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a b s t r a c t

Using the approach of Granger causality in risk, we investigate extreme risk spillover
effects among four major world gold markets (London, New York, Tokyo and Shanghai)
before and after the recent global financial crisis. We find (i) that there are strong extreme
risk spillover effects between London and New York, and London and Shanghai, (ii) that
most of the extreme risk spillovers to Tokyo and Shanghai are from New York rather than
from London, but London leads New York in risk spillovers, (iii) that extreme risk spillover
effects from Tokyo and Shanghai to New York are limited, but those to London play an
important role, and (iv) that extreme risk spillover effects between Tokyo and Shanghai
are weak or negligible. We also find that extreme risk is more quickly transmitted in the
post-crisis era than in the pre-crisis era, an effect that is related to the safe-haven or risk-
hedging property or the speculative value of gold.

& 2016 Elsevier Ltd All rights reserved.

1. Introduction

Because gold is a special commodity that combines the attributes of a general commodity, a currency, and a financial product,
it simultaneously has commercial, monetary, and financial functions. Although the demonetization of gold in 1976 weakened its
monetary function, the financial function of gold has increased because gold is sought as an investment or a tool for hedging
when uncertainty in a financial system increases beyond a certain point. In particular, the 2008 financial crisis and the European
sovereign debt crisis triggered by the US subprime crisis in 2007 caused traders to acquire gold as a safe haven or hedge against
other financial instruments (Baur and Lucey, 2010, Baur and McDermott, 2010, Joy, 2011, Reboredo, 2013a, Reboredo, 2013b).

Although gold is an asset that is traded world-wide, the main centers are the London Over-the-Counter (OTC) market, the
New York Commodity Exchange (COMEX) market, the Tokyo Commodity Exchange (TOCOM) market, and the Shanghai
Futures Exchange (SHFE) market (Lucey et al., 2014). According to Murray (2011) and Lucey et al. (2012), these four gold
markets in 2011 carry 98% of the world-wide gold trading volume, the London gold market is the biggest gold trading center
with 86.75% of the trading volume (around 90% of which are spot transactions), and the rest three gold markets and others
share the rest of the volume (i.e., New York 9.89%, Shanghai 1.38%, and Tokyo 0.98%). In view of the worldwide feature of
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gold trading, a natural question is: what are correlations between gold prices and information spillover effects among
different gold markets? Little research pays attention to this question. Despite this topic has emerged on the current work
(see a review by O'Connor et al., 2015), most studies focus on correlations or information spillover effects in mean and
volatility between two gold markets and ignore their spillover effects in extreme risk. In response to this lack, our goal here
is to investigate extreme risk spillover effects among the four major world gold markets mentioned above.

Over the past 15 years gold prices have been volatile. Beginning in 2002 they increased steadily, reached their record
high of 1895USD per troy ounce on 5 September 2011, and have declined since that date. High price volatility is char-
acteristic of precious metal markets, and gold traders seeking to minimize risk often diversify their investment portfolios
internationally, but world-wide market integration introduces contagion into the system and risk is transmitted between
different gold markets when there are market shocks (e.g., financial crises, political crises, or regional wars). Being able to
understand and quantify extreme risk (including downside risk and upside risk) spillover effects between different gold
markets is thus essential to gold market participants and policy-makers. For investors, understanding the mechanism of
extreme risk spillover effects across different gold markets is crucial in managing asset risk and constructing asset portfolios.
When investors face extreme adverse market fluctuations and co-movements in an uncertain economic situation, for ex-
ample, the knowledge of which gold markets are sources of extreme risk spillovers of their holding assets is hugely ben-
eficial in evaluating the possible risk of the holding gold assets and helps investors reconstruct their diversified portfolios
and improve their hedging strategies. When policy-makers assess the stability of gold market and monitor its risk, for
example, the information of how the extreme risk spillover effects across different gold markets will respond to a financial
crisis and market crash would help them formulate more effective policies for influencing their markets.

In our study we use the Granger causality in risk approach proposed by Hong et al. (2009) to examine extreme risk
spillovers across the four gold markets. The Granger causality in risk uses the value-at-risk (VaR) measurement introduced
by the J.P. Morgan and widely used in both the financial industry and academia to quantify extreme risk in financial markets.
VaR is the maximum loss of a given asset portfolio over a specific time horizon with a pre-specified confidence level.
Although volatility is a traditional measure of risk and its spillover effects are widely investigated in the literature (e.g.,
Baklaci et al., 2016; Batten and Lucey, 2010; Baur, 2012; Cheung and Ng, 1996; Hong, 2001), VaR is chosen rather than
volatility because it overcomes two drawbacks when using volatility, i.e., (i) the risk of loss measured by volatility is usually
underestimated and symmetrical, and (ii) volatility cannot model extreme risk. When the actual loss of a given asset
portfolio exceeds the VaR at the given confidence level (e.g., 95%), we say the risk happens at the fixed confidence level.
According to the Granger causality in risk, one market is said to Granger cause another market in risk if the past risk profile
of the first market assists in predicting the future risk profile of the second market with a greater accuracy than if the second
market were to predict its future risk profile using only its own past risk profile. Thus the Granger causality in risk can help
market participants and regulators predict and monitor risk in gold markets.

The empirical data we use in our study are the daily closing (fixing) prices of the London, New York, Tokyo, and Shanghai
gold markets during the period 30 October 2002–30 October 2015. To analyze the influence of the recent global financial
crisis, we divide the this time period into two subperiods, i.e., before and after the financial crisis.1 We then use the var-
iance–covariance method to estimate the VaRs of these four gold markets at different periods based on the ARMA-(T)
GARCH-GED (generalized error distribution) model that captures the “stylized facts” of financial time series, including
autocorrelation, volatility clustering, “leverage effect,” and fat tails. Finally, we analyze extreme risk spillover effects among
the four gold markets by employing the Granger causality in risk.

Our accomplishments here are three-fold and groundbreaking.

(i) We investigate extreme risk spillover effects in world gold markets and examine both the downside and upside risk
spillover effects at the 99% and 95% confidence levels. To overcome the non-synchronous trading effect in the gold
markets, we develop a modified statistic of the one-way Granger causality in risk that can be extended to the study of
risk spillover in other international financial markets.

(ii) We find that extreme risk spillover effects between London and New York and between London and Shanghai are strong
and significant, and that there are strong feedback effects between these two pairs of gold markets. The extreme risk
spillover from New York to Shanghai is usually stronger than that from Shanghai to New York. Most of the extreme risk
spillovers to Tokyo and Shanghai come from New York rather than from London, but the level of one-way Granger
causality in risk between London and New York indicates that London leads New York in risk spillovers. Extreme risk
spillover effects between Tokyo and Shanghai are weak or negligible, suggesting that the interaction between them is
inconspicuous.

(iii) We investigate how extreme risk spillover effects in gold markets before the recent global financial crisis differ from
those after the crisis. This is a new contribution to the literature of financial crisis. Empirically we find that extreme risk
is more quickly transmitted between gold markets in the post-crisis era than in the pre-crisis era. We attribute this
finding to the safe-haven or risk-hedging role or the speculative value of gold during crisis periods.

1 In our study, we consider the recent global financial crisis including the US subprime crisis, the 2008 financial crisis, and the European sovereign debt
crisis.
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Overall, our findings provide important references and suggest potential applications of great value to academic researchers,
market participants, and market regulators.

We organize our paper as follows. In Section 2 we review the literature. In Section 3 we describe econometric meth-
odologies. In Section 4 we present the empirical data and results. In Section 5 we draw our conclusions.

2. Literature review

The research reported here draws on two topics described in the literature. The first is a focus on correlations or in-
formation spillover effects between different gold markets. The early work on this topic began with that reported by
Laulajainen (1990), which presents an investigation of the daily prices of the New York, London, and Hong Kong gold
markets from 1 October 1987 to 30 September 1988 and uses the level-VAR mode to determine which of the three markets
is dominate. They find that the New York gold market had more influence over the other two than the other two had on
New York. Dhillon et al. (1997) present an empirical study of the volatility and information flows between the New York and
Tokyo gold markets during the period from July 1987 through May 1992. They find that the intraday volatility of the New
York gold market is greater than that of the Tokyo gold market, which indicates greater information flows in the New York
gold market. Following the idea of Dhillon et al. (1997), Xu and Fung (2005) extend the study by employing a bivariate
autoregressive moving average-generalized autoregressive conditional heteroscedasticity (ARMA-GARCH) model to ex-
amine cross-market linkages between the New York and Tokyo gold markets during the period 1994–2001. The authors find
that the information flows sourced in the New York gold market transmit to the Tokyo gold market in terms of returns, once
again implying that the New York market is the world leader in global gold markets. The opposite outcome is reported by
Lin et al. (2008), which is an analysis of the dynamic correlations between the New York and Tokyo gold markets from
January 1991 to July 2006. Using a bivariate GARCH model, they find that the Tokyo gold market appears to lead the New
York gold market. Unlike the previous work that focused on the linkages between the New York and Tokyo gold markets,
Kumar and Pandey (2011) use the Baba–Engle–Kraft–Kroner (BEKK) GARCH model to study the cross-market linkages be-
tween the New York and Indian (i.e., the Multi Commodity Exchange, MCE) gold markets from 5 May 2005 to 7 April 2008 in
terms of return and volatility spillovers. They find that the volatility spillover effect of the New York gold market on the
Indian gold market is more than its effect on New York, indicating that the Indian market is a satellite market that as-
similates information from the New York market.

More recently, Lucey et al. (2013) utilize the information sharing model to investigate the origin of gold prices and focus
on the daily prices of two major gold markets (New York and London) from January 1986 to July 2012. They find that the
London gold market may be dominant in accordance with the price information shares but the dominant market is dynamic
with no clear link to macroeconomic or political events. Chang et al. (2013) use an augmenting level-VAR model to study the
dynamic correlations among the daily prices in five gold markets (New York, London, Tokyo, Hong Kong, and Taiwan) from
2007 to 2010. They find that (i) relationships between the New York and London gold markets and those among the
Japanese, Hong Kong, and Taiwan gold markets are bi-directional; (ii) the London gold market is impacted by the other four
gold markets; and (iii) the New York gold market is the leading center of gold information and thus is a straightforward
influence on the other four gold markets. An empirical study reported by Fuangkasem et al. (2014) examines relationships
among the New York, Tokyo, and Indian gold markets using sample data of 5-minute trading prices from April 2011 to
August 2011. Using the vector error correction model (VECM) and the information share model, the authors find that these
three gold markets are co-integrated and that the New York gold mark dominates the other two markets. Lucey et al. (2014)
analyze the integration of the New York, London, Tokyo, and Shanghai gold markets using the daily prices set from 9 January
2008 to 9 October 2013 and the spillover index method. The authors conclude that (i) the Shanghai gold market is an
isolated market; (ii) the New York and London gold markets are the strongest integrated pair of gold markets; and (iii) the
Tokyo gold market is clearly influenced by the New York and London gold markets and has no significant and consistent
effect on other markets. Baklaci et al. (2016) detect the cross-market volatility linkages among the New York, Tokyo,
Shanghai, India, Turkey, and Taiwan gold markets from 2 September 2008 to 20 December 2012. Using the VECH-MGARCH
model they find that (i) remarkable volatility spillover effects exist among Shanghai, Indian, and Taiwan gold markets; (ii)
there is a long-run volatility linkage between the New York gold market and all the other markets except Shanghai; and (iii)
the Shanghai gold market is relatively isolated. Recent work reported by Hauptfleisch et al. (2016) employs intraday data
during the period 1 January 1997 to 30 November 2014 to uncover which of the New York and London gold markets
determines gold prices. They find that both markets have influence but that, on average, the New York market takes the
lead. Many sophisticated models have been employed to produce well-documented descriptions of correlations or in-
formation spillover effects in global gold markets, but to the best of our knowledge the Granger causality in risk has not been
used to study the spillover effects in world gold markets from the perspective of risk.

The second topic in the literature concerns measuring the information spillover effects in financial markets. C.W.J.
Granger systematically examined the causality and spillover effects among financial time series, including the Granger
causality in mean (Granger, 1969), the Granger causality in variance (or volatility) (Granger et al., 1986), and the general
Granger causality (Granger, 1980). Based on the idea of the general Granger causality, Hong et al. (2009) propose the Granger
causality in risk using the VaR measure to examine the extreme risk (downside and upside risks) spillover effects in financial
markets. Therefore prior to the most recent literature the measurements of the information spillover effects can be
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categorized as either (i) mean spillover, (ii) volatility spillover, or (iii) risk spillover. These have been used to describe the
relationship and co-movement between different financial markets, and they play an important role in understanding
information flow among markets. The existing literature has utilized numerous analytical methods of studying the Granger
causality and information spillover effects, and these methods fall into two groups.

The first group of methods uses linear regression, including VAR, VAR-GARCH, VECM, and VECM-GARCH, to examine the
Granger causality in mean or volatility and is widely used to study spillover effects in gold markets (see, e.g., Baklaci et al.,
2016; Chang et al., 2013; Fuangkasem et al., 2014; Kumar and Pandey, 2011). However this linear regression approach
(i) considers only the influence of a limited lag and the linear correlation and fails to detect the complex causality between
highly heterogeneous financial time series, and (ii) its accuracy can be strongly affected by the “stylized facts” of financial
time series, including autocorrelation, non-stationarity, multicollinearity, and heteroscedasticity.

The second group of methods uses a cross-correlation function (CCF) that overcomes the shortcomings of the traditional
regression models. The CCF was first proposed by Haugh (1976), extended by McLeod and Li (1983), Koch and Yang (1986),
Cheung and Ng (1996), Hong (1996), Hong (2001), Hong et al. (2009), and is robust to distributional assumptions. A two-stage
method is used to compute the CCF for the test of Ganger causality. The first stage employs the univariate financial time series
models, e.g., AR and ARMA-(T)GARCH, to uncover the stylized features of financial time series. The second stage uses the
resulting residual series or their variations (e.g., conditional means and variances) to generate the CCF statistic in order to test
the null hypothesis that there is no Granger causality between two financial time series. The Granger causality in risk proposed
by Hong et al. (2009) is based on an improved CCF and is widely and successfully applied in different financial markets to
quantify their extreme risk spillover effects (see, e.g., de Araújo and Garcia, 2013; Balboa et al., 2015; Du and He, 2015; Fan
et al., 2008; Hong et al., 2004; Hwang and Kim, 2015; Lee and Lee, 2009; Liu et al., 2008; Pan and Zhang, 2007; Zhou, 2013).2

For example, Hong et al. (2004) describe the extreme risk spillover effects between Chinese stock markets and international
stock markets. Pan and Zhang (2007) use the GARCH-GED model to estimate the conditional downside and upside VaRs of
WTI and Daqing crude oil prices and find extreme risk spillover effects between these two oil markets. Fan et al. (2008)
examine the VaRs of WTI and Brent oil prices and their risk spillover effects. Liu et al. (2008) describe the spillover effects in
risk between Chinese copper futures and spot markets. Other applications include extreme risk spillover effects between
different stock markets (de Araújo and Garcia, 2013; Hwang and Kim, 2015), stock markets and foreign exchange markets (Lee
and Lee, 2009), international real estate investment trust markets (Zhou, 2013), and oil and stock markets (Du and He, 2015).
All this previous empirical research indicates that the Granger causality in risk can accurately describe and measure extreme
risk spillover effects between different markets, and this motives us to utilize it in our study.

3. Methodology

3.1. VaR estimation

Given a specific time period and a confidence level of α( − )1 in which α ∈ ( )0, 1 , VaR is the maximum loss of a given asset
portfolio with a probability α. Statistically, VaR is the α-quantile of the conditional probability distribution of returns of asset
portfolio. Following Pan and Zhang (2007), Fan et al. (2008), and Liu et al. (2008), we employ the left α-quantile of returns of
gold prices to quantify the downside VaR, i.e., the loss of sales revenue for gold providers (or producers) due to the sharp fall
in gold prices. We employ the right α-quantile to measure the upside VaR, i.e., the increased expense for gold consumers
due to the extreme rise in gold prices. Mathematically, given the gold returns Rt, the downside and upside VaRs at the
confidence level of α( − )1 are respectively

Φ α( < − ( )| ) = ( )−R VPr down 1t t t 1

and

Φ α( > ( )| ) = ( )−R VPr up , 2t t t 1

where Φ = { … }− − −R R R, , ,t t t1 1 2 1 is the information set available at −t 1.
There are three ways of estimating VaR, (i) historical simulation, (ii) variance–covariance, (iii) and Monte Carlo simu-

lation. Following a popular VaR estimation method—RiskMetrics™ proposed by Morgan (1996)—we use the variance–
covariance method and the GARCH-type model to calculate the VaR of gold returns, but we modify RiskMetrics™, which
assumes that asset returns follow a Gaussian distribution, and employ the ARMA(p,q)-(T)GARCH(r,s)-GED model to estimate
the conditional mean and volatility of gold returns.3 The proposed model can both capture the “styled facts” of gold returns,

2 Note that in the working-paper stage of Hong et al. (2009) the application papers initiated the use of Granger causality in risk.
3 Other approaches (e.g., simulation and quantile regression) can also be used to estimate VaRs. For example, Engle and Manganelli (2004) propose a

widely used VaR estimation method, i.e., the conditional autoregressive value at risk (CAViaR) model, which is based on an autoregressive process and the
quantile regression. Kuester et al. (2006) compare the predictive performance of many existing VaR methods and find (i) that a hybrid approach of a fat-
tailed (e.g., a skewed-t distribution and the mixed GED) AR-GARCH model and the extreme value theory-based method has the best performance, followed
by an improved historical simulation method, and (ii) that none of the CAViaR models perform well. They also find that only conditionally heteroskedastic
models obtain acceptable predictions, and this supports our decision to estimate VaRs of gold returns with the ARMA-(T)GARCH-GED model.
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e.g., autocorrelation and volatility clustering, and detect the “leverage effect” and fat tails. This approach is in line with
previous investigations of the volatility of gold returns. For example, Batten and Lucey (2010) and Hammoudeh et al. (2010)
use the ARMA-GARCH model to examine volatility in the gold futures market, and Baur (2012) uses the TGARCH model to
describe the asymmetric volatility in the gold market.

The gold returns Rt can be modeled by an ARMA(p,q)-GARCH (r,s)-GED as

∑ ∑μ ε ϕ φ ε ε= + = + + +
( )=

−
=

−R c R ,
3

t t t
j

p

j t j
j

q

j t j t
1 1

ε η= ( )h , 4t t t

∑ ∑α β α ε= + +
( )=

−
=

−h h ,
5

t
j

r

j t j
j

s

j t j0
1 1

2

η ∼ ( ) ( )iid vGED , 6t

where Eqs. (3) and (5) are the conditional mean and variance equations, respectively, μt is the conditional mean, c and εt are
the constant and innovation terms respectively, ϕj and φj are autoregressive (AR) and moving average (MA) coefficients of
order j, respectively, ht is the conditional variance of the innovation εt with certain restrictions ( ≥r 0, >s 0,

α α> ≥ ( = … )j s0, 0 1, 2, ,j0 , β ≥ ( = … )j r0 1, 2, ,j , and )α β∑ + ∑ <= = 1j
s

j j
r

j1 1 , and ηt is the standardized residual that fol-
lows the generalized error distribution (GED). According to Nelson (1991), the GED captures the fat tails of the standardized
residuals of returns because its tails are fatter than the normal distribution and thinner than the uniform distribution. The
probability density function of the GED is defined

η
η λ

λ Γ
η( ) =

− | |
( )

− ∞ < < ∞ < ≤ ∞
( )[( + ) ]

⎡⎣ ⎤⎦
f

v
v

v
exp 0.5 /
2 1/

, , 0 ,
7

v

v v1 /

where Γ (·) is the gamma function, λ Γ Γ≡ ( ) ( )−⎡⎣ ⎤⎦v v2 1/ / 3/v2/ 1/2, and v is the degree-of-freedom of the GED, which is also the
tail-thickness parameter. When v¼2 the GED reduces to the standard normal distribution. When <v 2 the tail of the GED is
thicker than in the standard normal distribution, and when >v 2 it is thinner.

Because Baur (2012) reports that there is significant asymmetric volatility in gold markets, we use the threshold GARCH
(TGARCH) model to capture the “leverage effect” of asset returns. The “leverage effect” of gold returns indicates that the
current volatility caused by previous positive and negative gold return shocks is asymmetric. Following Glosten et al. (1993)
and Zakoian (1994), the conditional variance equation of the TGARCH(r,s) model is defined as

∑ ∑α β γ ε α ε= + + +
( )=

− − −
=

−h h d ,
8

t
j

r

j t j t t
j

s

j t j0
1

1 1
2

1

2

where −dt 1¼1 if ε <− 0t 1 and =−d 0t 1 otherwise, =−d 1t 1 and =−d 0t 1 are the effects of negative shocks and positive shocks
(bad news and good news), respectively, at time −t 1, and γ quantifies the difference between the effects of previous
positive shocks and negative shocks on the current volatility of gold. Whenever γ ≠ 0, there are asymmetric impacts of
lagged positive shocks and lagged negative shocks on the volatility. When γ > 0 the influence of previous negative shocks on
the current volatility is larger than the previous positive shocks, and when γ < 0 it is smaller.

Using the ARMA-(T)GARCH-GED model and the variance–covariance approach, the downside VaR and upside VaR for
gold returns are respectively estimated as

μ( ) = − − ( )αV z hdown 9t t t

and

μ( ) = + ( )α−V z hup , 10t t t1

where αz is the left α-quantile of the GED for the standardized residuals, i.e., α( ) =αF z , and = −α α−z z1 .
To evaluate the adequacy of the VaR model for estimating extreme risks of four gold markets, we employ five backtesting

measures: (i) the number of failure days (violations), (ii) the failure rate, (iii) the likelihood ratio (LR) test of unconditional
coverage, (iv) of independent coverage, and (v) of conditional coverage. For a detailed introduction to these backtesting
techniques, see Appendix A.

3.2. Granger causality in risk

We employ the Granger causality in risk proposed by Hong et al. (2009) to investigate the extreme risk spillover effects among
the four gold markets. The Granger causality in risk is an extension of the general Granger causality proposed by Granger (1980)
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that tests whether the occurrence of past risks in onemarket can aid in forecasting the occurrence of future risks in another market.
We first use the risk indicator introduced by Hong et al. (2009) and as an example take the downside VaR, defined as

= ( < − ) = ( )Z R V m1 , 1, 2, 11mt mt mt

where Rmt and Vmt are the return series and the corresponding downside VaR estimates of gold market m, and 1( " ) is the indictor
function found in Eq. (A.1), i.e., the risk indicator takes a value of one when the actual loss exceeds the downside VaR estimate,
otherwise it takes a value of zero.

Let { }R t1 and { }R t2 be the return series of gold markets 1 and 2, respectively. According to Hong et al. (2009), to test the
one-way downside risk spillover effects from gold market 2 to gold market 1,4 the null hypothesis and its alternative
hypothesis of Granger causality in risk are

Φ Φ( | ) = ( | ) ( )( − ) −E Z E ZH : , 12t t t t
0

1 1 1 1 1

and

Φ Φ( | ) ≠ ( | ) ( )( − ) −E Z E ZH : , 13t t t t
1

1 1 1 1 1

where Φ Φ Φ Φ= { } = { … }− ( − ) ( − ) ( − ) ( − ) ( − )R R R, , , , ,t t t t t t1 1 1 2 1 1 1 1 1 1 2 11 , and Φ = { … }( − ) ( − ) ( − )R R R, , ,t t t2 1 2 1 2 2 21 .
If {^ }Z t1 and {^ }Z t2 are two estimated series of risk indictors of gold markets 1 and 2, the sample cross-covariance function is

defined
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( )( )

∑

∑

α α

α α
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−
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1
1 1 2 2
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1 1 2 2

where α̂m is the sample mean of{ }Ẑmt , m¼1,2, and T is the total number of observations in the return series. Then the

sample cross-correlation function (CCF) between{ }Ẑ t1 and{ }Ẑ t2 is defined

ρ̂ ( ) ≡
^ ( )
^ ^ ( )

j C j

S S
,

151 2

where Ŝm

2
is the sample variance of{ }Ẑmt .

To test the one-way Granger causality in risk from gold market 2 to gold market 1, we use the kernel-based statistic
proposed by Hong (2001) and Hong et al. (2009), i.e.,

∑ ρ( ) = ( ) ^ ( ) − ( ) ( )
( )=

−⎡
⎣
⎢⎢

⎤
⎦
⎥⎥ ⎡⎣ ⎤⎦Q M T k j M j C M D M/ / ,

16j

T

T T1
1

1
2 2
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1/2

where the centering and standardization constants are defined as
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( )=

−
C j T k j M1 / /

17
T

j

T

1
1

1
2

and

∑= ( − )( − ( + ) ) ( )
( )=

−
D j T j T k j M2 1 / 1 1 / / .

18
T

j

T

1
1

1
4

Here (·)k is a kernel function that assigns weights to various lags. In our case, the Daniell kernel is chosen because
according to Hong (2001) and Hong et al. (2009) the simulation results indicate that its performance is optimal, i.e.,

π π( ) = ( ) ( )k x x xsin / .5 M is the largest effective lag truncation order, which indicates how many lags are used to analyze the
risk spillover effects between two gold markets. Lags are taken into consideration because in real-world markets gold
investors need time to understand and respond to past information, thus the risk spillover effects have time-lags.

Hong et al. (2009) also propose a two-way Granger causality in risk to test risk spillover effects (including instantaneous
risk spillover effects) between two markets, where the statistic is defined

4 The test for upside risk spillover effects is similar to that of downside risk spillover effects and is not presented due to space limitations.
5 Note that when x¼0 the Daniell kernel ( ) =k x 1 because ( ) = =π

π→ →
( )k xlim lim 1x x

x
x0 0

sin .
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Here ( )Q M2 takes into consideration all possible instantaneous cross-correlations between{ }Ẑ t1 and{ }Ẑ t2 .

Note that non-synchronous trading is common in world financial markets, i.e., national financial markets (e.g., gold
markets) are in different time zones and have different opening and closing times (Malliaris and Urrutia, 1992). In our case,
the non-synchronous trading effect can be a problem when testing one-way Granger causality in risk from an Asian gold
market (e.g., Shanghai) to an American gold market (e.g., New York) because the opening and closing times of the Shanghai
market are prior to those of the New York market (see Table 1). For example, if an important world event (e.g., the discovery
of a new source of gold) occurs in China or some other Asian county and is announced while the Shanghai gold market on a
given trading day (e.g., Wednesday) is active, the Wednesday closing price of New York gold market will reflect this in-
formation, i.e., the closing price of the Shanghai gold market on day t will influence the closing price of the New York gold
market on the same calendar day t. The one-way Granger causality in risk based on Eq. (16) ignores this non-synchronous
trading effect. To this end, we follow Cheung and Ng (1996) and Lu et al. (2014) and modify the statistic of one-way Granger
causality in risk by taking into consideration the CCF with a lag order of zero, i.e.,

∑ ρ( ) = ( ) ^ ( ) − ( ) ( )
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where the centering and standardization constants are defined as
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Economically speaking, using a CCF with a lag order of zero in Eq. (22) allows us to take into consideration the in-
stantaneous risk spillover effects from the Shanghai gold market to the New York gold market. In other words, the statistic

Table 1
The trading hours of the London, New York, Tokyo, and Shanghai gold markets.

Market Hours (Greenwich Mean Time) Hours (Local Time) Hours (New York Time)

Tokyo 00:00 am–06:15 am 09:00 am–03:15 pm 07:00 pm–01:15 am
Shanghai 01:00 am–03:30 am 09:00 am–11:30 am 08:00 pm–10:30 pm

05:30 am–07:30 am 01:30 pm–03:30 pmn 00:30 am–02:30 am
London Morning fix: 10:30 am Morning fix: 10:30 am Morning fix: 05:30 am

Afternoon fix: 03:00 pm Afternoon fix: 03:00 pm Afternoon fix: 10:00 am
New York 01:20 pm–06:30 pm 08:20 am–01:30 pm 08:20 am–01:30 pm

Notes: This table shows the gold trading hours of the London Over-the-Counter (OTC) market, the New York Commodity Exchange (COMEX) market, the
Tokyo commodity exchange (TOCOM) market, and the Shanghai Gold Exchange (SGE) market. This table only presents the day session for the Tokyo and
Shanghai gold markets. Their night sessions start from 04:30 pm to 04:00 am and from 09:00 pm to 02:30 am (Local Time), respectively. For a regular
business day in these two markets, one clearing period corresponds to the previous business day's night session (e.g., Shanghai gold market from 09:00
pm) plus today's day session (until 03:30 pm).
Source: Ntim et al. (2015) and authors' elaborations from the websites of these four gold markets. For details, see the following four websites: (i) http://
www.lbma.org.uk/pricing-and-statistics (the London OTC market), (ii) http://www.cmegroup.com/trading-hours.html#metals (the New York COMEX
market), (iii) http://www.tocom.or.jp/guide/youkou/gold/index.html (the TOCOM market), and (iv) http://www.en.sge.com.cn/rules-regulations/rules/
sgerules/523893.shtml (the SGE market).

n For the Shanghai Futures Exchange (SHFE) market, its afternoon session starts from 01:30 pm to 03:00 pm (Local time).
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( )Q M3 allows us to consider the influence of the price information of the Shanghai gold market on day t on the price
information of the New York gold market on the same calendar day t. Thus using the statistic ( )Q M3 we can fix the non-
synchronous trading effect.

According to Hong et al. (2009), under the null hypothesis, Qi(M) ( =i 1, 2, 3) obeys an asymptotically standard normal
distribution, i.e., ( ) → ( )Q M N 0, 1i . If the value of Qi(M) is greater than the critical value of the right tail of the standard
normal distribution, the null hypothesis is rejected, which suggests that there is one-way or two-way Ganger causality in
risk from market 2 to market 1 or between them.

4. Empirical data and results

In this section, we first introduce the empirical data of the London, New York, Tokyo, and Shanghai gold markets and
make a primary analysis on the gold returns. We then conduct the following procedure for examining extreme risk spillover
effects across the four gold markets: (i) we employ the ARMA-(T)GARCH-GED model and the variance–covariance approach
to estimate (downside and upside) VaRs for four gold markets at different periods, (ii) we use backtesting techniques to
evaluate the accuracy and reliability of VaRs, and (iii) we utilize the statistics (including ( )Q M1 , ( )Q M2 , and ( )Q M3 ) of the
Granger causality in risk to examine extreme risk spillover effects across these four gold markets.

4.1. Data and primary analysis

As noted in Section 1, gold is mainly traded in the London OTC market, the New York COMEX market, the TOCOMmarket,
and the SHFE market in terms of trading volume. The London OTC market is the world's largest gold spot market and the
New York COMEX market is the world's largest gold futures market, and together they dominate worldwide gold price
discovery (Hauptfleisch et al., 2016; Lucey et al., 2013). Following Lucey et al. (2013, 2014) and Hauptfleisch et al. (2016), we
employ the gold spot prices of the London OTC market and the gold futures prices of the New York COMEX market and the
TOCOM marekt as the empirical data for the London, New York, and Tokyo gold markets, respectively. The Shanghai gold
market has two exchange markets: (i) the Shanghai Gold Exchange (SGE) market for gold spot trading and (ii) the Shanghai
Futures Exchange (SHFE) market for gold futures trading. We use the spot price rather than the futures price as the empirical
data for the Shanghai gold market because (i) China's gold futures trading began on 9 January 2008 in the SHFE market and
thus there is no trading data prior to the global financial crisis for the gold futures market, and (ii) although trading volumes
of the London and New York gold markets are both larger than those of the Shanghai gold market, the SGE market has the
world's largest physical gold trading volume and thus is a special and interesting representative among world gold markets.6

Thus we use data from these four gold markets, specifically the daily closing (fixing) gold prices from the London OTC
market, the New York COMEX market, the TOCOM market, and the SGE market during the period from 30 October 2002 to
30 October 2015. In the London gold market we select the afternoon 3:00 p.m. fixing prices (local time). According to the
London Bullion Market Association (LBMA), the standard bar used for settlement and delivery in the London OTC market is
the London Good Delivery gold bar that weighs between 350 troy ounces and 430 troy ounces and has a minimum fineness
of 99.5%.7 In the New York and Tokyo gold futures markets, we select the closing prices of the near-month contract on a
continuous rolling basis. The standard for the delivery of gold futures contracts in the New York COMEX market is 100 troy
ounces of gold with a minimum purity of 99.5%. Each standard gold futures contract in the TOCOMmarket represents 1 kg of
deliverable grade gold with a minimum fineness of 99.99%. In the Shanghai gold market, we select the closing spot prices of
Gold Au99.95, which is the most actively traded gold product in the SGE market and is the underlying asset of the gold
futures traded in the SHFE market. The beginning date of the sample is determined by the SGE market because it opened on
30 October 2002. All empirical data were obtained from Thomson Reuters Eikon.

Fig. 1 shows the gold price trends for London, New York, Tokyo, and Shanghai during the 30 October 2002 to 30 October
2015 period. Although the overall price trends are similar in the four markets, in recent years the price trends in the Tokyo
gold market differ from those in the other three. As noted above in the methodology section, we focus on the daily returns of
gold markets, which is defined as = × ( − )( − )R P P100 ln lnmt mt m t 1 , where Pmt and ( − )Pm t 1 are the closing (fixing) prices of the
gold market m on days t and −t 1, respectively. During the entire 13-year period there are 3372 observations of each return
series.

During this 13-year period, global gold markets were affected by the US subprime crisis, the 2008 financial crisis, and the
European sovereign debt crisis. To compare the extreme risk spillover effects in the four gold markets before and after the
financial crisis, the returns of each gold market are divided into (i) subperiod I (the pre-crisis era) from 31 October 2002 to
29 June 2007 and (ii) subperiod II (the post-crisis era) from 2 July 2007 to 30 October 2015.8 Because the four gold markets

6 To check the validity of our results, in Appendix B we conduct a robustness test of the extreme risk spillover effects using the Shanghai gold futures
data. The testing data span the period from 9 January 2008 to 30 October 2015, and the testing results are consistent with our central findings.

7 See http://www.lbma.org.uk/market-tools
8 We choose the date 2 July 2007 as the break point of the recent global financial crisis for two reasons. (i) In the economics and finance literature

many scholars designate the beginning of the collapse of the US subprime mortgage market in July and August of 2007 as the starting of the recent global
financial crisis. For example, in the study by Acharya et al. (2009) of the causes of the 2007–2009 financial crisis, they use July 2007 as the starting point.
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are located in different time zones, their trading hours are different. Table 1 shows the trading hours of the four gold
markets in Greenwich Mean Time, local time, and New York time. The second column (Greenwich Mean Time) of Table 1
shows that the Tokyo and Shanghai gold markets trade within or around the same time interval, so the non-synchronous
trading effect between them can be ignored. The last column (New York Time) shows that these two Asian gold markets
close before the London and New York gold markets open for the trading day, and thus the non-synchronous trading effect
should be taken into consideration when studying the one-way Granger causality in risk from Asian gold markets to the
London and New York gold markets. Because the afternoon fixing time of the London gold market is three and one-half
hours ahead of the closing price time of the New York gold market, we also take the non-synchronous trading effect into
account when examining the extreme risk spillover effects (i.e., the one-way Granger causality in risk) from the London gold
market to the New York gold market. That is to say, to fix the non-synchronous trading effect we use the statistic ( )Q M3 to
investigate extreme risk spillover effects from Tokyo or Shanghai to London or New York and from London to New York.

Table 2 provides the gold return statistics for London (LD), New York (NY), Tokyo (TK), and Shanghai (SH) for different
periods. The mean return values in subperiod II are smaller than in subperiod I but the standard deviations are larger,
indicating that in the post-crisis era gold markets have low return and high volatility. All skewness values are smaller
than 0 and kurtosis values greater than 3, suggesting that each return series at different periods follows a leptokurtic
distribution with a fat left tail and not a Gaussian distribution. The Jarque-Bera statistic for each returns also rejects the
non-hypothesis of Gaussian distribution. In addition, the skewness, kurtosis, and Jarque-Bera values for each return
series in the post-crisis era are larger than those in the pre-crisis era, suggesting that large extreme returns have a
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Fig. 1. Daily closing (fixing) prices of the London, New York, Tokyo, and Shanghai gold markets during the entire period from 30 October 2002 to 30
October 2015.

(footnote continued)
Duchin et al. (2010) and Mishkin (2011) point out that the beginning of the recent global financial crisis is usually set at the collapse of the US subprime
mortgage market in July and August of 2007. Garcia-Appendini and Montoriol-Garriga (2013) examine the effect of the global financial crisis on between-
firm liquidity provision using July 2007 as the starting point. Carvalho et al. (2015) investigate the spread of bank stress to nonfinancial companies during
the financial crisis and use the beginning of July 2007 as the starting point. Choudhry et al. (2015) study correlations between gold and stock markets
before and after the global financial crisis and divide the sample period into two subperiods, the pre-financial crisis (January 2000 to June 2007) and the
financial crisis period (from July 2007 to March 2014). Hwang and Kim (2015) examine extreme risk spillover effects in financial markets before and after
the recent financial crisis and use July 2007 as the beginning of the crisis. (ii) As a robustness test, following Lin et al. (2008) and Zhu et al. (2014), we use
the Chow test (Chow, 1960) to check the null hypothesis that there is no structural change in the downside (upside) VaRs of each gold market beginning in
2 July 2007. The F-statistic of the Chow test for the downside (upside) VaRs of each gold market rejects the null hypothesis at the 1% significance level. The
results of the Chow test are available from the authors upon request.
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higher probability of occurring in the four gold markets during a period of financial turmoil. The Ljung–Box Q-test
statistic shows that, with the exception of London in the post-crisis era, serial autocorrelations exist in each set of
returns. Thus using the ARMA model we eliminate the serial autocorrelation effect in the returns. The Engle ARCH
Lagrange multiplier (LM) test shows that there is significant volatility clustering in each set of returns, and this supports
our decision to filter gold returns with a GARCH-type model. The ADF unit root test shows that each set of returns is
stationary, implying that it can be further utilized for modeling without spurious regression. The overall differences in
the descriptive statistics during the three periods indicate that the behavior of world gold markets differs between
before and after the financial crisis, and this may affect their extreme risk spillover effects.

4.2. Estimates for ARMA-(T)GARCH-GED models

First we use an ARMA(p,q) model to filter out the serial autocorrelation in gold returns at different periods, and use a trial
and error method to fix the optimal orders of the lag parameters p and q of the ARMA(p,q) model.9 The resulting ARMA(p,q)
model allows (i) the value of Akaike information criterion (AIC) of the model to be at a minimum, (ii) the model coefficients
to be significant, and (iii) any serial autocorrelation existing in the residual series of the model to be eliminated. We then
employ a (T)GARCH(r,s)-GED model to capture the volatility clustering and fat tails of the gold returns. Similar to the ARMA
(p,q) model, the orders of the lag parameters r and s in the (T)GARCH(r,s) are fixed by trial and error and follow certain
constraints, i.e., (i) the AIC value of the model should be minimal, (ii) the model coefficients should be significant and
positive, and (iii) volatility clustering in the standardized residual series of the model should be eliminated. Finally we
obtain the (T)GARCH(1,1)-GED model that confirms the statement made by Brooks (2008) that a GARCH-type model with a
lag of one can capture the volatility clustering of financial asset returns. Tables 3 and 4 present the maximum likelihood
estimation results from ARMA-(T)GARCH-GED models for the four gold markets over the entire period (Table 3) and during
the subperiods (Table 4).

Table 3 shows how ARMA(3,3)-, ARMA(2,2)-, ARMA(5,5)-, and ARMA (0,2)-TGARCH(1,1)-GED models are used to filter
out the serial autocorrelation, volatility clustering, “leverage effect,” and fat tails of the returns from the London, New York,
Tokyo, and Shanghai gold markets during the entire period. The coefficient β1 of the lagged conditional variance −ht 1 for each
market is significant and positive, and suggests that the current volatility of gold returns is strongly affected by its previous
volatility. The coefficient γ1 for each market is significant and negative, which means (i) that the “leverage effect” is sig-
nificant in each market during the entire period, and (ii) that previous positive shocks (breaking good news) more strongly
influence current volatility than previous negative shocks (breaking bad news), i.e., the volatility of gold returns is more
strongly affected by positive shocks (breaking good news), and this is consistent with the finding presented by Baur (2012)
that gold takes on a safe-haven role during volatile periods. The degree-of-freedom value v of the GED for each market is

Table 2
Descriptive statistics of returns of the London (LD), New York (NY), Tokyo (TK), and Shanghai (SH) gold markets for different periods.

Market Mean Std. Dev. Skewness Kurtosis Jarque-Bera LB-Q(20) ARCH(20) ADF

Panel A: The entire period: 31 October 2002 to 30 October 2015
LD 0.0381 1.1823 #0.4159 8.0095 3623.093nnn 32.9583n 270.3034nnn #57.5846nnn

NY 0.0380 1.1978 #0.4162 8.0774 3719.403nnn 29.7971n 194.2411nnn #58.2964nnn

TK 0.0377 1.2551 #0.7454 12.5013 1299.591nnn 64.7255nnn 306.8119nnn #61.8246nnn

SH 0.0305 1.0862 #0.4507 10.7002 8444.887nnn 31.2643n 276.0174nnn #60.9256nnn

Panel B: Subperiod I (Pre-crisis era): 31 October 2002 to 29 June 2007
LD 0.0724 1.0537 #0.4276 6.2339 623.3556nnn 31.0362n 128.0980nnn #35.4317nnn

NY 0.0730 1.0834 #0.7215 6.1953 684.7775nnn 29.6461n 121.1929nnn #38.0347nnn

TK 0.0658 1.0485 #0.7862 6.2720 734.1593nnn 43.5419nnn 125.1761nnn #38.3353nnn

SH 0.0631 0.9525 #0.5672 9.5340 2450.023nnn 41.4063nnn 243.5145nnn #38.6321nnn

Panel C: Subperiod II (Post-crisis era): 2 July 2007 to 30 October 2015
LD 0.0155 1.2594 #0.3896 8.2922 2614.909nnn 23.6027 167.4113nnn #45.2231nnn

NY 0.0151 1.2671 #0.2719 8.5266 1221.681nnn 28.4530n 124.9275nnn #44.5556nnn

TK 0.0192 1.3739 #0.6955 13.0119 2426.250nnn 46.9003nnn 182.9114nnn #48.2958nnn

SH 0.0090 1.1655 #0.3831 10.5796 8663.482nnn 30.3696n 146.3646nnn #47.1822nnn

Notes: The Jarque–Bera statistic tests for the null hypothesis of Gaussian distribution. LB-Q(20) is the Ljung–Box Q-test statistic of the sample returns for up
to the 20th order serial autocorrelation. ARCH(20) is the Engle's ARCH Lagrange Multiplier (LM) test for residual heteroscedasticity with 20 lags. The ADF
statistic denotes the Augmented Dickey–Fuller test for a unit root. The null hypothesis of ADF test is a unit root in the sample returns.

n Rejection of the null hypothesis at 10% significance level.
nnn Rejection of the null hypothesis at 1% significance level.

9 Note that there is no need to use an ARMA(p,q) model to filter out the serial autocorrelation in gold returns if its Ljung–Box Q-test statistic accepts the
null hypothesis of no serial autocorrelation in the sample time series. For example, there is no serial autocorrelation in returns of London in the post-crisis
period (see Table 2), which is the reason that the ARMA(0,0) model is shown in subperiod II for London (see Table 4).
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significant and smaller than 2, which again confirms that gold returns are leptokurtic and fat-tailed.
Fig. 2 shows the conditional variance trends in the London, New York, Tokyo, and Shanghai gold markets during the

entire period. The overall trend for the four gold markets is similar, but their volatility levels differ. The volatility is more
severe in the Asian markets, i.e., the volatility level (amplitude) of the Tokyo gold market is the largest, followed by the
Shanghai gold market. The conditional variance curves in the London and New York gold markets seem to have the same
volatility trend and nearly overlap. In addition, during the 2008 financial crisis and the European sovereign debt crisis the
conditional variances in each gold market exhibited a huge peak, rapidly increasing and then falling dramatically. The largest
value of conditional variance for the Tokyo gold market, for example, was 10 times the average volatility level. This finding
implies that (i) during the recent financial crisis the risk was extreme in the four gold markets and (ii) the extreme risk
spillover effects in the markets in subperiod I differed from those in subperiod II.

Table 4 presents the data showing that the estimation models for the London, New York, Tokyo, and Shanghai gold
markets are ARMA(3,2)-, ARMA(2,2)-, ARMA(5,5)-, and ARMA(2,2)-TGARCH(1,1)-GED in subperiod I, and ARMA(0,0)-, ARMA
(3,3)-, ARMA(3,1)- and ARMA(3,3)-GARCH(1,1)-GED in subperiod II. The outcomes for these two subperiods differ because
the volatility “leverage effect” does not have a significant effect in subperiod II. In addition, the estimated GED degree-of-
freedom for each set of returns in subperiod II is smaller than in subperiod I, suggesting that in the post-crisis era the gold
return tails are thicker than in the pre-crisis era, which indicates that in the post-crisis era the risk in the gold return tails is
more extreme.

Table 3
Maximum likelihood estimation results of ARMA-TGARCH-GED models for the London (LD), New York (NY), Tokyo (TK), and Shanghai (SH) gold markets
during the entire period from 31 October 2002 to 30 October 2015.

Parameter LD NY TK SH

Mean equation
c 0.0379n 0.0379n 0.0368nnn 0.0305nnn

(0.0203) (0.0202) (0.0136) (0.0187)
ϕ1 #0.4294nnn 0.5296nnn 0.3403nnn —

(0.0043) (0.0251) (0.0570)
ϕ2 #0.4761nnn #0.9531nnn 0.2761nnn —

(0.02332) (0.0242) (0.0646)
ϕ3 #0.9612nnn — #0.3626nnn —

(0.0429) (0.0600)
φ1 0.4260nnn #0.5425nnn #0.3938nnn #0.0481nnn

(0.0412) (0.0283) (0.0598) (0.0172)
φ2 0.4681nnn 0.9397nnn #0.2323nnn 0.0492nnn

(0.0226) (0.0276) (0.0723) (0.0172)
φ3 0.9645nnn — 0.3595nnn —

(0.0410) (0.0680)

Variance equation
α0 0.0107nnn 0.0121nnn 0.0127nnn 0.0103nnn

(0.0035) (0.0039) (0.0035) (0.0031)
α1 0.0455nnn 0.0497nnn 0.0814nnn 0.0737nnn

(0.0096) (0.0103) (0.0129) (0.0126)
β1 0.9568nnn 0.9537nnn 0.9290nnn 0.9354nnn

(0.0076) (0.0070) (0.0090) (0.0085)
γ1 #0.0188n #0.0216nn #0.0322nn #0.0302nn

(0.0101) (0.0107) (0.0139) (0.0133)
v 1.1344nnn 1.1814nnn 1.1366nnn 1.0300nnn

(0.0300) (0.034) (0.0317) (0.0283)
Diagnostic
Log(L) #4905.861 #5002.698 #4871.120 #4441.410
AIC 2.9127 2.9702 2.8921 2.6373
LB-Q(20) 16.5145 9.2988 12.3677 16.9034

[0.6842] [0.9792] [0.9028] [0.6592]
ARCH(20) 10.5913 23.1055 20.8305 18.1378

[0.9561] [0.2836] [0.4072] [0.5783]

Notes: The estimated models for the London, New York, Tokyo, and Shanghai gold markets during the entire period are ARMA(3,3)-, ARMA(2,2)-, ARMA
(5,5)-, and ARMA (0,2)-TGARCH(1,1)-GED respectively. The numbers in parentheses are Std. Errors of the estimates. The coefficients (Std. Errors) of ϕ4, ϕ5,
φ4, and φ5 of ARMA(5,5) for the Tokyo gold market in the entire period are #0.24403 (0.0629), 0.8195 (0.0474), 0.1944 (0.0711), and #0.8200 (0.0525) at
1% significant level. v is the degree-of-freedom (the tail-thickness parameter) of the GED. Log(L) is the logarithm maximum likelihood function value. The
numbers in square brackets are p-values of the statistics. LB-Q(20) and ARCH(20) are the Ljung–Box Q-test and the Engle's ARCH test statistics of the
standardized residuals with 20 lags respectively.

n Significance at 10% level.
nn Significance at 5% level.
nnn Significance at 1% level.
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Fig. 2. Conditional variances of returns for the London, New York, Tokyo, and Shanghai gold markets during the entire period from 31 October 2002 to 30
October 2015.

Table 4
Maximum likelihood estimation results of ARMA-(T)GARCH-GED models for the London (LD), New York (NY), Tokyo (TK), and Shanghai (SH) gold markets
in subperiods I (from 31 October 2002 to 29 June 2007) and II (from 2 July 2007 to 30 October 2015).

Parameter Subperiod I Subperiod II

LD NY TK SH LD NY TK SH

Mean equation
c 0.0596nn 0.0594n 0.0587nnn 0.0525n — 0.0261 0.0235nn 0.0175

(0.0634) (0.0317) (0.0206) (0.0282) (0.0270) (0.0106) (0.0242)
ϕ1 0.7629nnn 0.9601nnn 0.1574nnn 0.8134nnn — #0.3319nnn 0.9184nnn #0.9927nnn

(0.0963) (0.0968) (0.0483) (0.0674) (0.1014) (0.0221) (0.3033)
ϕ2 #0.8338nnn #0.7785nnn 0.5920nnn #0.7554nnn — #0.5348nnn 0.1053nnn #1.2209nnn

(0.0880) (0.093) (0.0396) (0.0667) (0.0541) (0.0291) (0.1290)
ϕ3 0.0935nnn — #0.5629nnn — — #0.8612nnn #0.0449nn #0.5587n

(0.0312) (0.0263) (0.1010) (0.0216) (0.2964)
φ1 #0.7422nnn #1.0086nnn #0.1793nnn #0.8815nnn — 0.3483nnn #0.9928nnn 0.9483nnn

(0.0934) (0.0838) (0.0402) (0.0539) (0.0935) (0.0054) (0.3129)
φ2 0.7772nnn 0.8408nnn #0.5987nnn 0.8523nnn — 0.5171nnn — 1.2168nnn

(0.0918) (0.0804) (0.0332) (0.0532) (0.0504) (0.1313)
φ3 — — 0. 6250nnn — — 0.8824nnn — 0.5264n

(0.0184) (0.0929) (0.3110)

Variance equation
α0 0.0058 0.0058 0.0146nnn 0.0055nn 0.0148nn 0.0133nn 0.0190nnn 0.01781nnn

(0.0041) (0.0041) (0.0055) (0.0030) (0.0053) (0.0056) (0.0063) (0.0058)
α1 0.0506nnn 0.0627nnn 0.1147nnn 0.0919nnn 0.0368nnn 0.0425nnn 0.0598nnn 0.0592nnn

(0.0152) (0.0184) (0.0269) (0.0197) (0.0084) (0.0117) (0.0105) (0.0109)
β1 0.9664nnn 0.9652nnn 0.9100nnn 0.9413nnn 0.9536nnn 0.9529nnn 0.9297nnn 0.9284nnn

(0.0109) (0.0104) (0.0188) (0.0127) (0.0099) (0.0089) (0.0114) (0.0123)
γ1 #0.0411nnn #0.0575nnn #0.0683nn #0.0706nnn — — — —

(0.0169) (0.0178) (0.0279) (0.0213)
v 1.2194nnn 1.3469nnn 1.2861nnn 1.1447nnn 1.0939nnn 1.1411nnn 1.0833nnn 1.05395nnn

(0.0680) (0.0741) (0.0685) (0.0633) (0.0341) (0.0411) (0.0368) (0.0347)
Diagnostic
Log(L) #1656.874 #1714.330 #1570.016 #1420.315 #3245.674 #3284.165 #3300.123 #3025.776
AIC 2.7537 2.8489 2.6098 2.3617 3.0020 3.0385 3.0523 2.7989
LB-Q(20) 17.4429 13.8368 11.9212 24.5217 15.6136 10.2478 20.5349 12.4961

[0.6241] [0.8387] [0.9188] [0.2203] [0.7403] [0.9635] [0.4249] [0.8979]
ARCH(20) 26.9147 17.0093 12.1113 22.6940 5.6772 21.0809 17.3771 13.0350

[0.1377] [0.6524] [0.9122] [0.3041] [0.9993] [0.3924] [0.6284] [0.8759]

Notes: The estimated models for the London, New York, Tokyo, and Shanghai gold markets are ARMA(3,2)-, ARMA(2,2)-, ARMA(5,5)-, and ARMA(2,2)-
TGARCH(1,1)-GED in subperiod I, and ARMA(0,0)-, ARMA(3,3)-, ARMA(3,1)-, and ARMA(3,3)-GARCH(1,1)-GED in subperiod II. The numbers in parentheses
are Std. Errors of the estimates. The coefficients (Std. Errors) of ϕ4, ϕ5, φ4, and φ5 of ARMA(5,5) for the Tokyo gold market in subperiod I are #0.2348
(0.0387), 0.8731 (0.0461), 0.1974 (0.033), and #0.9235 (0.0381) at 1% significant level. v is the degree-of-freedom (the tail-thickness parameter) of the
GED. Log(L) is the logarithm maximum likelihood function value. The numbers in square brackets are p-values of the statistics. LB-Q(20) and ARCH(20) are
the Ljung–Box Q-test and the Engle's ARCH test statistics of the standardized residuals with 20 lags respectively.

n Significance at 10% level.
nn Significance at 5% level.
nnn Significance at 1% level.
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4.3. Estimates for VaR models

We use Eqs. (8) and (9) and for different periods estimate the downside and upside VaRs in the London, New York, Tokyo,
and Shanghai gold markets at confidence levels of 99% and 95%. For example, Fig. 3 shows the daily returns in the London,
New York, Tokyo and Shanghai markets during the entire period and their upside and downside VaRs at confidence levels of
99% and 95%. To evaluate the accuracy and reliability of the VaR estimation, we use the backtesting techniques described in
Appendix A. Table 5 shows the number of failure days (violations), failure rate results, LRuc, LRind, and LRcc, of the downside
and upside VaRs for the four gold markets at the 99% and 95% confidence levels for different periods.

During the entire period, the downside VaRs for each gold market at the 99% and 95% confidence levels exhibit LRuc and
LRcc values that are smaller than the corresponding critical values, and their LRind values—with the exception of Tokyo—are
also smaller. This indicates that the downside VaR models for the four gold markets are acceptable. The LRind values for the
upside VaRs in each gold market at the 99% and 95% confidence levels are less than the corresponding critical values,
indicating that their VaR exceptions are independently distributed. In contrast, the LRuc and LRcc values of the upside VaRs
for London and New York at the 99% confidence level and for Tokyo at the 95% confidence level are greater than the
corresponding critical values, indicating that the upside VaR models at the corresponding levels for these markets are
unacceptable. Thus we should be wary of the VaRs for these three markets at the corresponding confidence levels. As noted
in Section 4.2, the GARCH-type market models before the financial crises differ from those after, possibly because GARCH-
type models of the entire period do not take into full account the “styled facts” (e.g., the volatility clustering and fat tails) in
gold returns.

Panel B of Table 5 shows that for the upside and downside VaRs, their LRuc, LRind, and LRcc values for each gold market at
the 99% and 95% confidence levels in subperiod I are smaller than the corresponding critical values. This indicates that both
the downside and upside VaR models are acceptable for the four gold markets in the pre-crisis period. From the LRuc, LRind
and LRcc values in subperiod II shown in panel C of Table 5, we see that the downside and upside VaR models at the 99% and
95% confidence levels are significant for the four gold markets. Thus both the downside and upside VaRs at the 99% and 95%
confidence levels for each gold market in the two subperiods can be used for further study.

4.4. Results for extreme risk spillover effects

Using the estimated downside and upside VaRs at the 99% and 95% confidence levels for the London, New York, Tokyo, and
Shanghai gold markets, we compute the statistic values (including ( )Q M1 , ( )Q M2 , and ( )Q M3 ) and the corresponding p-values
of two-way and one-way Granger causalities in risk. Following Hong (2001) and Hong et al. (2009), we investigate the extreme
risk spillover effects with the largest effective lag truncation orders 5, 10, and 20, which are approximately equal to one trading
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Fig. 3. Daily returns of the London, New York, Tokyo, and Shanghai gold markets during the entire period from 31 October 2002 to 30 October 2015 and
their upside and downside VaRs at confidence levels of 99% and 95%.
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week, two trading weeks, and one trading month, respectively.10 Tables 6–11 present the testing results for extreme risk
spillover effects between six pairs gold markers at different periods. To see and examine all the testing results together, in
Table 12 we summarize extreme risk spillover effects across the London, New York, Tokyo, and Shanghai gold markets at
different periods.11 Because some VaR models are not accurate when applied to the entire period, we will focus our analysis on
the two subperiods.

Table 6 reports the testing results for the extreme risk spillover effects between the London and New York gold markets.
In each period and at both downside and upside risks at the 99% and 95% confidence levels we find significant two-way and
one-way Granger causalities in risk between London and New York, indicating the presence of extreme risk spillover effects
between the two markets. In most cases the one-way Granger causality in risk values from London to New York are greater
than those from New York to London, indicating a more extreme risk spillover effect from London to New York than from
New York to London. The London Bullion Market Association (LBMA) has stated that “London is home to the international
prices for gold…”12 This adds support to the judgment that London leads New York in extreme risk spillovers.

Table 7 shows the testing results between London and Tokyo. For the downside and upside risks at the 95% confidence
level in each period, and for both two-way and one-way Granger causalities in risk, we see extreme risk spillover effects
between London and Tokyo. There are exceptions at the 99% confidence level between the two subperiods, i.e., in subperiod
I we find (i) no downside (upside) risk spillover effects from London (Tokyo) to Tokyo (London), (ii) no two-way Granger
causality in risk between London and Tokyo, and (iii) weak upside risk spillover effects from London to Tokyo because the
statistic is significant only for M¼10 and 20 and its values are small. These findings suggest that there are no extreme risk
spillover effects between London and Tokyo at the 1% risk level before the financial crisis. Although the one-way and two-

Table 5
Backtesting of VaR estimations for the London (LD), New York (NY), Tokyo (TK), and Shanghai (SH) gold markets at the 99% and 95% confidence levels for
different periods.

Conf. level Market Downside VaR Upside VaR

Violations Failure rate LRuc LRind LRcc Violations Failure rate LRuc LRind LRcc

Panel A: The entire period: 31 October 2002 to 30 October 2015
99% LD 38 0.0113 0.5297n 0.8665n 1.3962n 15 0.0044 13.2324 0.1341n 13.3665

NY 47 0.0139 4.7142n 1.8532n 6.5674n 17 0.0050 10.2278 0.1723n 10.4001
TK 48 0.0142 5.4083n 1.3867n 6.7950n 25 0.0074 2.4968n 0.3736n 2.8704n

SH 36 0.0107 0.1537n 3.5148n 3.6685n 22 0.0065 4.6839n 0.2890n 4.9729n

95% LD 179 0.0531 0.6690n 0.6801n 1.3491n 161 0.0477 0.3611n 0.0137n 0.3748n

NY 172 0.0510 0.0739n 0.0063n 0.0802n 162 0.0480 0.2713n 4.1502n 4.4215n

TK 181 0.0537 0.9462n 7.9656 8.9118n 122 0.0362 14.9098 0.0433n 14.9531
SH 157 0.0466 0.8518n 1.0232n 1.8750n 154 0.0457 1.3598n 1.2268n 2.5866n

Panel B: Subperiod I (Pre-crisis era): 31 October 2002 to 29 June 2007
99% LD 14 0.0116 0.2997n 2.0630n 2.3627n 6 0.0050 3.7731n 0.0600n 3.8331n

NY 18 0.0149 2.5668n 0.5455n 3.1123n 6 0.0050 3.7731n 0.0600n 3.8331n

TK 16 0.0133 1.1792n 1.6048n 2.7840n 8 0.0066 1.5665n 0.1068n 1.6733n

SH 15 0.0124 0.6719n 0.3778n 1.0497n 7 0.0058 2.5256n 0.0817n 2.6073n

95% LD 69 0.0572 1.2651n 3.7272n 4.9923n 52 0.0431 1.2588n 0.9323n 2.1911n

NY 66 0.0547 0.5510n 0.9445n 1.4955n 45 0.0373 4.4632n 3.4892n 7.9524n

TK 67 0.0555 0.7576n 2.6423n 3.3999n 54 0.0447 0.7170n 0.0837n 0.8007n

SH 65 0.0539 0.3765n 3.1141n 3.4906n 58 0.0481 0.0935n 3.1603n 3.2538n

Panel C: Subperiod II (Post-crisis era): 2 July 2007 to 30 October 2015
99% LD 23 0.0106 0.0846n 0.4942n 0.5788n 10 0.0046 7.9040 0.0929n 7.9969n

NY 26 0.0120 0.8336n 0.9892n 1.8228n 12 0.0055 5.1720n 0.1338n 5.3058n

TK 29 0.0134 2.2850n 0.7878n 3.0728n 17 0.0079 1.0848n 0.2692n 1.3540n

SH 22 0.0102 0.0060n 5.5099n 5.5159n 15 0.0069 2.3058n 0.2094n 2.5152n

95% LD 113 0.0522 0.2211n 0.1606n 0.3817n 108 0.0499 0.0004n 0.0320n 0.0324n

NY 113 0.0522 0.2211n 0.1606n 0.3817n 100 0.0462 0.6704n 0.7062n 1.3766n

TK 115 0.0531 0.4412n 2.3603n 2.8015n 81 0.0374 7.8541 0.4273n 8.2814n

SH 102 0.0471 0.3809n 0.1408n 0.5217n 91 0.0420 3.0353n 2.3470n 5.3823n

Notes: A violation, i.e., a failure day, is defined as occurring when the gold return Rt is greater (smaller) than the upside (negative downside) VaR on day t.
The failure rate is defined as the ratio between the number of violations (failure days) and the total number of observations. LRuc, LRind, and LRcc represent
statistics of likelihood ratio (LR) tests of unconditional coverage (uc), independent (ind) coverage, and conditional coverage (cc), respectively. χ∼ ( )LR 1uc 2 ,

χ∼ ( )LR 1ind 2 , and χ∼ ( )LR 2cc 2 . The chi-square critical values of the LRuc (or LRind) and LRcc statistics at 1% significance level are 6.64 and 9.21, respectively.
n VaR model passes the corresponding test at 1% significance level. For a detailed introduction of these backtesting techniques, see Appendix A.

10 Other lag orders like 15, 25, and 30 are also examined but not presented in the paper due to space limitations, and their results are consistent with
the outcomes using the lag orders of 5, 10, and 20. For a detailed introduction of the lag order, refer to Hong (2001) and Hong et al. (2009).

11 Note that Table 12 only shows whether there are extreme risk spillover effects between six pairs of gold markets. For the level of statistics of Granger
causality in risk, refer to Tables 6–11.

12 See http://www.lbma.org.uk/pricing-and-statistics
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Table 6
Testing for extreme risk spillover effects between the London (LD) and New York (NY) gold markets for different periods.

Conf. level Spillover
direction

Downside risk spillover Upside risk spillover

M¼5 M¼10 M¼20 M¼5 M¼10 M¼20

Panel A: The entire period: 31 October 2002 to 30 October 2015
99% LD ⇔ NY 37.080 (0.000)a 28.084 (0.000)a 19.903 (0.000)a 15.670 (0.000)a 11.488 (0.000)a 7.711 (0.000)a

LD ⇒ NY 168.328 (0.000)a 126.923 (0.000)a 92.952 (0.000)a 53.475 (0.000)a 39.428 (0.000)a 27.714 (0.000)a

LD ⇐ NY 61.029 (0.000)a 42.912 (0.000)a 29.207 (0.000)a 27.280 (0.000)a 19.607 (0.000)a 13.971 (0.000)a

95% LD ⇔ NY 17.818 (0.000)a 13.935 (0.000)a 9.756 (0.000)a 30.641 (0.000)a 23.835 (0.000)a 18.965 (0.000)a

LD ⇒ NY 319.628 (0.000)a 241.035 (0.000)a 176.442 (0.000)a 178.988 (0.000)a 134.288 (0.000)a 98.807 (0.000)a

LD ⇐ NY 27.576 (0.000)a 19.541 (0.000)a 13.094 (0.000)a 51.441 (0.000)a 37.776 (0.000)a 28.265 (0.000)a

Panel B: Subperiod I (Pre-crisis era): 31 October 2002 to 29 June 2007
99% LD ⇔ NY 12.314 (0.000)a 9.031 (0.000)a 6.340 (0.000)a 9.327 (0.000)a 5.938 (0.000)a 2.678 (0.004)a

LD ⇒ NY 33.250 (0.000)a 25.192 (0.000)a 19.076 (0.000)a 13.921 (0.000)a 9.704 (0.000)a 6.011 (0.000)a

LD ⇐ NY 20.849 (0.000)a 14.118 (0.000)a 8.881 (0.000)a 16.992 (0.000)a 11.149 (0.000)a 6.540 (0.000)a

95% LD ⇔ NY 11.068 (0.000)a 8.170 (0.000)a 5.155 (0.000)a 8.592 (0.000)a 6.098 (0.000)a 4.099 (0.000)a

LD ⇒ NY 78.060 (0.000)a 58.396 (0.000)a 42.153 (0.000)a 20.940 (0.000)a 14.992 (0.000)a 10.411 (0.000)a

LD ⇐ NY 13.662 (0.000)a 9.898 (0.000)a 6.470 (0.000)a 15.192 (0.000)a 10.982 (0.000)a 7.781 (0.000)a

Panel C: Subperiod II (Post-crisis era): 2 July 2007 to 30 October 2015
99% LD ⇔ NY 57.307 (0.000)a 42.853 (0.000)a 30.170 (0.000)a 4.102 (0.000)a 3.105 (0.000)a 2.566 (0.005)a

LD ⇒ NY 105.178 (0.000)a 63.232 (0.000)a 57.042 (0.000)a 74.512 (0.000)a 55.205 (0.000)a 39.244 (0.000)a

LD ⇐ NY 94.915 (0.000)a 78.807 (0.000)a 45.982 (0.000)a 8.469 (0.000)a 6.902 (0.000)a 6.507 (0.000)a

95% LD ⇔ NY 6.509 (0.000)a 4.429 (0.000)a 2.539 (0.006)a 12.13 (0.000)a 9.672 (0.000)a 8.188 (0.000)a

LD ⇒ NY 264.050 (0.000)a 198.333 (0.000)a 144.717 (0.000)a 144.543 (0.000)a 108.075 (0.000)a 78.228 (0.000)a

LD ⇐ NY 12.565 (0.000)a 8.378 (0.000)a 5.321 (0.000)a 20.698 (0.000)a 16.137 (0.000)a 13.945 (0.000)a

Notes: “⇔” denotes two-way Granger causality in risk between the two gold markets; “⇒” (“⇐”) denotes one-way Granger causality in risk from the former
(the latter) to the latter (the former); and the numbers in parentheses are the corresponding p-values.

a Significant extreme risk spillover effect exists in the corresponding test at 1% level.

Table 7
Testing for extreme risk spillover effects between the London (LD) and Tokyo (TK) gold markets for different periods.

Conf. level Spillover direction Downside risk spillover Upside risk spillover

M¼5 M¼10 M¼20 M¼5 M¼10 M¼20

Panel A: The entire period: 31 October 2002 to 30 October 2015
99% LD ⇔ TK 3.768 (0.000)a 2.892 (0.002)a 1.514 (0.065)b 0.878 (0.190) 0.478 (0.316) 0.180 (0.429)

LD ⇒ TK 6.998 (0.000)a 4.879 (0.000)a 2.804 (0.003)a 3.017 (0.001)a 1.364 (0.086)b 0.394 (0.347)
LD ⇐ TK 49.765 (0.000)a 37.514 (0.000)a 27.210 (0.000)a 14.321 (0.000)a 11.129 (0.000)a 8.428 (0.000)a

95% LD ⇔ TK 61.457 (0.000)a 47.530 (0.000)a 34.660 (0.000)a 34.466 (0.000)a 25.843 (0.000)a 19.079 (0.000)a

LD ⇒ TK 99.414 (0.000)a 70.876 (0.000)a 49.404 (0.000)a 57.802 (0.000)a 40.956 (0.000)a 28.988 (0.000)a

LD ⇐ TK 86.598 (0.000)a 66.156 (0.000)a 48.776 (0.000)a 35.321 (0.000)a 26.202 (0.000)a 19.247 (0.000)a

Panel B: Subperiod I (Pre-crisis era): 31 October 2002 to 29 June 2007
99% LD ⇔ TK 1.275 (0.101) 0.871 (0.192) #0.373 (0.645) #1.327 (0.908) 1.146 (0.126) 0.487 (0.313)

LD ⇒ TK #0.991 (0.839) #1.404(0.920) #2.000 (0.977) #0.380 (0.648) 3.899 (0.000)a 3.403 (0.000)a

LD ⇐ TK 21.662 (0.000)a 16.867 (0.000)a 11.965 (0.000)a #1.366 (0.914) #1.858 (0.968) #2.493 (0.994)
95% LD ⇔ TK 24.559 (0.000)a 19.263 (0.000)a 13.721 (0.000)a 6.745 (0.000)a 4.625 (0.000)a 4.090 (0.000)a

LD ⇒ TK 40.452 (0.000)a 29.274 (0.000)a 20.098 (0.000)a 11.175 (0.000)a 7.695 (0.000)a 5.947 (0.000)a

LD ⇐ TK 27.760 (0.000)a 21.262 (0.000)a 15.559 (0.000)a 25.186 (0.000)a 18.513 (0.000)a 14.024 (0.000)a

Panel C: Subperiod II (Post-crisis era): 2 July 2007 to 30 October 2015
99% LD ⇔ TK 7.702 (0.000)a 5.655 (0.000)a 3.716 (0.000)a #1.677 (0.953) #1.033 (0.849) #1.030 (0.849)

LD ⇒ TK 13.503 (0.000)a 9.398 (0.000)a 6.066 (0.000)a #1.170 (0.879) #1.661 (0.952) #2.331 (0.990)
LD ⇐ TK 34.270 (0.000)a 25.666 (0.000)a 18.713 (0.000)a 21.623 (0.000)a 17.230 (0.000)a 13.324 (0.000)a

95% LD ⇔ TK 30.693 (0.000)a 23.309 (0.000)a 16.771 (0.000)a 22.918 (0.000)a 17.843 (0.000)a 12.708 (0.000)a

LD ⇒ TK 51.098 (0.000)a 35.971 (0.000)a 24.942 (0.000)a 38.427 (0.000)a 27.294 (0.000)a 18.593 (0.000)a

LD ⇐ TK 50.460 (0.000)a 38.245 (0.000)a 27.974 (0.000)a 24.380 (0.000)a 18.910 (0.000)a 13.959 (0.000)a

Notes: “⇔” denotes two-way Granger causality in risk between the two gold markets; “⇒” (“⇐”) denotes one-way Granger causality in risk from the former
(the latter) to the latter (the former); and the numbers in parentheses are the corresponding p-values. Statistics without significant extreme risk spillover
effects are highlighted in bold.

a Significant extreme risk spillover effect exists in the corresponding test at 1% level.
b Significant extreme risk spillover effect exists in the corresponding test at 10% level.
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Table 8
Testing for extreme risk spillover effects between the London (LD) and Shanghai (SH) gold markets for different periods.

Conf. level Spillover direction Downside risk spillover Upside risk spillover

M¼5 M¼10 M¼20 M¼5 M¼10 M¼20

Panel A: The entire period: 31 October 2002 to 30 October 2015
99% LD ⇔SH 54.259 (0.000)a 40.653 (0.000)a 29.169 (0.000)a 4.028 (0.000)a 4.861 (0.000)a 3.915 (0.000)a

LD ⇒ SH 82.601 (0.000)a 58.393 (0.000)a 40.114 (0.000)a 8.126 (0.000)a 7.499 (0.000)a 4.867 (0.000)a

LD⇐SH 91.022 (0.000)a 68.213 (0.000)a 50.131 (0.000)a 2.791 (0.003)a 2.923 (0.002)a 3.016 (0.001)a

95% LD ⇔ SH 74.607 (0.000)a 57.706 (0.000)a 41.701 (0.000)a 36.394 (0.000)a 27.825 (0.000)a 19.777 (0.000)a

LD ⇒ SH 119.652 (0.000)a 86.218 (0.000)a 60.202 (0.000)a 61.000 (0.000)a 44.024 (0.000)a 30.626 (0.000)a

LD⇐SH 133.538 (0.000)a 100.928 (0.000)a 73.676 (0.000)a 61.908 (0.000)a 46.192 (0.000)a 33.335 (0.000)a

Panel B: Subperiod I (Pre-crisis era): 31 October 2002 to 29 June 2007
99% LD ⇔ SH 14.955 (0.000)a 10.417 (0.000)a 6.541 (0.000)a 8.326 (0.000)a 9.556 (0.000)a 7.638 (0.000)a

⇒LD SH 25.860 (0.000)a 17.649 (0.000)a 11.825 (0.000)a 15.284 (0.000)a 16.229 (0.000)a 12.925 (0.000)a

⇐LD SH 8.205 (0.000)a 5.522 (0.000)a 3.098 (0.000)a 11.664 (0.000)a 8.348 (0.000)a 5.579 (0.000)a

95% LD ⇔ SH 31.822 (0.000)a 24.834 (0.000)a 18.251 (0.000)a 7.257 (0.000)a 5.806 (0.000)a 4.245 (0.000)a

⇒LD SH 51.649 (0.000)a 37.670 (0.000)a 26.328 (0.000)a 13.367 (0.000)a 10.409 (0.000)a 7.543 (0.000)a

⇐LD SH 37.932 (0.000)a 28.623 (0.000)a 21.275 (0.000)a 7.683 (0.000)a 5.331 (0.000)a 3.675 (0.000)a

Panel C: Subperiod II (Post-crisis era): 2 July 2007 to 30 October 2015
99% LD ⇔ SH 22.277 (0.000)a 16.407 (0.000)a 12.259 (0.000)a 2.513 (0.006)a 4.671 (0.000)a 4.046 (0.000)a

⇒LD SH 34.818 (0.000)a 24.553 (0.000)a 16.351 (0.000)a 5.646 (0.000)a 6.861 (0.000)a 4.636 (0.000)a

⇐LD SH 96.126 (0.000)a 71.8596 (0.000)a 53.833 (0.000)a 4.848 (0.000)a 4.764 (0.000)a 4.539 (0.000)a

95% LD ⇔ SH 40.262 (0.000)a 30.083 (0.000)a 20.984 (0.000)a 28.700 (0.000)a 23.109 (0.000)a 16.920 (0.000)a

⇒LD SH 66.751 (0.000)a 47.026 (0.000)a 32.280 (0.000)a 47.759 (0.000)a 35.053 (0.000)a 24.364 (0.000)a

⇐LD SH 70.040 (0.000)a 52.380 (0.000)a 37.703 (0.000)a 52.775 (0.000)a 40.470 (0.000)a 29.957 (0.000)a

Notes: “⇔” denotes two-way Granger causality in risk between the two gold markets; “⇒” (“⇐”) denotes one-way Granger causality in risk from the former
(the latter) to the latter (the former); and the numbers in parentheses are the corresponding p-values.

a Significant extreme risk spillover effect exists in the corresponding test at 1% level.

Table 9
Testing for extreme risk spillover effects between the New York (NY) and Tokyo (TK) gold markets for different periods.

Conf. level Spillover direction Downside risk spillover Upside risk spillover

M¼5 M¼10 M¼20 M¼5 M¼10 M¼20

Panel A: The entire period: 31 October 2002 to 30 October 2015
99% NY ⇔ TK 95.900 (0.000)a 74.502 (0.000)a 55.488 (0.000)a 173.434 (0.000)a 130.807 (0.000)a 94.089 (0.000)a

NY ⇒ TK 155.533 (0.000)a 109.902 (0.000)a 75.890 (0.000)a 284.184 (0.000)a 200.876 (0.000)a 138.671 (0.000)a

NY⇐TK 4.233 (0.000)a 6.063 (0.000)a 7.247 (0.000)a 1.738 (0.041)b 1.1478 (0.126) 1.221 (0.111)
95% NY⇔TK 168.395 (0.000)a 127.804 (0.000)a 91.736 (0.000)a 109.576 (0.000)a 82.802 (0.000)a 59.827 (0.000)a

NY ⇒ TK 275.438 (0.000)a 196.394 (0.000)a 136.449 (0.000)a 179.357 (0.000)a 127.584 (0.000)a 89.281 (0.000)a

NY ⇐ TK 23.984 (0.000)a 17.485 (0.000)a 12.092 (0.000)a #0.564 (0.714) #1.010 (0.844) #1.258 (0.8960)

Panel B: Subperiod I (Pre-crisis era): 31 October 2002 to 29 June 2007
99% NY⇔TK 35.923 (0.000)a 27.602 (0.000)a 19.170 (0.000)a 32.752 (0.000)a 27.827 (0.000)a 22.6801 (0.000)a

NY ⇒ TK 54.914 (0.000)a 38.368 (0.000)a 25.776 (0.000)a 54.814 (0.000)a 42.165 (0.000)a 31.231 (0.000)a

NY⇐TK 2.624 (0.004)a 3.234 (0.000)a 2.224 (0.013)b #1.106 (0.866) 0.266(0.395) 1.951 (0.026)b

95% NY⇔TK 49.305 (0.000)a 37.062 (0.000)a 25.943 (0.000)a 36.017 (0.000)a 27.077 (0.000)a 20.027 (0.000)a

NY ⇒ TK 79.946 (0.000)a 56.804 (0.000)a 38.957 (0.000)a 59.646 (0.000)a 41.906 (0.000)a 29.656 (0.000)a

NY⇐TK 12.357 (0.000)a 8.859 (0.000)a 5.858 (0.000)a 1.565 (0.059)c 1.244 (0.107) 1.070(0.142)

Panel C: Subperiod II (Post-crisis era): 2 July 2007 to 30 October 2015
99% NY⇔TK 59.792 (0.000)a 45.946 (0.000)a 33.342 (0.000)a 91.244 (0.000)a 68.732 (0.000)a 48.923 (0.000)a

NY ⇒ TK 98.157 (0.000)a 69.381 (0.000)a 47.535 (0.000)a 147.081 (0.000)a 103.549 (0.000)a 70.847 (0.000)a

NY⇐TK 3.137 (0.000)a 3.424 (0.000)a 3.390 (0.000)a 5.343 (0.000)a 4.335 (0.000)a 3.286 (0.000)a

95% NY⇔TK 95.622 (0.000)a 72.642 (0.000)a 51.986 (0.000)a 78.235 (0.000)a 59.914 (0.000)a 43.100 (0.000)a

NY ⇒ TK 154.948 (0.000)a 110.067 (0.000)a 76.088 (0.000)a 123.051 (0.000)a 87.513 (0.000)a 60.701 (0.000)a

NY⇐TK 10.692 (0.000)a 8.236 (0.000)a 5.793 (0.000)a 1.222(0.111) 1.713 (0.043)b 1.187(0.118)

Notes: “⇔” denotes two-way Granger causality in risk between the two gold markets; “⇒” (“⇐”) denotes one-way Granger causality in risk from the former
(the latter) to the latter (the former); and the numbers in parentheses are the corresponding p-values. Statistics without significant extreme risk spillover
effects are highlighted in bold.

a Significant extreme risk spillover effect exists in the corresponding test at 1% level.
b Significant extreme risk spillover effect exists in the corresponding test at 5% level.
c Significant extreme risk spillover effect exists in the corresponding test at 10% level.
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Table 10
Testing for extreme risk spillover effects between the New York (NY) and Shanghai (SH) gold markets for different periods.

Conf. level Spillover direction Downside risk spillover Upside risk spillover

M¼5 M¼10 M¼20 M¼5 M¼10 M¼20

Panel A: The entire period: 31 October 2002 to 30 October 2015
99% ⇔NY SH 330.866 (0.000)a 250.678 (0.000)a 180.780 (0.000)a 48.244 (0.000)a 37.391 (0.000)a 26.646 (0.000)a

⇒NY SH 540.150 (0.000)a 383.760 (0.000)a 266.525 (0.000)a 79.043 (0.000)a 56.791 (0.000)a 38.846 (0.000)a

⇐NY SH 11.109 (0.000)a 7.938 (0.000)a 5.722 (0.000)a -0.354 (0.638) 0.240 (0.405) 0.289(0.386)
95% ⇔NY SH 203.668 (0.000)a 153.607 (0.000)a 110.022 (0.000)a 161.344 (0.000)a 122.542 (0.000)a 88.277 (0.000)a

⇒NY SH 333.067 (0.000)a 235.882 (0.000)a 163.475 (0.000)a 263.886 (0.000)a 187.587 (0.000)a 129.846 (0.000)a

NY ⇐SH 28.134 (0.000)a 20.602 (0.000)a 14.293 (0.000)a 2.229 (0.013)b 1.761 (0.039)b 1.511 (0.065)c

Panel B: Subperiod I (Pre-crisis era): 31 October 2002 to 29 June 2007
99% NY ⇔SH 96.212 (0.000)a 72.833 (0.000)a 52.264 (0.000)a 10.398 (0.000)a 13.101 (0.000)a 10.738 (0.000)a

⇒NY SH 158.190 (0.000)a 112.237 (0.000)a 77.558 (0.000)a 18.741 (0.000)a 22.175 (0.000)a 18.555 (0.000)a

⇐NY SH -1.048 (0.853) -0.898 (0.815) -0.686 (0.754) -1.373 (0.915) -1.878 (0.970) -2.572 (0.995)
95% ⇔NY SH 60.206 (0.000)a 47.201 (0.000)a 35.261 (0.000)a 43.179 (0.000)a 32.667 (0.000)a 22.962 (0.000)a

⇒NY SH 98.900 (0.000)a 72.304 (0.000)a 51.568 (0.000)a 72.118 (0.000)a 51.409 (0.000)a 35.434 (0.000)a

⇐NY SH 7.485 (0.000)a 5.862 (0.000)a 4.688 (0.000)a -1.169 (0.879) -1.206 (0.886) -1.472 (0.930)

Panel C: Subperiod II (Post-crisis era): 2 July 2007 to 30 October 2015
99% ⇔NY SH 219.675 (0.000)a 166.048 (0.000)a 119.219 (0.000)a 64.972 (0.000)a 49.444 (0.000)a 34.559 (0.000)a

⇒NY SH 359.315 (0.000)a 254.959 (0.000)a 176.572 (0.000)a 105.829 (0.000)a 74.274 (0.000)a 50.549 (0.000)a

⇐NY SH 12.839 (0.000)a 9.129 (0.000)a 6.344 (0.000)a #0.003(0.501) 1.032(0.151) 0.223(0.412)
95% ⇔NY SH 138.045 (0.000)a 103.911 (0.000)a 74.391 (0.000)a 87.012 (0.000)a 66.426 (0.000)a 47.490 (0.000)a

⇒NY SH 226.331 (0.000)a 160.225 (0.000)a 111.170 (0.000)a 141.979 (0.000)a 101.606 (0.000)a 70.484 (0.000)a

⇐NY SH 15.029 (0.000)a 10.709 (0.000)a 7.139 (0.000)a 3.677 (0.000)a 2.690 (0.004)a 1.455 (0.073)c

Notes: “⇔” denotes two-way Granger causality in risk between the two gold markets; “⇒” (“⇐”) denotes one-way Granger causality in risk from the former
(the latter) to the latter (the former); and the numbers in parentheses are the corresponding p-values. Statistics without significant extreme risk spillover
effects are highlighted in bold.

a Significant extreme risk spillover effect exists in the corresponding test at 1% level.
b Significant extreme risk spillover effect exists in the corresponding test at 5% level.
c Significant extreme risk spillover effect exists in the corresponding test at 10% level.

Table 11
Testing for extreme risk spillover effects between the Tokyo (TK) and Shanghai (SH) gold markets for different periods.

Conf. level Spillover direction Downside risk spillover Upside risk spillover

M¼5 M¼10 M¼20 M¼5 M¼10 M¼20

Panel A: The entire period: 31 October 2002 to 30 October 2015
99% ⇔TK SH 4.401 (0.000)a 5.542 (0.000)a 4.800 (0.000)a #0.515 (0.697) #0.036 (0.514) #0.333 (0.630)

TK ⇒ SH 3.701 (0.000)a 6.493 (0.000)a 6.355 (0.000)a 0.519 (0.302) 0.779 (0.218) 0.397 (0.346)
TK ⇐ SH 1.627 (0.052)c 0.713 (0.238) #0.153 (0.561) #0.884 (0.812) #0.494 (0.689) #0.652 (0.743)

95% ⇔TK SH 5.208 (0.000)a 3.970 (0.000)a 2.303 (0.011)b 1.596 (0.055)c 1.680 (0.047)b 1.096 (0.137)
TK ⇒ SH 1.895 (0.029)b 1.139 (0.127) 0.493 (0.311) 3.039 (0.001)a 2.884 (0.002)a 2.006 (0.022)b

TK ⇐ SH 4.115 (0.000)a 3.164 (0.000)a 1.644 (0.050)b #0.068 (0.527) #0.052 (0.521) #0.210 (0.583)
Panel B: Subperiod I (Pre-crisis era): 31 October 2002 to 29 June 2007
99% ⇔TK SH 5.923 (0.000)a 5.593 (0.000)a 3.247 (0.000)a 3.140 (0.000)a 5.330 (0.000)a 3.569 (0.000)a

TK ⇒ SH 11.228 (0.000)a 10.416 (0.000)a 7.052 (0.000)a 6.193 (0.000)a 5.532 (0.000)a 2.978 (0.001)a

TK ⇐ SH #1.017 (0.845) #1.465 (0.929) #2.006 (0.978) #0.527 (0.701) 2.995 (0.001)a 2.539 (0.006)a

95% ⇔TK SH 7.756 (0.000)a 6.235 (0.000)a 4.669 (0.000)a 5.556 (0.000)a 7.071 (0.000)a 5.611 (0.000)a

TK ⇒ SH 3.966 (0.000)a 3.538 (0.000)a 2.541 (0.006)a 8.587 (0.000)a 10.482 (0.000)a 8.231 (0.000)a

TK ⇐ SH 4.261 (0.000)a 2.856 (0.002)a 2.148 (0.016)b 0.628 (0.265) 0.458 (0.324) 0.122 (0.452)
Panel C: Subperiod II (Post-crisis era): 2 July 2007 to 30 October 2015
99% ⇔TK SH 0.502 (0.308) 1.029 (0.152) 1.543 (0.061)c 2.989 (0.001)a 1.263 (0.103) #0.073 (0.529)

TK ⇒ SH 0.200 (0.421) 1.474 (0.070)c 1.696 (0.045)b #1.061 (0.856) #1.477 (0.930) #1.382 (0.917)
TK ⇐ SH 0.222 (0.412) #0.161 (0.564) 0.421 (0.337) 2.673 (0.004)a 1.089 (0.138) #0.339 (0.910)

95% ⇔TK SH #0.026 (0.510) #0.279 (0.610) #0.624 (0.734) 0.919 (0.179) 0.490 (0.312) 0.854 (0.197)
TK ⇒ SH #0.378 (0.647) #0.577 (0.718) #0.480 (0.684) #0.108 (0.543) #0.413 (0.660) #0.128 (0.551)
TK ⇐ SH 0.095 (0.462) #0.034 (0.514) #0.591 (0.723) 0.964 (0.167) 0.704 (0.241) 0.467 (0.320)

Notes: “⇔” denotes two-way Granger causality in risk between the two gold markets; “⇒” (“⇐”) denotes one-way Granger causality in risk from the former
(the latter) to the latter (the former); and the numbers in parentheses are the corresponding p-values. Statistics without significant extreme risk spillover
effects are highlighted in bold.

a Significant extreme risk spillover effect exists in the corresponding test at 1% level.
b Significant extreme risk spillover effect exists in the corresponding test at 5% level.
c Significant extreme risk spillover effect exists in the corresponding test at 10% level.
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way Granger causalities in upside risk from London to Tokyo and between London and Tokyo are not significant in subperiod
II at the 99% confidence level, we do see remarkable extreme risk spillover effects between London and Tokyo. This indicates
that the relationship between London and Tokyo becomes tighter in the post-crisis era.

Table 8 presents the testing results between London and Shanghai, which are similar to those between London and New
York. All the statistic values for one-way and two-way Granger causalities in risk show significant extreme risk spillover

Table 12
Summary of extreme risk spillover effects across the London (LD), New York (NY), Tokyo (TK), and Shanghai (SH) gold markets for different periods.
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effects between London and Shanghai. This may be because (i) London is the largest gold-trading center and is the gold-
pricing center and (ii) China is the largest gold-producing country and among the top two gold-consuming countries in the
world. In 2014 China's gold production reached approximately 460 metric tons and its consumption approximately 886
metric tons (GFMS, 2015). Thus significant real-time interactions between the London and Shanghai markets are to be
expected. The statistic values during the pre-crisis period indicate that the level of spillover effects from London to Shanghai
is stronger than that from Shanghai to London. However, most statistical values during the post-crisis period show that the
level of spillover effects from Shanghai to London is stronger than that in the opposite direction, indicating that the market
role of Shanghai may have shifted following the crisis.

Table 9 presents the testing results between New York and Tokyo. There are extreme downside risk spillover effects at
the 99% and 95% confidence levels between New York and Tokyo, and there are extreme upside risk spillover effects from
New York to Tokyo but not from Tokyo to New York. In particular, the upside risk spillover effects from Tokyo to New York in
the two subperiods are weak and in the entire period at the 99% confidence level they disappear. We thus conclude (i) that
the old saying “Bad news travels quickly, good news stagnates” is true—that negative return shocks (breaking bad news) are
more easily transferred between New York and Tokyo than positive return shocks (breaking good news), (ii) that the risk
spillover effects from New York to Tokyo are strong, and (iii) that the risk spillover effects from Tokyo to New York are weak.

Table 10 gives the testing results between New York and Shanghai, which are similar to those between New York and
Tokyo. For both downside and upside risks at the 99% and 95% confidence levels in each period there is a two-way Granger
causality in risk between New York and Shanghai and a one-way Granger causality in risk from New York to Shanghai.
Extreme risk spillover effects from Shanghai to New York are weak or insignificant, especially in the pre-crisis era. Even in
the post-crisis era, the one-way Granger causality in risk from Shanghai to New York is much less than from New York to
Shanghai. In addition, at the same confidence level the statistic values indicate that the downside risk is greater than the
upside risk. We thus find (i) that the downside risk between New York and Shanghai is transmitted more rapidly than the
upside risk, (ii) that New York is a major source of extreme risk for Shanghai, and (iii) that risk spillover effects from
Shanghai to New York are limited.

Table 11 gives the testing results between Tokyo and Shanghai. Although we might expect significant extreme risk
spillover effects between these two Asian markets from a regional integration perspective, the statistic values show that the
one-way Granger causality in risk from Tokyo to Shanghai, and from Shanghai to Tokyo, and the two-way Granger causality
in risk between them are all weak or insignificant. In the post-crisis era extreme risk spillover effects between Tokyo and
Shanghai effectively disappear. Although these two gold markets share the same trading time, instantaneous risk spillover
effects between them are weak or insignificant. From an investment diversification perspective, the Tokyo and Shanghai
gold markets have shown insignificant extreme risk spillover effects, which shows the diversification potential of these two
gold assets and thus provides the opportunity of risk diversification benefits for market participants.

Tables 6–10 present a common picture. Both one-way and two-way Granger causalities in risk are stronger in the post-
crisis period than in the pre-crisis period.13 The level of extreme risk spillover effects during a financial crisis is thus stronger
than when there is no crisis. On another note, extreme risk is more quickly transmitted between gold markets during
periods of crisis because during crisis periods many market participants choose gold as a safe haven or risk-hedging tool or
as a speculative vehicle14 and this leads to shocks in gold pricing that strongly affect price volatility and increase risk.

5. Conclusions

It is important that gold market participants be able to monitor and control extreme risk and the spillover effects of risk.
In this study, we have investigated the extreme risk spillover effects among the London, New York, Tokyo, and Shanghai gold
markets. In particular, we have used the ARMA-(T)GARCH-GED model and the variance–covariance method to estimate the
downside and upside VaRs and have used backtesting techniques to test their reliability. We have used the one-way and
two-way Granger causalities in risk to study the downside and upside risk spillover effects between six pairs of gold
markets. We have also analyzed how the extreme risk spillover effects in the four gold markets before the recent financial
crisis differ from those after. Our findings fall into six categories.

(i) We find significant volatility clustering in the four gold markets. The conditional variances show that the volatility in the
two Asian gold markets is higher than in the two Western markets, and that volatility is highest in the Tokyo market.
During the 2008 financial crisis and the European sovereign debt crisis, the volatility in each gold market exhibited a
peak wave, indicating the presence of extreme risk.

(ii) We find a significant “leverage effect” in the volatility in all four gold markets during the pre-crisis period and during
the entire period studied. This effect becomes insignificant in all four markets during the post-crisis period. We find fat
tails in the gold returns that are thicker in the post-crisis period than in the pre-crisis period, indicating that risk is more

13 Note that the interaction between Tokyo and Shanghai shown in Table 11 is an exception to this.
14 Because for each gold market during the post-crisis period there is a heightened volatility (as in Table 2 and Fig. 3) that may possibly stem from

higher speculation.
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extreme during a crisis period.
(iii) We find at the 99% and 95% confidence levels one-way and two-way Granger causalities in downside and upside risk

between London and New York and between London and Shanghai, indicating the presence of significant extreme risk
spillover effects in both cases.

(iv) We find that the level of extreme risk spillover effects is stronger from New York to Shanghai and Tokyo than from
Shanghai and Tokyo to New York, indicating that New York is a major source of extreme risk to Shanghai and Tokyo. We
also find that the level of spillover risk from London to New York is greater than from New York to London.

(v) We find that the one-way and two-way extreme risk spillover effects between Tokyo and Shanghai are weak or in-
significant, and that the extreme risk spillover effects from Tokyo and Shanghai to New York are weak, as are the
feedback effects from the two Asian markets to New York.

(vi) We find that the downside risk spillover effects are greater than the upside risk spillover effects, indicating that
downside risk is transmitted more quickly than upside risk. Similarly, extreme risk is more quickly transmitted between
gold markets in the post-crisis era than in the pre-crisis era.

The goal of this research is to provide the first empirical study of extreme risk spillover effects in global gold markets
before and after the recent global financial crisis. Our findings have important applications in risk management for gold
market participants and regulators. Most gold market participants choose gold as a safe haven or risk-hedging tool and thus
pay particular attention to risks associated with gold pricing and their spillover effects among different gold markets. To
avoid possible losses and predict the upcoming risk of holding gold they should be able to determine which gold markets
are sources of risk spillover effects on their target gold market. Gold investors in China facing financial and macroeconomic
uncertainty, for example, should pay close attention to the strong extreme risk spillovers from New York and London.
Market regulators monitoring risk also pay special attention to extreme risk spillover effects. If they understand the me-
chanism of extreme risk spillovers across different gold markets they can use policy instruments and enhanced international
and regional policy coordination to lower the probability that extreme risk will occur in the market under their care. Our
study indicates that regulators of the two Asian gold markets should strengthen their cooperation and improve the ex-
change of information in order to enhance the movements between the two markets, forming a regional alliance and taking
the lead in gold pricing.

Our work sheds light on how extreme risk spillover effects in the four gold markets before the recent global financial
crisis differed from those after. We assume that extreme risk spillover effects change over time, and thus our future research
on gold markets will focus on the dynamic and time-varying extreme risk spillover effects between them.
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Appendix A. VaR evaluation: backtesting

We use five backtesting techniques to evaluate the accuracy and reliability of the VaR estimate of extreme risk, (i) the
number of violations (failure days), (ii) the failure rate, (iii) the likelihood ratio (LR) test of unconditional coverage, (iv) of
independent coverage, and (v) of conditional coverage. Taking the downside VaR as an example, the failure rate is defined as
the ratio between the number of failure days (violations) in which gold returns are smaller than negative downside VaR
estimates and the total number of observations T. Mathematically, the failure rate f and the number of failure days N are
f¼N/T and = ∑ =N It

T
t1 , respectively, where the indicator variable It is defined
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The null hypothesis of the LR test of unconditional coverage ( )LRuc proposed by Kupiec (1995) is that the failure rate f for
each trial equals to the specified probability α, where the statistics is defined as:

α α χ= − ( − )
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If LRuc is greater than the critical value of χ ( )12 at a confidence level of α( − )1 , the null hypothesis is rejected with a
probability α, indicating that the VaR estimation is unacceptable. Although the LRuc test rejects both high and low failures, it
neglects the time variation in the returns and does not exclude failures when they quickly cluster in a short period of time.
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To improve the LRuc test, Christoffersen (1998) proposes an LR test of conditional coverage, which is a combination of the
LR tests of unconditional coverage and independence. Based on a binary first-order Markov chain model, the null hypothesis
of the LR test of independence ( )LRind is that the VaR exceptions are independently distributed, where the statistic is defined

π π
π π π π χ= − ( − )

( − ) ( − ) ∼ ( )
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+ +⎛
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1 1
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In Eq. (A.3), nij (i,j¼0,1) is the number of failure days in which state j occurs and state i occurs on the previous day, i.e.,
π = ( + )n n n/0 01 00 01 , π = ( + )n n n/1 11 10 11 , and π = ( + ) ( + + + )n n n n n n/01 11 00 01 10 11 . The LRind test determines whether the
probability of a failure on any day is determined by the result on the previous day, i.e., under the null hypothesis of the LRind

test the probability π0 should be equal to π1. See Christoffersen (1998) for a more detailed explanation of the variables.
The LR test of conditional coverage ( )LRcc is the joint test of unconditional coverage and independence, and the statistic is

defined

χ= + ∼ ( ) ( )LR LR LR 2 . A.4cc uc ind
2

Unlike the LRuc test, the LRcc test can reject the VaR estimation that produces either too many or too few clustered
exceptions.

Appendix B. Robustness test using the Shanghai gold futures data

In Section 4, we choose gold spot prices rather than gold futures prices as the empirical data for the Shanghai gold
market because of the data constraint of gold futures prices. As noted in Section 4.1, the gold futures trading in China started
on 9 January 2008 in the Shanghai Futures Exchange (SHFE) market, and thus there is no data prior to the global financial
crisis for the Shanghai gold futures. A large body of literature shows that for most assets price discovery happens primarily
in the futures market. Thus a major concern is whether the gold futures data would affect our central findings. To check the
validity of our results, in this appendix we conduct the same testing of extreme risk spillover effects using the Shanghai gold
futures data.

For robustness testing, we use daily closing (fixing) gold prices from the London OTC market, the New York COMEX
market, the TOCOM market, and the SHFE market during the period from 9 January 2008 to 30 October 2015. Note that in
the Shanghai gold market we use the daily closing gold futures prices of the continuous contract. As in Section 4, we first use
the ARMA-(T)GARCH-GED model and the variance–covariance method to calculate the downside and upside VaRs. Then we
employ backtesting techniques to evaluate the reliability of estimated VaRs. Finally, using Granger causality in risk we
investigate extreme risk spillover effects across the London, New York, Tokyo, and Shanghai gold markets. To save space,
Table B1 only shows the testing results of extreme risk spillover effects between the Shanghai gold market and other three
markets.15

Panel A of Table B1 shows the testing results between the London and Shanghai gold markets. The statistical values of
one-way and two-way Granger causalities in risk between London and Shanghai are significant at the 99% and 95% con-
fidence levels, except for the one-way Granger causality in upside risk from Shanghai to London at 99% confidence level. The
results confirm our main finding that there are significant extreme risk spillover effects between London and Shanghai.

Panel B of Table B1 reports the testing results between the New York and Shanghai gold markets. For both the upside
and downside risks at the 99% and 95% confidence levels, the statistic values of one-way Granger causality in risk from New
York to Shanghai and two-way Granger causality in risk between them are significant, but those of one-way Granger
causality in risk from Shanghai to New York are insignificant. These results confirm our central findings between New York
and Shanghai, i.e., extreme risk spillover effects from New York to Shanghai are significant and those from Shanghai to New
York are insignificant.

Panel C of Table B1 presents the testing results between the Tokyo and Shanghai gold markets. Only the statistical values
for the downside risk at the 99% confidence level show that there are extreme risk spillover effects between Tokyo and
Shanghai. Most statistic values confirm our major finding that extreme risk spillover effects between Tokyo and Shanghai
are weak or insignificant.

Overall, the robustness test using the Shanghai gold future data produces results consistent with our central findings, i.e.,
(i) there are strong extreme risk spillovers between London and Shanghai and from New York to Shanghai, (ii) extreme risk
spillover effects from Shanghai to New York are limited (even insignificant), but risk spillover effects from Shanghai to
London play a role, and (iii) extreme risk spillover effects between Tokyo and Shanghai are weak or negligible.

15 Other detailed results can be obtained from the authors upon request.
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