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Using molecular dynamics simulations, we study the Jagla model of a liquid which consists of particles
interacting via a spherically symmetric two-scale potential with both repulsive and attractive ramps. This
potential displays anomalies similar to those found in liquid water, namely expansion upon cooling and an
increase of diffusivity upon compression, as well as a liquid-liquid �LL� phase transition in the region of the
phase diagram accessible to simulations. The LL coexistence line, unlike in tetrahedrally coordinated liquids,
has a positive slope, because of the Clapeyron relation, corresponding to the fact that the high density phase
�HDL� is more ordered than low density phase �LDL�. When we cool the system at constant pressure above the
critical pressure, the thermodynamic properties rapidly change from those of LDL-like to those of HDL-like
upon crossing the Widom line. The temperature dependence of the diffusivity also changes rapidly in the
vicinity of the Widom line, namely the slope of the Arrhenius plot sharply increases upon entering the HDL
domain. The properties of the glass transition are different in the two phases, suggesting that the less ordered
phase is fragile, while the more ordered phase is strong, which is consistent with the behavior of tetrahedrally
coordinated liquids such as water silica, silicon, and BeF2.
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I. INTRODUCTION

An open question of general interest concerning liquid
water is the relation between a liquid-liquid �LL� phase tran-
sition and the dynamic properties �1–9�. The LL phase tran-
sition may have a strong effect on the dynamic properties of
supercooled water, including the glass transition �10,11�. In
deeply supercooled states, some glass-formers show “strong”
behavior with a well-defined activation energy, while other
glass-formers display “fragile” behavior �12�. Water appears
to show a crossover between fragile behavior at high T to
strong behavior at low T �13–17�. The recent study on the
Stillinger-Weber model of silicon �18�, which confirms the
LL phase transition, suggests that the less ordered high-
density liquid �HDL� is fragile, while the more ordered low-
density liquid �LDL� is strong. These authors observed a
power-law singularity of the diffusivity in the less ordered
HDL phase as it approaches the spinodal of the LL transition
at constant pressure. Recently the fragility transition in nano-
confined water was studied in neutron scattering experiments
pioneered by the Chen group at Massachusetts Institute of
Technology �MIT� �3,4�, who found that water appears to
show a crossover between non-Arrhenius �“fragile”� behav-
ior at high T to Arrhenius �“strong”� behavior at low T
�3,4,13,14�. Their findings were confirmed using nuclear
magnetic resonance �NMR� by Mallamace et al. �6�. This
dynamic crossover has been interpreted �5� in terms of cross-
ing the Widom line, which is the locus of maximum corre-
lation length in the one-phase region. Crossing the Widom
line has also been related to a breakdown of the Stokes-
Einstein relation �19� and a change in the hydrogen bond
network �20�. This interpretation has also been offered �9� as
an explanation for the observed dynamic crossover in
hydrated protein �7� and DNA �8�.

A set of realistic water models—ST2, TIP5P, TIP4P,
TIP3P, and SPC/E—with progressively decreasing tetrahe-
drality which bracket the behavior of real water have been
studied to explore the generic mechanisms of LL phase
transition and anomalies associated with it �1,2,5,21–28�.
Studies �29–35� show that tetrahedrality is not a necessary
condition for anomalous behavior and several spherically
symmetric potentials are indeed able to generate density
and/or diffusion anomalies.

Following the pioneering work of Stell and Hemmer �36�,
spherically symmetric potentials with two different length
scales has been widely used to model systems with LL phase
transitions �5,31–33,37,38�. A simple model �Fig. 1�, based
on spherically symmetric soft-core potentials with both at-
tractive and repulsive parts, was introduced by Jagla �32�,
who showed that it has both waterlike anomalies and a LL
phase transition. Using extensive molecular dynamics �MD�
simulations, we study the static and dynamics properties of
this model. We find that besides the waterlike behavior found
by Jagla, the simple Jagla ramp potential also exhibits a dif-
fusivity anomaly as well as structural anomaly �39�. We fur-
ther explore the dynamic behavior along different constant
pressure paths in HDL �more ordered� and LDL �less or-
dered� phase. We observe a non-Arrhenius behavior in the
LDL and Arrhenius behavior in the HDL phase, as well as a
dynamic crossover which occurs above the LL critical point
as the system is cooled down along constant pressure
paths. This dynamic crossover has been interpreted in
terms of crossing the Widom line �5�, the locus of maximum
correlation length in the one phase region along the exten-
sion of the liquid-liquid coexistence line. The behavior of
thermodynamic response functions �constant pressure
specific heat CP and constant temperature compressibility
KT� and the structural order parameters, Q6 �orientational�
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and t �translational�, supports a relation between the dynamic
crossover and the LL phase transition.

The outline of the paper is as follows. In Sec. II, we
describe the spherically symmetric Jagla ramp potential. In
Sec. III, we describe the method of the MD simulation. In
Sec. IV, we define the quantities which we study. In Sec. V,

we investigate the static properties of the model, while Sec.
VI contains the simulation results of the dynamic properties.
Section VII compares the properties of Jagla model with
water and another tetrahedral liquid, BeF2.

II. SPHERICALLY SYMMETRIC TWO-SCALE JAGLA
RAMP POTENTIAL

Here, we study the linear ramp potential but with both
attractive and repulsive parts �32�. The potential is defined

U�r� = �
� r � a ,

UA + �UA − UR��r − b�/�b − a� a � r � b ,

UA�c − r�/�c − b� b � r � c ,

0 r � c ,

�1�

where UR=3.5U0 is the repulsive energy, UA=−U0 is the
attractive part, a is the hardcore diameter, b=1.72a is
the well minimum, and c=3a is the cutoff at large distance
�Fig. 1�.

III. METHODS

We apply the discrete MD method �33,35�, approximating
the continuous potential Eq. �1� by step functions,

Un�r� =�
� r � a ,

UR − �k − 1��U1 a + �k − 1��r � r � a + k�r, 1 � k � n1,

UA b � r � b�,

UA + k�U2 b� + �k − 1��r� � r � b� + k�r�, 1 � k � n2,

0 r � c�,

�2�

where �r�0.02a, �r��0.16a, b�=b+1/2�r�,
c�=c−1/2�r�, �U1= �UR−U0� /n1 with n1=36, and �U2

=U0 /n2 with n2=8.
The standard discrete MD algorithm has been imple-

mented for particles interacting with step potentials
�35,37,40–43�. We use a as the unit of length, particle mass
m as the unit of mass, and U0 as the unit of energy. The
simulation time is therefore measured in units of a�m /U0,
temperature in units of U0 /kB, pressure in units of U0 /a3,
and density ��N /L3 in unit of a−3, here L is the size of the
system and N=1728 is the number of particles.

We implement constant volume simulations �NVT en-
semble� and constant pressure simulations �NPT ensemble�
in our study �23,41�. A modified Berendsen method �44� is
applied to rescale the velocities of all particles for the NVT
ensemble �23,41�, so that the average kinetic energy per par-
ticle approaches the desired value 3KT0 /2 where T0 is the
temperature of the thermostat according to equation

T� = T̄�1 − �T�t� + T0�T�t , �3�

where �T=0.01 is a heat exchange coefficient, �t is the time
interval during which N collisions happens, T� is the new

temperature, and T̄ is the average temperature during the
time interval �t. For the NPT ensemble, the Berendsen al-

gorithm rescales the coordinates r� j and box vectors L� after
each �	p time unit:

r� j� = r� j + r� j�p�P̄ − P0� ,

L� = L� + L��p�P̄ − P0� , �4�

where P0 is the desired pressure, P̄ is the average pressure
during time interval �	p=10�t, �p=1 is the rescaling coef-
ficient.

FIG. 1. �a� The spherically symmetric “two-scale” Jagla ramp
potential with attractive and repulsive ramps. Here UR=3.5U0,
UA=−U0, and the two length scales are a, the hard core diameter,
and b=1.72a, the soft core diameter, while c=3a is the long
distance cutoff.
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IV. THE FOUR QUANTITIES STUDIED

�a� The diffusion coefficient is defined as follows:

D � lim
t→�

��r� j�t� + t� − r� j�t���2	t�

6t
, �5�

where r� j�t� is the coordinates of particle j at time t, and �¯	t�
denotes an average over all particles and over all t�.

�b� The static structure factor for wave vector q� is
S�q��=F�q� , t=0�, where F�q� , t� is the intermediate scattering
function defined as follows:

F�q� ,t� � ���q� ,t���− q� ,0�	 , �6�

where ��q� , t� is the Fourier transform of the density

��q� ,t� � 

j=1

N

exp�− iq� · r� j�t�� . �7�

�c� The translational order parameter �39,45� is defined as
follows:

t � �
0

rc

�g�r� − 1�dr , �8�

where r is the radial distance, g�r� is the pair correlation
function, and rc=L /2 is the cutoff distance. A change in the
translational order parameter indicates a change in the struc-
ture of the system. For uncorrelated systems, the interaction
in the system is short ranged with g�r�=1, leading to t=0;
for long-range correlated systems, the modulations in g�r�
persist over large distances, causing t to grow.

�d� The orientational order parameter Q characterizing the
average local order of the ith particle �45� is defined

Q�,i � 4


2 � + 1 

m=−�

m=�

�Ȳ�,m�2�1/2

, �9�

where Ȳ�,m�� ,�� denotes the average of the spherical har-
monic function, Y�,m�� ,�� with angles � and �, over the 12
bonds associated with particle i. The orientational order pa-
rameter for the entire system is calculated as follows:

Q� = �Q�,i	 , �10�

where �¯	 denotes the average over all particles in the sys-
tem. In general, for �=6, the value of Q6 increases as the
local order of a system increases, e.g., Q6=0.574 for the fcc
lattice and Q6=0.289 for uncorrelated systems.

V. SIMULATION RESULTS: STATICS

A. Equation of state

The equation of state of the Jagla ramp model �Fig. 2� is
obtained using two steps: �i� constant volume simulation
with slowly cooling rate �T=10−5, which allows us to obtain
the equation of an isochore in a single run; �ii� constant tem-
perature �NVT-ensemble� simulation of individual state
points of a particular interest with heat exchange rate
�T=0.01. The spinodals are defined by the crossing of
isochores P�T ,�� and P�T ,�+���, where

� �P

��
�

T

= 0. �11�

To investigate the existence of the spinodals, we implement
another approach, constant pressure simulation �NPT en-
semble�. We study the hysteresis of volume �Fig. 3�a�� and
enthalpy �Fig. 3�b�� upon compression and decompression
along constant temperature T=0.34, and the hysteresis of
volume �Fig. 3�c�, 3�e�, and 3�g�,� and enthalpy �Fig. 3�d�,
3�f�, and 3�h�,� upon heating and cooling along constant
pressure. The volume per particle and enthalpy per particle
change sharply as the system crosses the spinodal lines.
There is no such sharp change in volume per particle and
enthalpy per particle as we cool the system along constant
pressure P�0.23 �Fig. 3�c�� since the LDL spinodal line lies
above P=0.23, and thus the system remains in the LDL
phase. The LL critical point, with Tc=0.375, Pc=0.243, and
�c=0.37, is located at the maximal temperature on the spin-
odals. The coexistence line, obtained by the Maxwell rule by
integrating the isotherms, has a positive slope of
0.96±0.02kBa−3.

According to the Clapeyron equation

dP

dT
=

�S

�V
, �12�

the entropy in the HDL phase is lower than the entropy in the
LDL phase. Hence, the HDL phase is more ordered than the
LDL phase, which is the opposite of the LL transition found
in simulations for water �2� and silicon �16�.

We also study the spontaneous liquid-liquid phase transi-
tion using NPT ensemble �Fig. 4�. Simulations of the iso-
baric heating of the HDL liquid below the critical point show

FIG. 2. �Color online� The equation of state P�T ,�0� of
the two-scale Jagla ramp potential for 26 values of density
�0�Na3 /L3, where L /a=15.0,15.2,15.4, . . . ,20.0 are the cell
edges and N=1728 is the number of particles. The LL critical point
is located at Tc=0.375, Pc=0.243, and �c=0.37, above the equilib-
rium melting line. The gas-liquid critical point, not shown, is
located at much higher temperature Tgl=1.446 �Pgl=0.0417 and
�gl=0.102�. The temperature of maximum density line is drawn by
connecting all the points with ��� /�T�P=0, which bounds the
region of the diffusivity anomaly.
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that the HDL phase loses its stability and spontaneously
changes into the LDL in the vicinity of the HDL spinodal
line �Fig. 4�. The LL critical point of the Jagla ramp model,
in contrast to those of water and silicon models, lies well
above the equilibrium melting line �Fig. 2� at which the solid
and liquid phases coexist and are in equilibrium. We estimate
the equilibrium melting temperature as the temperature at
which the slab of the hcp crystal, obtained by spontaneous
crystallization at low temperature, is at equilibrium with a
slab of liquid for a given pressure. Note that the slope of the
melting line, defined by Eq. �12�, is negative since the spe-
cific volume of the hcp crystal is larger than the volumes of
the HDL and LDL. Moreover, the slope changes sharply
from a larger absolute value in the LDL to a smaller absolute
value in the HDL as it crosses the coexistence line between

the HDL and the LDL, due to the fact that the entropy dif-
ference between crystal and the HDL phase is smaller than
the entropy difference between crystal and the LDL phase,
but the difference in volume between the crystal and the
HDL is larger than the difference between the crystal and
the LDL. Very recently, Gibson and Wilding �46� studied the
family of Jagla ramp potentials with decreasing soft-core
distance and found that there is a parameter range within
which the critical point lies below the crystallization line,
and the coexistence line has a negative slope, resembling the
situation for water.

B. Density anomaly

The temperature of maximum density �TMD� line is de-
fined by ��V /�T�P=0. Due to the general thermodynamic
relation

� �V

�T
�

P

= − � �P

�T
�

V
� �V

�P
�

T

, �13�

the TMD line coincides with the locus of points satisfying
��P /�T�V=0, which defines the pressure minimum on each
isochore �Fig. 2�. The density anomaly �density increase
upon heating along constant pressure paths� can also be seen
in the inset of Fig. 4.

C. Thermodynamics

Different thermodynamic response functions such as CP
and KT, which diverge at the critical point, have maxima at
temperatures Tmax�P�, which can be regarded as temperatures
on the extension of the coexistence line above the critical
temperature �the Widom line �5�� as we cool the system at
constant pressure P� Pc �47–50�. The simulated phase dia-
gram based on the equation of state �Fig. 2� is shown in Fig.
5. We investigate CP and KT in the Jagla ramp model along
paths  and path � �Fig. 5�. We find that, along paths , CP
has a maximum at Tmax�P� �Fig. 6�a��, while KT has a maxi-
mum at a slightly different Tmax�P� �Fig. 6�b��. The response
functions—CP and KT—increase continuously along path �
�Fig. 5� before the system reaches the stability limit near the
LDL spinodal �21�.

D. Structural order

Analogously, we can expect that the structural properties
of the system also change from those resembling the LDL
phase to those resembling the HDL phase when the system
crosses the Widom line. The pair correlation function g�r�
for different T along a constant pressure path is shown in
Fig. 7�a�. At low temperature g�r� exhibits a more pro-
nounced first peak near the hard core distance and a less
pronounced peak at high T, indicating a change from the
LDL-like structure to HDL-like structure upon cooling along
paths . The same behavior can also be seen from the static
structure factor S�q� �Fig. 7�b��. The sharp transition in the
translational order parameter t �Fig. 7�c�� and the peaks in
the orientational order parameter Q6 �Fig. 7�d�� above the LL
critical point along path , indicate that as the system crosses

FIG. 3. �Color online� �a� Volume per particle �V /Na3� and �b�
enthalpy per particle �H /NU0� showing hysteresis upon compres-
sion and decompression along a constant temperature path with
T=0.34. Volume per particle �panel �c�, �e�, �g�� and enthalpy per
particle �panel �d�, �f�, �h�� particle showing hysteresis upon cooling
�C� and heating �H� along constant pressure paths. The sharp dif-
ference between P=0.23 and P=0.25 corresponds to the fact that
P=0.23 is below Pc �path � in Fig. 5�, while P=0.25 is above Pc

�path  in Fig. 5�.
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the Widom line region �Fig. 5�, the local structure of the
system also changes from LDL-like to HDL-like, which is
consistent with the features observed in the thermodynamic
response functions.

VI. SIMULATION RESULTS: DYNAMICS

A. Diffusivity anomaly

Figure 8 shows the diffusivity D��� along seven iso-
therms. There exists a diffusivity anomaly region along each

isotherm where the diffusivity increases upon compressing
instead of decreasing. The loci of the diffusivity extrema
where ��D /�P�T=0 �heavy dashed lines in Fig. 2 and Fig. 8�
define the diffusivity anomaly region.

We study the T dependence of D along three different
constant pressure paths �Fig. 5�: �i� Path , P� Pc �one-
phase region�; �ii� path �, P� Pc �in the LDL phase�; and
�iii� path �, P� Pc �in the HDL phase�.

B. Dynamics for P�Pc

For P� Pc, the diffusivity D at high temperature T�Tc
follows the Arrhenius law

D = D0exp�−
EA

kBT
� �14�

with a roughly pressure independent activation energy
EA�1.53, while at low temperatures in the two-phase
region, D behaves differently along path � and path � upon
cooling at constant pressure �Fig. 9�. Along path � �Fig. 5�
which belongs to the LDL phase, the T dependence of D is
non-Arrhenius and follows the Vogel-Fulcher-Tamann law

D = D0exp�−
B

T − T0
� = D0exp�−

T0

T − T0

1

f
� . �15�

For P=0.225, the fitting parameters are B�0.2, T0�0.184,
and the fragility parameter f =T0 /B�0.66 �Fig. 9�. Follow-
ing Ref. �51�, we estimate the glass transition temperature
Tg=0.192, defined as the temperature at which exp�B / �T
−T0��=10k with k=16, a typical value for thermally activated
system. The fragility index m �51�, defined as the slope of the
Arrhenius plot at Tg, is approximately 368. This large value
of m indicates that the behavior in the LDL phase resembles
that of a very fragile liquid. Note that the value of the index
number m largely depends on the Vogel-Fulcher-Tamman fit-
ting at the last data point �Fig. 9�a��.

On the other hand, along paths � which belong to the
HDL phase, D follows Arrhenius behavior with Ea�6.30,
which is much larger than the activation energy at high
temperature.

FIG. 4. �Color online� Liquid-liquid phase transition for the two-scale Jagla ramp potential. Upon heating along constant pressure paths
below the critical point P= Pc�0.243 �path � in Fig. 5�, the system experiences a HDL to LDL phase transition near the HDL spinodal line.
�b� The density anomaly upon heating along the same constant pressure paths.

FIG. 5. �Color online� The P-T phase diagram for the two-scale
Jagla ramp model. The loci of the specific heat maximum CP

max and
the compressibility maximum KT

max are similar, but not identical.
We study three different paths in the vicinity of the LL critical
point: �i� P� Pc �path �. Upon cooling along path , the liquid
changes from a low density state �characterized by a non-Arrhenius
dynamic behavior� to a high density state �characterized by Arrhen-
ius dynamic behavior� as the path crosses the Widom line. �ii� P
� Pc �path ��. Upon cooling along path �, the liquid remains in the
LDL phase as long as path � does not cross the LDL spinodal line.
Thus one does not expect any dramatic change in the dynamic
behavior along the path �. �iii� P� Pc �path ��. Upon cooling along
path �, the liquid remains in HDL phase. Its dynamics, different
from that of the LDL phase, follows Arrhenius behavior.
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C. Dynamics for P�Pc

For P� Pc along path , there is a crossover in the be-
havior of D near T�0.4 �Figs. 9�b� and 9�c��. Such a cross-
over in the vicinity of the specific heat maximum is consis-
tent with the Adam-Gibbs equation �52�,

D = D exp�−
C

TSconf
� , �16�

where Sconf is the configurational entropy. Due to a propor-
tionality between Sconf and Sex �17� which is the excess en-
tropy of liquid over crystal, the Adam-Gibbs equation has
been used successfully in a number of experimental studies

with Sconf replaced by Sex �17�. Indeed, since Cp
=T��S /�T�p and Cp�Cp

ex�T��Sex /�T�p, one can expect
rapid change of the entropy near the temperature of maxi-
mum specific heat, and the same change for the configura-
tional entropy which constitutes the major contribution to the
excess entropy. When CP has fallen to a smaller and more
slowly changing value, the temperature dependence of D as-
sumes an Arrhenius behavior but with a somewhat larger
slope than at high temperatures where Fig. 6�a� shows CP to
be very small. The behavior is similar to what was observed
in experimental studies of the strong liquid BeF2 �53� and in
simulations of SiO2 �16�. In fact, the parallel with the case of
BeF2 �53� is remarkable. In both cases, the Arrhenius slope

FIG. 6. �Color online� Response functions for the Jagla ramp model as function of temperature for different values of P� Pc �Fig. 5, path
� and P� Pc �Fig. 5, path ��. �a� Constant pressure specific heat CP and �b� isotherm compressibility KT. Both CP and KT have maxima,
as is known to occur experimentally for the liquid-gas critical point �47� and for the liquid-liquid critical point �55�. For large P the peaks
become less pronounced and shift to higher temperature as the Widom line has positive slope.

FIG. 7. �Color online� �a� The
pair correlation function g�r� at
constant pressure P=0.250� Pc.
The magnitude of the first peak in-
dicates a HDL-like liquid at low T
and LDL-like liquid at high T. �b�
Distribution of q vectors at con-
stant pressure P=0.250. The shifts
of the first and second peaks in the
distribution of the q vectors fur-
ther indicates that the liquid
changes smoothly from HDL-like
to LDL-like as it crosses the
Widom line at temperature
Tw�0.38. �c� The translational or-
der parameter t and �d� the orien-
tational order parameter Q6 along
the constant pressure paths for P
� Pc �Fig. 5�, path . The sudden
change in t and Q6 occurs when
the system crosses the positively
sloped Widom line.
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extrapolates to an intercept at 1 /T=0, which is six orders of
magnitude above the intercept of the high temperature
Arrhenius part of the plot �which is common to all phases�.
Thus, the behavior of the HDL-like liquid on the low-
temperature side of the Widom line can be classified as that
of a strong liquid. The behavior on the high-temperature side
of the Widom line, in the LDL-like phase, however, is very
different, resembling that of the fragile liquid, as is clear
from Figs. 9�b� and 9�c�. Thus, the present spherically sym-
metric Jagla ramp potential exhibits a dynamic crossover
from LDL-like �fragile liquid� at high temperature to HDL-
like �strong liquid� at low temperature, suggesting the analo-
gous fragile-to-strong transition as in water, with the differ-
ence that the strong liquid is now the HDL phase.

VII. DISCUSSION

A. Jagla ramp potential

The mechanisms underlying the different dynamic behav-
iors we find can be related to the LL phase transition �Fig. 5�.
The coexistence line has a positive slope, so we have one
phase for P� Pc and two phases—LDL and HDL—for
P� Pc. According to the Clapeyron equation, HDL entropy
is lower than LDL entropy, so HDL is more ordered than
LDL which is the opposite of water. In the region of the P-T
phase diagram between the LDL and HDL spinodals, the
system can exist in both the LDL and HDL phases, one
stable and one metastable.

�i� The limit of stability of the less-ordered LDL phase is
determined by the high pressure LDL spinodal PLDL�T�,
which, for our model, is unlikely to be crossed by cooling the
system at constant pressure �Figs. 3�c� and 3�d��—because
PLDL�T�� Pc for all T except in the immediate vicinity of the
liquid-liquid critical point �Fig. 5�. The dynamic behavior of
the less ordered LDL phase is non-Arrhenius, which is the
characteristic of fragile glass formers �Fig. 5�.

�ii� On the other hand, the limit of stability of the more
ordered HDL phase is determined by the low pressure HDL

spinodal THDL�P� �Fig. 5�, which can be crossed by heating
the HDL phase at constant pressure �Figs. 3�c� and 3�d��.
That is why the dynamic behavior of the more ordered HDL
phase can be studied only when T�THDL�P� for P� Pc. The
dynamic behavior of the HDL phase is Arrhenius which is
the characteristic of the strong glass formers.

FIG. 8. �Color online� Dimensionless diffusivity as a function of
density for seven values of temperature. The diffusivity anomaly
region, where D increases with compression �density�, is located
within the diffusivity extrema lines �heavy dashed lines�.

FIG. 9. �Color online� Dynamic behavior for Jagla ramp poten-
tial. The T dependence of the diffusivity D along constant pressure
paths: �a� P=0.225� Pc for both path � and path �. The more
ordered phase �HDL� is strong, while the less ordered phase �LDL�
is fragile. �b� Path � with P=0.225� Pc, and path  with P
=0.300� Pc, for which a dynamic crossover occurs along constant
pressure paths above the critical pressure when the Widom line is
crossed �Fig. 5�. �c� Path � with P=0.200, P=0.225� Pc, path �
with P=0.225� Pc, and path  with P=0.250,0.275,0.300� Pc.

THERMODYNAMICS AND DYNAMICS OF THE TWO-¼ PHYSICAL REVIEW E 74, 031108 �2006�

031108-7



B. Comparison with water

For the Jagla ramp model, the dynamic crossover upon
cooling for P� Pc �path � is the same as what was observed
in realistic water models for P� Pc �3,14�, which is a fragile
to strong transition. In water models which have a negatively
sloped coexistence, the density of the high temperature phase
is larger than the density of the low temperature phase �Fig.
10�. Accordingly, the coexistence line has a negative slope,
and the high temperature phase which must be the less or-
dered phase is the HDL phase �54�. Thus in water, in contrast
with the Jagla model, the HDL phase is fragile while the
LDL phase is strong. When water is cooled at P� Pc �Fig.
10, path ��, it crosses the coexistence line but does not cross
the spinodal of the less ordered HDL phase, which is an
almost horizontal line on the P-T plane as recent ST2 simu-
lations suggest �2�. Thus for P� Pc, water may remain in the
metastable HDL phase even at very low temperatures, since
the low-density phase may not nucleate out of the HDL
phase. Accordingly, above the critical pressure, water may
remain fragile even at very low temperatures. In contrast,
upon cooling at P� Pc �Fig. 10, path �, water crosses the
Widom line, and its thermodynamic properties continuously
change from those of the HDL phase to those of the LDL
phase. This is demonstrated by the CP peak found by cooling
water in small pores at atmospheric pressure �55�. Therefore,
for P� Pc one expects a fragile-to-strong transition upon
cooling, which is indeed experimentally observed in
nanopores �3,4�.

C. Comparison with the tetrahedral liquid BeF2

Interestingly, what was observed in a combined MD/
experimental study of BeF2 �53,56,57� shows a dynamic
crossover similar to what we observed for Jagla ramp model

for P� Pc �Fig. 9�a��. In addition, the MD simulations of
BeF2 show the density anomaly and the specific heat maxi-
mum close to the point of the dynamic crossover at about
2Tg. In the Jagla ramp model, the dynamic crossover and the
CP maximum occur at higher temperatures T�3.5Tg. The
difference between BeF2 and the Jagla ramp model is that a
second LL critical point has not been directly observed for
BeF2. Therefore, we cannot call the region of fast change of
the dynamic and thermodynamic properties a Widom line.
However, the extrapolation of the simulation isochores in the
density anomaly region suggests possible existence of a criti-
cal point at lower temperature and higher pressure. Thus, the
region of fast changes of the thermodynamic response
functions is possibly associated with a Widom line emanat-
ing from this hypothetical critical point �58,59� inaccessible
for simulations. As in water, this region in BeF2 �quasi-
Widom line� has negative slope, suggesting that the dynamic
crossover in BeF2 upon cooling is related to the entropy de-
crease from a HDL-like value on the high-temperature side
to a LDL-like value on the low-temperature side of this
quasi-Widom line.

VIII. SUMMARY

In summary, we systematically study a simple spherically
symmetric two-scale Jagla ramp potential with both repul-
sive and attractive parts. We find a LL phase transition in an
accessible region of the P-T phase diagram. The Jagla ramp
potential also displays water-type thermodynamic and dy-
namic anomalies, as well as a dynamic crossover which oc-
curs as the system crosses the Widom line while cooled
along constant pressure paths P� Pc. Our simulations, simi-
lar to simulations of silicon �18�, show that the dynamics is
Arrhenius in the more ordered phase �HDL for Jagla ramp
model� and fragile for the less ordered phase �LDL for Jagla
ramp model�. Our study shows that the dynamics is Arrhen-
ius on the low-temperature side of the Widom line and frag-
ile on the high-temperature side of the Widom line, as in
water. The dynamic crossover for P� Pc is consistent with
�i� the experimental observation in confined geometries
�small pores� of a fragility transition �3�, and �ii� experimen-
tal observation of a peak in the specific heat upon cooling
water at atmospheric pressure in nanopores �55�.

ACKNOWLEDGMENTS

We thank S.-H Chen, D. Chandler, P. G. Debenedetti, I.
Ehrenberg, G. Franzese, J. P. Garrahan, P. Kumar, J. M. H.
Levelt Sengers, M. Mazza, P. H. Poole, F. Sciortino, S. Sas-
try, F. W. Starr, B. Widom, and Z. Yan for helpful discussions
and NSF Grant No. CHE 0096892 for support. We also thank
the Boston University Computation Center for allocation of
CPU time. S.V.B thanks the Office of the Academic Affairs
of Yeshiva University for funding the high-performance
computer cluster.

FIG. 10. �Color online� A sketch of the P-T phase diagram for
water models, showing path  and path � �5�. Note that unlike the
Jagla two-scale ramp potential �Fig. 5�, the HDL is less ordered
than the LDL, so the Widom line has negative slope by the
Clapeyron relation.
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