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We analyze the memory in volatility by studying volatility return intervals, defined as the time between two
consecutive fluctuations larger than a given threshold, in time periods following stock market crashes. Such an
aftercrash period is characterized by the Omori law, which describes the decay in the rate of aftershocks of a
given size with time t by a power law with exponent close to 1. A shock followed by such a power law decay
in the rate is here called Omori process. We find self-similar features in the volatility. Specifically, within the
aftercrash period there are smaller shocks that themselves constitute Omori processes on smaller scales, similar
to the Omori process after the large crash. We call these smaller shocks subcrashes, which are followed by their
own aftershocks. We also show that the Omori law holds not only after significant market crashes as shown by
Lillo and Mantegna �Phys. Rev. E 68, 016119 �2003��, but also after “intermediate shocks.” By appropriate
detrending we remove the influence of the crashes and subcrashes from the data, and find that this procedure
significantly reduces the memory in the records. Moreover, when studying long-term correlated fractional
Brownian motion and autoregressive fractionally integrated moving average artificial models for volatilities,
we find Omori-type behavior after high volatilities. Thus, our results support the hypothesis that the memory
in the volatility is related to the Omori processes present on different time scales.
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INTRODUCTION

The correlations of stock returns are important for risk
estimation, and can be used for forecasting financial time
series. The absolute value of the return, which is a measure
for volatility, seems to have a memory �1–17�, so that a re-
turn is more likely to be followed by a return with similar
absolute value, which leads to periods of large volatility and
other periods of small volatility �called volatility clustering
in economics�. While the absolute value exhibits long-term
correlations decaying as a power law �18�, the correlations of
the return itself decay exponentially with a characteristic
time scale of 4 min �13,16�.

Recent studies �19–22� reveal more information about the
temporal structure of the volatility time series by analyzing
volatility return intervals, the time between two consecutive
events with volatilities larger than a given threshold. These
return intervals display memory and volatility clustering, and
also scaling properties for different thresholds, which seem
to be universal for different time scales and markets �19–22�.
This behavior is similar to what is found in earthquakes �23�
and climate �24,25�. Rare extreme events such as market
crashes constitute a substantial risk for investors, but these
rare events do not provide enough data for reliable statistical
analysis. Due to the scaling properties, it is possible to ana-
lyze the statistics of return intervals for different thresholds
by studying only the behavior of small fluctuations occurring
very frequently, which have good statistics.

Lillo and Mantegna studied exclusively three huge stock
market crashes and found that after such a market crash the
rate of volatilities larger than a given threshold q decreases
as a power law with an exponent close to 1 �26�. This be-
havior is analogous to the classic Omori law describing the

aftershocks following a large earthquake �27�.
Here, we show that the Omori law holds not only after

significant market crashes, but also after “intermediate
shocks.” Moreover, we find self-similar features in the vola-
tility. Specifically, within the aftercrash period �characterized
by the Omori law� there are smaller shocks that themselves
behave similar to the Omori law on smaller scales. We call
these shocks subcrashes, which can be considered as “new
crashes on a smaller scale,” followed by their own after-
shocks.

Furthermore, we analyze the memory in volatility return
intervals after large market crashes, and show that the
memory is related to the Omori law. Indeed, if we perform
appropriate detrending, the return intervals show signifi-
cantly less memory, but some memory still exists, indepen-
dent of the large market crash. We also show that at least part
of this “remaining memory” can be described by the self-
similar subcrashes: if we also remove Omori processes due
to subcrashes, the memory is further reduced. However,
some memory still remains so that these crashes cannot ac-
count for the entire memory, raising the possibility that the
“remaining memory” is due to other subcrashes whose influ-
ence was not removed. Moreover, when studying long-term
correlated fractional Brownian motion �fBm� and autoregres-
sive fractionally integrated moving average �ARFIMA� arti-
ficial models for volatilities, we find Omori-type behavior
after high volatilities. Thus, our results support the hypoth-
esis that the memory in the volatility is related to the Omori
processes present on different time scales.

This paper is organized as follows. Section I presents in-
formation about the analyzed data. In Sec. II we show and
discuss the mechanism based on Omori processes on differ-
ent scales. In Sec. III we study the memory in return inter-
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vals induced by large and intermediate shocks and look at
Omori processes in long-term correlated artificial models. In
Sec. IV we analyze the influence of crashes on the volatility
memory, and Sec. V presents discussion and conclusions.

I. THE DATA SETS ANALYZED

In order to capture a variety of market crashes, we ana-
lyze three different data sets.

�i� We study the 1 min return time series of the S&P500
index from 1984 to 1989. We analyze the aftercrash period in
the 15 000 trading minutes �approximately two months� after
“Black Monday,” 19 October 1987, as well as after a smaller
crash on 11 September 1986. We also analyze the time after
several other smaller market crashes within the entire data
set.

�ii� The second data set consists of the Trades and Quotes
�TAQ� data base of the year 1997 which is provided by the
NYSE and contains all trades and quotes for all stocks traded
at NYSE, NASDAQ, and AMEX. We choose the 100 most
frequently traded stocks and calculate an index by a summa-
tion of the normalized prices of each stock �normalized by
the first price of the respective time series�. From this index,
we calculate a 1 min return time series for our analysis,
which we analyze in the approximately two months after the
crash on 27 October 1997.

�iii� As an example of a crash that is clearly due to an
external event, we also study the 1 min return series of Gen-
eral Electric �GE� stock in the three months after 11 Septem-
ber 2001.

For all three data sets, we calculate the volatility as the
absolute value of the 1 min return, normalized by the stan-
dard deviation � of the entire period. Hence, in this paper the
volatility and also the threshold q are measured in units of
the standard deviation �.

II. OMORI LAW ON DIFFERENT SCALES

Lillo and Mantegna �26� showed that the Omori law �27�
for earthquakes also holds after crashes of very large magni-
tude in financial markets, so that the rate n�t� of events with
volatility larger than a given threshold q decays as a power
law

n�t� = kt−�, �1�

where � is around 1 for large q and k is a parameter char-
acterizing the amplitude of the rate n�t�. For estimating the
parameter k and the exponent �, we use the cumulative
number N�t� of events larger than q, given by

N�t� = �
0

t

n�t��dt� = k
1

1 − �
t1−�. �2�

We study the Omori law on different time scales. Figure 1
shows the cumulative rate N�t� above �a� q=3 and �b�, �c�
q=4 compared to the volatility in time periods following
three significant market crashes in �a� 1986, �b� 1987, and �c�
1997. The volatility is smoothed by a moving average over
60 min in order to remove insignificant fluctuations. The
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FIG. 1. �Color online� Comparison between volatility and the
cumulative rate N�t� of volatilities �absolute 1 min returns� larger
than a threshold q. The plots show the 15 000 min �approximately
two months� after the market crashes on �a� 11 September 1986,
with q=3, �b� 19 October 1987, with q=4, and �c� 27 October 27
1997, with q=4. In each plot �large plots and insets�, the empiri-
cally found cumulative rate N�t� is represented by the black solid
line, whereas the dashed line shows a power law fit to the data in
the respective plot. The volatility �gray solid line� is displayed as a
moving average over 60 min in order to suppress insignificant fluc-
tuations. The insets show the self-similarity of the data set meaning
that while the big crash in the beginning introduces a behavior
following the Omori law, some of the aftershocks introduce again a
similar behavior on a smaller scale.
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large shock in the beginning of the time interval is followed
by aftershocks, which induces an Omori-like behavior of
N�t� �Omori process�, shown by the dashed lines represent-
ing a power law fit. However, as seen in Fig. 1 �see insets�
many of these aftershocks seem to behave similar to “real”
crashes with their own aftershocks �subcrashes�, but on a
smaller scale �shown by vertical lines�. The insets show that
a closer look into many of these subcrashes reveals a similar
pattern as the Omori law on large scales. The exponent � is
often smaller after smaller crashes, which is analogous to the
finding that the power law decay of the volatility values after
smaller shocks has a smaller exponent than after large
crashes �28�. Below we explore the possibility that the self-
similarity of the volatility �where the Omori law is present
on different scales� is directly related to the memory.

III. RETURN INTERVAL MEMORY AFTER CRASHES
AND SUBCRASHES

In order to explore the memory effects of the Omori law,
we first analyze time periods after very large market crashes.
Specifically, we study the memory in the volatility return
intervals, which form a sequence of time intervals ��t� be-
tween two consecutive events with volatilities larger than a
given threshold q �19–22�. We next show that the influence
of the Omori law on ��t� can be estimated by comparing the
original ��t� with a detrended time series �̃�t� which is inde-
pendent of the market crash. We fit the cumulative rate N�t�
in the period after a market crash with a power law according
to Eq. �2�, thus obtaining the parameter k and the exponent �
for the rate n�t� �26�. Using n�t�, we can detrend the return
interval time series ��t� by rescaling by n�t� �29�

�̃�t� = ��t�n�t� . �3�

The rational for this detrending is the following: due to the
Omori law, Eq. �1�, immediately after the crash we have a
large rate n�t� of high volatilities so that the return intervals
��t� are very short. Later, the rate of high volatilities becomes
small while the return intervals get large. This induces
memory in the return interval time series since in the begin-
ning small return intervals are followed by more small return
intervals, while later large return intervals follow large return
intervals. After rescaling according to Eq. �3�, high �low�
rates and small �large� return intervals cancel each other so
that �̃�t� is detrended and thus independent of the existence
of the crash, since the trend caused by the crash is no longer
present.

The relation between the Omori law and the short-term
memory in the return interval time series can be studied by
analyzing the conditional expectation value ���t� ��0� of the
return interval series ��t� conditioned on the previous return
interval �0 �19,20�, for both the original return intervals ��t�
and the detrended time series �̃�t�. In Fig. 2 �left column�,
���t� ��0� is plotted against �0. Both quantities are normalized
by the average return interval ���, for return intervals after
the crashes in �a� October 1987 and �b� October 1997. The
deviations from a horizontal line at 1 for all thresholds show
memory: large �small� values of �0 are more likely to be

followed by large �small� values of ��t�. The slopes of the
curves for the detrended time series �̃ are significantly less
steep �right column�, indicating that detrending the Omori
law from the time series significantly reduces the memory,
but some of the memory still remains, which might be due to
the Omori process still present on smaller scales �see Fig. 1�.

In addition to the effect of the major crash, we can also
analyze the influence of Omori processes after subcrashes on
smaller scales. To this end, we further detrend the time series
by removing some subcrashes and test whether the memory
is further reduced. After identifying the subcrashes �30�, we
detrend the return intervals ��t� by removing the Omori pro-
cess due to the major crash as well as the Omori processes
induced by the subcrashes. To this end, we estimate the pa-
rameters k and � in Eq. �1� for the rate n�t� after the major
crash as well as for the rate ns�t� in the 1000 min following
each subcrash �or the time to the next subcrash, if smaller�.
Note that ns�t� is calculated from the detrended return inter-
vals �̃�t�. Then, the double detrended return interval time
series is given by

�̃̃�t� = 	ns�t��̃�t� in time following a subcrash

�̃�t� otherwise.

 �4�

In order to improve the statistics for testing the effect of
removing also subcrashes on the memory, we plot in Fig. 3
the conditional expectation value �� ��0� / ��� for only two �0

intervals: �0 below and �0 above the median of �. We see in
Fig. 3 that when �0 is below the median �� ��0� / ����1, while
�� ��0� / ����1 for �0 above the median. This indicates the
memory in the records, and also shows that the memory in
the original records �circles� gradually weakens upon de-
trending the time series by removing the influence of the
major crash �squares� and further weakens when also some
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FIG. 2. �Color online� Memory in volatility return intervals for
different thresholds before �left column� and after �right column�
detrending the time series according to Eq. �3�. The analysis is
shown for �a� the S&P500 index in the two months after the crash
on 19 October 1987 and �b� an index calculated from the 100 most
frequently traded stocks from the TAQ data base after the crash of
27 October 1997. Removing the Omori law reduces the memory in
the data sets, but some memory still exists.
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subcrashes are removed �diamonds�. Hence, not only a large
market crash but also smaller subcrashes contribute to the
memory in return intervals.

To further investigate the effect of removing the memory
induced by aftershocks, we analyze the probability P�t� that
after an event larger than a certain volatility q the next vola-
tility larger than q appears within a time t �21,23,25�. In
order to study the effect of memory, we plot the conditional
probability P�t ��0� for different values of the preceding re-
turn interval �0. Figure 4 shows P�t ��0� for q=2 under the
condition that the preceding return interval �0

− belongs to the
smallest 25% of the return intervals or that the preceding
return interval �0

+ belongs to the largest 25%. The memory in
the time series leads to a splitting of the curves because after
larger return intervals �squares� the time to the next volatility
above q is usually large, while it is short after small return
intervals �circles�. After detrending the time series the two
curves get closer, indicating a reduced memory, but also here
some memory still remains.

To test the long-term memory effects of the Omori pro-
cess on the volatility return intervals we study the autocorre-
lation function shown in Fig. 5 for return intervals after the
market crashes in 1987 and 1997 for two different thresholds
q=1 and q=2. For both thresholds, we see that there exists a
significant correlation even between return intervals 100
steps apart, which corresponds to approximately 2 to 5 days
in 1987 �0.5 to 2 days in 1997� since the average return in-
tervals are ���q=1��=6.33 min and ���q=2��=17.4 min in
1987 and ���q=1��=2.47 min and ���q=2��=7.66 min in

1997. If we now remove the effect of the Omori process due
to the market crash by detrending according to Eq. �3�, the
memory in the detrended sequence �̃ is reduced significantly,
as we see in the dashed curves of Fig. 5. The dotted lines
show that removing also the influence of some subcrashes
according to Eq. �4� further reduces the memory.

So far, we showed indications that within the time period
after a big crash there might exist smaller crashes that behave
similar to the big crash. The question arises whether such
subcrashes are only typical after a large crash or whether
they appear in all time periods independent of the existence
of a big crash. To test this, we analyze if Omori processes
exist also for smaller crashes. We study 22 crashes of sizes
between 11 and 16 standard deviations in the S&P500 time
series from 1984 to 1989. These crashes are considerably
smaller than the huge crashes of more than 30 standard de-
viations in a 1 min interval studied above. We analyze the
cumulative rate N�t� in the 1000 trading minutes following
these smaller crashes. In order to make different crashes
comparable irrespective of the current trading activity, we
normalize the cumulative rate N�t� by N�1000�. Figure 6�a�
shows this normalized rate N�t� /N�1000� averaged over all
aftershock periods �31�. For different thresholds q,
N�t� /N�1000� can be fit with a power law �2�. The exponent
� increases with the threshold, but is generally smaller than
the exponents found after very large shocks. Our results for
the rate decay are analogous to volatility studies �28,32�
where the exponent characterizing the volatility decay de-
pends on the magnitude of the shock �28�. These results in-
dicate that relatively small crashes have similar Omori pro-
cesses which may lead to memory effects.
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crash on 27 October 1997, and �d� General Electric �GE� stock after
11 September 2001.
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In order to test how generic the relation between the de-
scribed Omori processes and the memory in volatility is, we
analyze artificial time series with power law autocorrelations.
To this end, we simulate a common model for volatilities, the
autoregressive fractionally integrated moving average
�ARFIMA� process �33,34�, where the time series of price
changes ��gi� is given by

�gi
ARFIMA = 

n=1

�

an����gi−n + 	i, �5�

an��� = �

�n − ��


�1 − ��
�1 + n�
. �6�

Here, the variables 	i are normal distributed random num-
bers with mean 0 and variance 1. While the parameter �
determines the autocorrelations of �gi, the autocorrelation
function of ��gi� is independent of �, following a power law
with exponent −0.5. We adjust the distribution of the gener-
ated data so that it is Gaussian for ��gi��2, but matches the
empirical data with a power law distribution with exponent 4
for ��gi��2 �35�. Due to this procedure the autocorrelation
function changes as well, resulting in power law autocorre-
lations with exponent 0.19 that are similar to values found
empirically �e.g., in Ref. �32��.

In addition to the ARFIMA process, we also simulate a
fractional Brownian motion �fBm� with

�gi
fBm = G�t�e��t�, �7�

where ��t� is a fractional Gaussian noise and G�t� a Gaussian
noise. The volatility is obtained from the absolute value ��gi�,
which, in our simulation, exhibits power law autocorrelations
with exponent 0.36.

Figures 6�b� and 6�c� show the normalized cumulative
rate N�t� for the 15 000 time steps after a large price change
in the generated data from �b� the ARFIMA process and �c�
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�2�, �dashed line� ranges from �=0.32 to �=0.81 for q=1, . . . ,4
�bottom curve: q=1, top curve: q=4�. �c� In the simulation of a
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the fBm. The curves for different thresholds q=1, . . . ,4 in-
dicate that also in the simulations a large crash initiates an
Omori process with an increasing exponent for larger thresh-
olds q. In addition, there seem to be Omori processes on
smaller scales as well. These results indicate that there is a
strong relation between the power law autocorrelations found
in the volatility and the occurrence of Omori processes,
which has been found by Lillo and Mantegna for major mar-
ket crashes �26�. Omori-type laws appear also in the multi-
time-scale model recently presented by Borland and
Bouchaud �36�, which can also account for volatility cluster-
ing.

IV. MEMORY IN VOLATILITY AFTER CRASHES
AND SUBCRASHES

In the previous sections, we showed that the memory in
return intervals decreases when we remove effects due to
Omori processes. Since the studied return intervals ��t� are

derived from the volatility time series v�t�, it would be inter-
esting to test whether the memory in v�t� is also affected by
Omori processes. Thus, we next analyze the effect of Omori
processes on the memory in the volatility time series directly.
It is known that a market crash induces a power law decay of
the approximate form

vPL�t� � v0t− �8�

with an exponent �0.2−0.3 �26,28�. In order to study the
memory induced by this decay, we compare the original time
series v�t� to a detrended one

ṽ�t� �
v�t�

vPL�t�
�9�

so that ṽ�t� does not depend on the market crash.
We use second order detrended fluctuation analysis

�DFA2� �37,38� to study the long-term memory in the vola-
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FIG. 7. �Color online� Root mean square fluctuation F�s� ob-
tained by the second order DFA method �DFA2� for the volatility in
the 15 000 min following market crashes in �a� the S&P500 index
on 11 September 1986 and �b� on 19 October 1987, as well as �c�
the market crash on 27 October 1997 for an index created from
TAQ data for 100 stocks. F�s� is divided by s0.5 to clarify the
deviation from uncorrelated data. Compared to the original volatil-
ity v�t� �circles�, the memory is reduced in the detrended records
ṽ�t� �squares�, and even further after also detrending some sub-

crashes in ṽ̃�t� �diamonds�.
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FIG. 8. �Color online� Autocorrelation function of the volatility
time series after detrending. Compared to the volatility time series
after detrending the major crash �circles�, detrending subcrashes
�squares� further reduces the autocorrelations. The results are shown
for �a� the S&P500 index after a crash on 11 September 1986, �b�
the S&P500 index after the crash on 19 October 1987, �c� an index
created from the 100 most frequently traded stocks from the TAQ
database after the crash on 27 October 1997. The autocorrelation
function of the original volatility time series is not shown because it
is not meaningful as it is dominated by the influence of the market
crash.
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tility �1–17�. In DFA2, the fluctuations F�s� �root mean
square fluctuations� from a second degree polynomial fit of
the profile

y�t� = 
t�=0

t

v�t�� �10�

as a function of different scales s �time windows� reveal
information about the memory. If F�s��s�, the autocorrela-
tion exponent � of the time series is related to the exponent
� by �=1−� /2. For ��0.5, the time series is long-range
correlated, it is anticorrelated for ��0.5, and �=0.5 indi-
cates no long-range correlations. Figure 7 shows F�s� /s0.5

plotted against s in a log-log plot for 15 000 trading minutes
after three different market crashes of 1986, 1987, and 1997.
With no long-term correlations, the function would be con-
stant, while a positive slope indicates long-term correlations.
For all crashes, the original time series �circles� shows an
increased slope on large time scales. After detrending ac-
cording to Eq. �9� and replacing v�t�� by ṽ�t�� in Eq. �10�,
the curve �squares� gets less steep, indicating a reduction of
the memory �the curves are shifted so that they start at the
same point�.

As described before, there are also subcrashes that may
induce their own power law decay on a smaller scale—not
only in the rate, but also in the volatility values. In order to
analyze the memory due to these subcrashes, we further de-
trend the time series and test whether the memory is reduced
further. To this end, we fit the detrended volatility ṽ�t� in the
1000 min following each subcrash �or the time to the next
subcrash, if shorter� with a power law ṽPL according to Eq.
�8�. Then, we further detrend ṽ�t� in these regions using Eq.
�9� for ṽ�t� instead of v�t�. The DFA2 curve for the double

detrended time series ṽ̃�t�� ṽ / ṽPL is shown in Fig. 7. The
decrease in the slope shows that the memory is further re-
duced after removing the influence of the subcrashes. How-
ever, we clearly see that removing the trends induced by a

market crash as well as by subcrashes slightly reduces the
memory in the volatility on quite small scales �s�60 min�.

The effect of removing subcrashes on the long-term cor-
relations of volatility is seen better in Fig. 8. Here, we com-
pare the autocorrelation functions of the detrended volatility

ṽ�t� and the double detrended volatility ṽ̃�t� after also remov-
ing subcrashes. It is seen that generally the autocorrelation of

ṽ̃�t� is smaller compared to ṽ�t�, which indicates that the
Omori processes after subcrashes also contain some memory.

V. DISCUSSION AND CONCLUSIONS

We find that Omori processes after market crashes exist
not only on very large scales, but a similar behavior is also
induced by less significant shocks. Moreover, we show that
such Omori processes on different scales can occur within
the same time period. This leads to self-similar features of
the volatility time series, meaning that some of the after-
shocks of a large crash can be considered as subcrashes that
themselves initiate Omori processes on a smaller scale.

We ask the question whether this self-similarity can be
responsible for the memory in volatility return intervals as
well as for the memory of the volatility itself. Our results
show that a significant amount of memory is induced by
these crashes and subcrashes, which suggests that at least a
large part of the memory in volatility might be due to Omori
processes on different scales. We also show that artificial
long-term correlated data exhibit behavior similar to the
Omori law. Thus, we believe that there is a strong relation
between Omori processes and the long-term correlation
found for volatility sequences of financial markets.
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