase.
This qualitative behavior of t is similar for �=0, 2 /7 and
4/7, and is more pronounced at low T. For �=6/7, close to
the hard sphere limit, the pronounced growth of the inner
peak upon compression gives rise to a monotonic density
dependence of t, and structural changes upon compression
occurring at distances larger than �1 have less effect since g
converges to 1 by r /�1�3. The case �=5/7 is clearly tran-
sitional, with nonmonotonic behavior at low temperature
changing to hard-sphere-like monotonic growth of t upon
compression at high temperature.

Orientational order, as measured by Q6, shows a pro-
nounced dependence on �, illustrated in Figs. 3�a2�–3�e2�.
When �=0 �no hard core�, Q6 increases monotonically with
density for all T. When �=2/7, Q6 begins to exhibit non-
monotonic behavior upon compression. For this particular

FIG. 2. Radial distribution function g�r� at T=0.04 for different
���0 /�1 values. The arrows indicate the direction of increasing
density. The density values are 1.0, 1.21, 1.66, 2.19 for
�=2/7 ,4 /7 ,5 /7 and 1.0, 1.21, 1.66, 1.86 for �=0,6 /7. The dis-
tance r is normalized by �1, the soft core length. The curves for
different � are shifted vertically by integer numbers for clarity.

FIG. 3. The upper and lower panels �a1�-�e1� and �a2�-�e2� show the density dependence of the translational order parameter t and
orientational order parameter Q6 for �=0 �a1, a2�, 2 /7 �b1, b2�, 4 /7 �c1, c2�, 5 /7 �d1, d2�, and 6/7 �e1, e2�. The solid lines are poly-
nomial fits to the data. In each panel, the different curves correspond to isotherms �top to bottom� T=0.03,0.04,
0.05,0.06,0.07,0.08,0.09,0.10.
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value of � the trend is very mild, and is best described as a
virtual insensitivity of Q6 to compression, except for an ini-
tial increase at low enough densities. For �=4/7 and 5/7,
orientational order exhibits a marked nonmonotonic depen-
dence on density, especially at low temperatures. When
coupled with the corresponding behavior of t, this corre-
sponds to a waterlike structural anomaly, whereby both order
metrics decrease upon isothermal compression. When �
=6/7, which is close to the hard sphere value ��=1�, orien-
tational order increases monotonically upon compression.
Thus, there exists a narrow interval of � within which the
ramp fluid shows waterlike structural order, whereas in the
pure ramp ��=0� and quasi-hard-sphere limits ���1� Q6

behaves conventionally upon compression. The fact that t
displays strongly nonmonotonic behavior for �=0 and 2/7,
while Q6 only shows very mild nonmonotonic behavior at
�=2/7 illustrates the much weaker coupling of the two order
metrics compared to the waterlike case ��=4/7�.

Cross plotting the order metrics against each other gener-
ates the order map, whose evolution as a function of � is
depicted in Fig. 4. For all values of � except 6 /7, state points
fall on a two-dimensional region, signifying that t and Q6 can
be varied independently. As is the case for silica and water
�2,7�, we find, for all values of �, an inaccessible region
where no liquid state points can be found. In the pure ramp
��=0� case, the pronounced nonmonotonic dependence of t
on density gives rise to isotherms with well-characterized t
minima, the locus of which defines the boundary between the
accessible and inaccessible regions of the order map. For
�=2/7, the barely discernible nonmonotonic dependence of
Q6 on density gives rise to loops along isotherms. The non-
monotonic behavior of Q6 is fully developed for �=4/7.
This gives rise to an order map with states corresponding to
structural anomalies lying on a narrow stripe of the order
map adjacent to the boundary between the accessible and
inaccessible regions. This behavior is strikingly analogous to
that of water. The insensitivity of structural order to tempera-
ture, a distinguishing feature of hard spheres, can be clearly
seen in Fig. 4�e� by the virtual collapse of all isotherms in the
�=6/7 case. The transition from waterlike to hard sphere
order map occurs in the narrow interval 4 /7���6/7. In
particular, for �=5/7, there is a clear evolution from water-
like low-T behavior �T�0.07� to hard-sphere-like high-T
behavior �T�0.07�.

B. Thermodynamic, dynamic, and structural anomalies

We now discuss the regions of the phase diagram where
structural, dynamic and thermodynamic anomalies occur. In
water �2�, structural, dynamic, and thermodynamic anoma-
lies occur as nested domes in the �T ,�� or �T , P� planes.
Structural anomalies define the outer dome, within which
isothermal compression results in a decrease of both transla-
tional and orientational order. Dynamic anomalies define an
intermediate dome, lying entirely within the structural
anomalies dome, and within which isothermal compression
leads to an increase in the diffusion coefficient. Thermody-
namic anomalies define the innermost dome, within which
water expands when cooled isobarically. In silica �7�, dy-

namic anomalies define the outer dome, structural anomalies
the intermediate dome, and thermodynamic anomalies define
the inner dome. Thus, in both cases negative thermal expan-
sion also implies diffusive and structural anomalies, but in
silica diffusive anomalies occur over a broader range of den-
sities and temperatures than structural anomalies, the oppo-
site being true in water.

Figure 5 shows the loci of dynamic and thermodynamic
anomalies for three values of �. The latter line was traced by
locating extrema of isochores in the �P ,T� plane. Similar to
water and silica, in ramp fluids thermodynamic anomalies

FIG. 4. Order map of the ramp fluid for different �. For
each �, the eight isotherms �right to left� correspond to
T=0.03,0.04,0.05,0.06,0.07,0.08,0.09,0.10, and the arrow indi-
cates the direction of increasing density.
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occur over a narrower temperature and density range than
dynamic anomalies. In other words, if a ramp fluid is at a
state point where it expands when cooled isobarically, its
diffusion coefficient necessarily increases upon isothermal
compression. It can be seen that upon increasing �, the range
of temperatures where anomalies occur shrinks, and there are
no anomalies for �=6/7, whereas the upper limit of density
�or pressure� where anomalies can occur increases. The
shrinking of the temperature range where anomalies occur
follows from the fact that increasing � makes the fluid pro-
gressively hard-sphere-like, and there are no anomalies in a
hard sphere fluid.

Figure 6 shows the relationship between the loci of dy-
namic, thermodynamic and structural anomalies. In water,
the low-density and high-density branches of the dome of
structural anomalies correspond to tetrahedrality maxima and
translational order minima, respectively. For the pure ramp
case ��=0�, the orientational order increases monotonically
with density over the range of temperatures explored here.
Accordingly, as seen in Fig. 6�a�, the dynamic and thermo-
dynamic anomalies domes are bounded by loci of transla-

tional order extrema �maxima: line C; minima: line A�. Be-
tween lines C and A, compression leads to a decrease in
translational order. For �=4/7 and 5/7, the locus of orien-
tational order maxima �B� provides a low-density bound to
the existence of thermodynamic and dynamic anomalies.
Thus, for these two values of �, ramp fluids exhibit a water-
like cascade of anomalies �structural, dynamic, thermody-
namic�. For �=2/7, Q6 maxima are barely discernible and
the two order metrics are only weakly coupled to each other.
Accordingly, the locus of weak orientational order maxima
�B� is not a relevant indicator of dynamic or thermodynamic
anomalies.

VI. CONCLUSION

In this work we have investigated thermodynamic, dy-
namic and structural anomalies in ramp potential fluids, as a
function of the ratio � of length scales corresponding to the
inner hard core, and to the outer edge of the ramp. We find
that thermodynamic and dynamic anomalies exist for �=0,
2 /7, 4 /7 and 5/7, but not for =6/7. As in water and silica,
the loci of anomalies form nested domes in the �T ,�� plane,
inside which the thermal expansion coefficient is negative
�inner dome� and the diffusivity increases upon compression
�outer dome�. The limit �=1 corresponds to hard spheres,
and the absence of anomalies for �=6/7 indicates approach
to hard sphere behavior. The order map of this family of
ramp fluids is waterlike at �=4/7 and hard-sphere-like at
�=6/7. Thus, by varying the ratio of characteristic length
scales, the family of ramp potentials spans the range of liquid
behavior from hard spheres to waterlike.

These findings show that orientational interactions are not
necessary for the existence of thermodynamic, dynamic, or
structural anomalies. Instead, waterlike behavior apparently
emerges in this spherically symmetric family of fluids
through the existence of two competing length scales, with
their ratio � being the single control parameter. Although
thermodynamic and dynamic anomalies exist almost over the
entire range of the control parameter, the combination of
thermodynamic and dynamic anomalies plus a water-like or-

FIG. 5. Loci of thermodynamic and dynamic anomalies for
ramp fluids with different � values. The region of diffusion anoma-
lies is defined by the loci of diffusion minima and maxima �DM�
inside which the diffusivity increases upon isothermal compression.
The thermodynamically anomalous region is defined by the locus of
temperatures of maximum density �TMD�, inside of which the den-
sity increases when the system is heated at constant pressure.

FIG. 6. Relationship between structural order and the density and diffusion anomalies in the �−T plane. For �=0 and 2/7, the domes of
dynamic and thermodynamic anomalies are bounded by loci of t maxima �C� and minima �A�, between which isothermal compression causes
a decrease in translational order. For �=4/7 and 5/7, the domes of dynamic and thermodynamic anomalies are bounded by loci of Q6

maxima �B� and t minima �A�, between which isothermal compression causes a decrease in both translational and orientational order
�structural anomaly�. This cascade of anomalies is characteristic of water.
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der map occurs over a narrow range of �. It is interesting to
note that a distinguishing feature of water is the fact that the
ratio of radial distances to the first and second peaks of the
oxygen-oxygen pair correlation function is not �1/2, as in
simple liquids, but �0.6. This is close to 0.571 ��=4/7, the
ratio of �0 to �1 that gives rise to waterlike structural, dy-
namic and thermodynamic anomalies�. In water, isothermal
compression pushes molecules from the second shell towards
the first shell, gradually filling the interstitial space �23�.
Likewise, in the ramp potential, isothermal compression
pushes molecules from the soft core ��1� to the hard core
��0�. Further work is needed to establish whether a ratio of
competing length scales close to 0.6 is generally associated
with waterlike anomalies in other core-softened potentials,
for example, linear combinations of Gaussian �24� potentials.
In this work we used the terminology waterlike to denote
structural, diffusion, and density anomalies. The increase in
water’s isothermal compressibility upon isobaric cooling, an-
other of this liquid’s canonical anomalies, is also trivially
captured by the ramp potential, because thermodynamic con-
sistency arguments �25� mandate that the compressibility in-
creases upon cooling whenever there exists a negatively
sloped locus of density maxima in the �P ,T� plane.

The ramp potential, when supplemented by explicit
�13,26� or mean-field attractions �12�, gives rise to liquid-
liquid immiscibility and a critical point distinct from the one
associated with the vapor-liquid transition. A liquid-liquid
transition has been observed experimentally in phosphorus
�27,28�, n-butanol �29� and triphenyl phosphite �30�, and
strong experimental evidence consistent with liquid-liquid

immiscibility also exists for water �31–33�. Computer simu-
lations of silicon �34�, silica �35�, carbon �36� and water
�37–43� also indicate the presence of a liquid-liquid transi-
tion. A systematic study of the effects of � and the ratio of
characteristic energies �U1 and the attractive well depth� on
the existence of a liquid-liquid transition, the positive or
negative slope of the line of first-order liquid-liquid transi-
tions in the �P ,T� plane, and the relationship, if any �16�,
between the liquid-liquid transition and density anomalies,
would shed important new light on the phenomenon of liquid
polyamorphism �1,44,45�.

It is generally accepted that strong orientation-dependent
interactions underlie many of the distinctive properties of
associating, network-forming liquids such as water. Atomic
liquids, on the other hand, exhibit simpler behavior, and in
particular do not show structural, thermodynamic, or dy-
namic anomalies of the type discussed here. In this work we
have shown that key properties of these apparently distinct
categories of liquids can be bridged systematically by vary-
ing the ratio of two length scales in a family of spherically
symmetric potentials in which orientation-dependent interac-
tions are absent by design. What other spherically symmetric
potentials, in addition to those possessing competing length
scales, may give rise to waterlike anomalies, is among the
interesting questions arising from this study that we will pur-
sue in future work.
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