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1. Introduction

Throughout human history infectious diseases have been a con-
stant threat to the health of society, and when diseases become 
epidemic they cause huge economic losses. Models that enable 
the prediction and control of epidemics have attracted much 
attention among researchers in the fields of epidemiology, 

biology, sociology, mathematics, and physics. Bernoulli pro-
posed the first mathematical model for understanding the 
spreading of smallpox [1]. It initiated a new era in the modern 
mathematical modeling of infectious diseases, and many mod-
els for describing the characteristics of epidemic spreading in 
which the states of individuals are disaggregated by compart-
ments have been proposed. For example, the acquired immune 
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deficiency syndrome (AIDS) can be described using the sus-
ceptible-infected (SI) model, since infected individuals, once 
infected by the AIDS virus, cannot be cured. Seasonal influ-
enza and blennorrhagia can be described using the suscepti-
ble-infected-susceptible (SIS) model, because individuals can 
be infected more than once. Chickenpox and measles can be 
modeled using the susceptible-infected-resistant (SIR) model, 
because once infected individuals have recovered they acquire 
permanent immunization [2].

During the last century many researchers assumed that all 
individuals uniformly interact, i.e. that they interact with all 
other individuals with the same probability [3, 4]. Thus the 
internal structure or topology of the contact network through 
which the epidemic spreads was neglected. The main features 
of the topology of a contact network include its degree dis-
tribution P(k), i.e. the fraction of nodes with k contacts, the 
weights on links and nodes, degree correlations, clustering, 
and community structure [5]. With the availability of large-
scale data in real-world contact networks, scholars have 
become aware of the existence of heterogeneities in the topol-
ogy of networks (i.e. power-law degree distribution and dif-
ferent weights of contact network), the high clustering, and 
small-world phenomena [6–11]. The effects of contact net-
work topology on epidemic spreading was first introduced by 
Pastor-Satorras and Vespignani [12] using complex networks 
in which the nodes represent individuals and the edges the 
interactions among them.

Over the past decade this pioneering work has encouraged 
much outstanding research in the field of network spreading 
dynamics [13]. Both Monte Carlo simulations [14–17] and 
theoretical study [18] have investigated the effects of network 
structures on epidemic spreading velocity [19, 20], epidemic 
variability [21, 22], epidemic size [23–28], and epidemic 
thresholds [29–34]. Both the epidemic size and threshold can 
indicate the probability of an epidemic occurring [32], which 
seeds are influential [35–38], and how to effectively control the 
epidemic once it begins [39–41]. When the transmission prob-
ability is above an epidemic threshold the system is in an active 
epidemic state, i.e. there is a finite fraction of nodes infected by 
the epidemic, but when the transmission probability is below 
the epidemic threshold the epidemic dissipates. Near the epi-
demic threshold the system exhibits such interesting phenom-
ena as the rare-region phenomenon [42–45] and the scaling 
behavior of the main magnitudes [46, 47]. Generally speaking, 
previous research has addressed how the topology of the con-
tact networks has an affect on the macrocosmic, mesoscale, 
and microscopic levels. Research on the macroscopic scale, 
which focuses primarily on the effects of degree and weight 
distributions [12, 48–51], has revealed that networks with 
strong heterogeneous degree distributions have a  vanishing 
epidemic threshold [12] and that the heterogeneous weight 
distributions increase the epidemic threshold [24, 52, 53]. 
Research on the mesoscopic scale, which focuses on degree-
degree correlations, clustering, and communities [54–57],  
has found that assortativity [54], high clustering [57], and 
community structure [58] enhance the epidemic outbreak and 
that disassortativity [54] diminishes it. Research on epidemics 

from a microscopic point of view [19, 59] has discovered that 
high-degree nodes—hubs—are infected quickly [19] and that 
the epidemic is more likely to transmit through low-weight 
edges [45, 60].

There are many successful theoretical approaches to 
describing epidemic spreading on complex networks. When 
describing the interplay between complex network structure 
and the dynamics of epidemic spreading, there are two chal-
lenges. The first is describing the intricate topologies of the 
contact networks, since in real-world networks this involves 
heterogeneous degree and weight distributions [61, 62], high 
clustering [57, 63, 64], motif structure [65, 66], community 
structure [67, 68], and fractal structures [69, 70]. The second 
and more difficult challenge is describing the strong dynamic 
correlations among the states of the nodes. The dynamic cor-
relations are produced when the epidemic being transmitted 
to a node from two of its neighbors are correlated [71]. When 
there is only one seed node and there is high clustering the 
dynamic correlations are obvious, since all the infection paths 
come from the same seed. These two challenges are not fully 
addressed in the existing literature, which always assumes (i) 
that an epidemic spreads on a large, sparse network [23, 72–74],  
(ii) that dynamic correlations among the neighbors do not exist 
[72], and (iii) that all the nodes or edges within a given class are 
statistically equivalent [72, 75]. These theoretical approaches 
can be changed by removing or adding assumptions, but a com-
prehensive review of the relationships among these approaches 
is still lacking. Here we discuss the main contributions, basic 
assumptions, and derivation processes of seven widely-used 
approaches in terms of their increasing complexity.

2. Theoretical approaches

The two most widely used model for epidemic spreading 
dynamics are the reversible susceptible-infected-susceptible 
(SIS) and the irreversible susceptible-infected-removed (SIR) 
models [2, 4]. In the SIS model the nodes are either susceptible 
or infected. In its continuous time version, at each time step 
each infected node transmits its infection to all its susceptible 
neighbors at the same rate λ and returns to the susceptible 
state at a rate γ. Thus the effective transmission rate, i.e. the 
effective transmission of infection, is /β λ γ= . Without loss 
of generality we set 1γ = . In the SIR model, unlike the SIS 
model, an infected node recovers and is permanently removed 
at the rate γ. Figures 1(a) and (b) show schematically the trans-
itions between compartments in the SIS and SIR models. The 
schematic temporal evolutions of the SIS and SIR models are 
shown in figure 1(c). When t →∞, the order parameters (i.e. 
the epidemic sizes) of the two models overcome a second-
order phase transition depending on the value of β, as shown 
in figure 1(d). The critical threshold cβ  divides the phase dia-
gram into absorbing and active regions. When c⩽β β  there is 
an absorbing region and no epidemic. When cβ β>  there is an 
active region and a global epidemic develops.

The theoretical approaches that enable the computation of 
the epidemic threshold and the magnitude of these models, 
i.e. the epidemic size, exhibit similar but distinct frameworks 
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for the SIS and SIR models and are of two types. In the first 
type the only difference between the SIS and the SIR models 
is that in the SIR a removed state is added to the SIS model. 
This first type includes the mean-field, heterogeneous mean-
field, dynamic message-passing, and pairwise approximation 
approaches. The second type includes the link percolation and 
edge-based compartmental approaches, which provide the 
valid and obvious framework for the SIR model since, unlike 
the SIS model, it is irreversible. Here we use the SIS model to 
illustrate the relations among the existing approaches of this 
first type. We use the SIR model to explain the approaches of 
the second type. To clarify the following, the definitions of the 
parameters are given in table A1 in the appendix.

2.1. General frameworks for models of epidemic spreading

2.1.1. Mean-field (MF) approach. The simplest framework  
for describing these models—the mean-field (MF) approach—
assumes that the population is fully mixed, i.e. that all nodes 
in the population are statistically equivalent and thus the 
interaction probabilities between any two individuals are the 
same. As a consequence the topology of the contact network is 
neglected. This approach was widely used in the last century 
[4]. The MF approach also assumes that there are no dynamic 
correlations among the states of a node and its neighbors. 
The time evolution of the density of infected nodes in the SIS 
model is given by

t
t

t k t t
d

d
1 ,

( ) ( ) ⟨ ⟩ ( )[ ( )]ρ ρ β ρ ρ= − + − (1)

where t( )ρ  and t s t1 ( ) ( )ρ− =  are the fractions of infected and 
susceptible nodes at time t, respectively, and k⟨ ⟩ is the average 
contact capacity of the nodes, i.e. the average degree of the 
network. The first term on the right hand side of equation (1) 
is the fraction of infected nodes that returns to the susceptible, 
and the second term denotes the fraction of susceptible nodes 

that are infected by infected neighbors. In the steady state, i.e. 
t td d 0( )/ρ = , we have

k 1 0,( ) ⟨ ⟩[ ( )] ( )ρ β ρ ρ∞ − − ∞ ∞ = (2)

where t( ) ( → )ρ ρ∞ = ∞  is the fraction of infected nodes in 
the steady state, i.e. the relative epidemic size. Equation (2) 
has two roots with a trivial solution 0( )ρ ∞ = , and a non-
trivial solution 0( )ρ ∞ >  that exists only when the effective 
transmission rate is greater than an epidemic threshold

k
1

.c
MF

⟨ ⟩
β = (3)

The epidemic threshold c
MFβ  divides the solutions into 

absorbing and active regions. When c
MF⩽β β  there is an 

absorbing region and no epidemic. When c
MFβ β>  there is 

an active region and a global epidemic develops. The sim-
plest MF approach neglects the internal structure of the con-
tact networks and the dynamic correlations among the states 
of the neighbors. This oversimplified approach produces 
qualitatively analytical results, such as the existence of an 
epidemic threshold and the scaling relation of critical phe-
nomena [4]. For networks with a homogeneous degree dis-
tribution (e.g. those with a well-mixed population and those 
that are random regular networks), the MF approach accu-
rately predicts epidemic size and threshold. Performing the 
Taylor expansion of equation  (2) at the epidemic threshold 

c
MFβ β= , Moreno et  al describe the epidemic prevalence 

behavior as c
MF( ) ( )ρ β β∞ ∼ −  near the epidemic threshold 

[72]. Unfortunately the MF approach can be inaccurate in 
some situations, e.g. when networks have a heterogeneous 
degree distribution, since it neglects both network topol-
ogy and dynamical correlations. For example, Ferreira et al 
numerically demonstrate that there is no epidemic threshold 
for scale-free networks with a degree exponent 3⩽ν  [14], but 
the MF approach predicts a finite value.

Figure 1. Schematic representation of the susceptible-infected-susceptible (SIS) model (a), susceptible-infected-removed (SIR) model (b), 
the main magnitudes (c) and phase diagram the SIS and SIR models (d). In (c), the fraction of infected individuals t( )ρ  for the SIS model in 
the active state (black dashed line) and for the SIR model (solid red line), and the fraction of recovered nodes, r(t) for the SIR model (dot 
dashed blue lines) in the active state. Notice that at the final of the epidemic r(t) is constant. In (d), the critical transmission rate (epidemic 
threshold) cβ  separates the plane into absorbing and active regions. For c⩽β β , there is no epidemic, i.e. absorbing region; for cβ β> , the 
system has a global epidemic, i.e. active region.
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2.1.2. Heterogeneous mean-field (HMF) approach. To more 
accurately capture network structure, Pastor-Satorras and Ves-
pignani have improved the MF approach for the SIS model 
by creating the heterogeneous mean-field (HMF) approach 
[12] in which nodes with the same degree are equivalent. In 
the HMF approach the fraction of nodes in the infected state 

t( )ρ  is split by the degree k of the nodes. Thus the primary 
magnitude is tk( )ρ , which is the fraction of infected nodes 
with degree k at time t. The total fraction of infected nodes is 

t P k tk k( ) ( ) ( )ρ ρ= ∑ , where P(k) is the degree distribution of 
the network. In uncorrelated degree networks, a susceptible 
node is connected to an infected neighbor with a probability

t
k

P k k t
1

,
k

k

k

max

( )
⟨ ⟩

( ) ( )∑ ρΘ = (4)

where kmax is the maximum degree. The time evolution of 
tk( )ρ  is given by

t

t
t k t t

d

d
1 .k

k k
( ) ( ) [ ( )] ( )ρ

ρ β ρ= − + − Θ (5)

Similar to equation  (1), the first (second) term in the right 
hand side of equation (5) is the fraction of infected (suscepti-
ble) nodes with degree k that recover (are infected by infected 
neighbors) at time t.

To obtain the epidemic threshold, equation (5) is linearized 
around the initial conditions 0 0k( ) →ρ  and then expressed in 
a matrix form

t
t

C t
d

d
,

( ) ( )
→

→ρ ρ= (6)

where t t t, , k
T

1 max
( ) [ ( ) ( )]→ρ ρ ρ= ! . The Jacobian matrix 

C Ckk{ }= ′  is given by

C
kk P k

k
,k k k k, ,

( )
⟨ ⟩

β δ= −′ ′
′ ′ (7)

where k k,δ ′ is a Dirac delta function. The system has a global 
epidemic—an active region—in which t P k tk k( ) ( ) ( )ρ ρ= ∑  
grows exponentially, which mathematically means that the 
largest eigenvalue of C, k k 12⟨ ⟩/⟨ ⟩β − , is greater than zero. 
Thus the epidemic threshold can be expressed

k
k

,c
HMF

2

⟨ ⟩
⟨ ⟩

β = (8)

where k⟨ ⟩ and k2⟨ ⟩ are the first and second moments of the degree 
distribution, respectively. For homogeneous networks, e.g. 
ER networks, the epidemic threshold is k1 1c

HMF /(⟨ ⟩ )β = + , 
which for small k⟨ ⟩ is different from that predicted using the 
MF approach (see equation (3)). For heterogeneous networks 
with a power-law degree distribution P k k( )∼ ν− , in the ther-
modynamic limit, i.e. N →∞, the epidemic threshold is zero 
for degree exponent 3⩽ν  due to the divergence of k2⟨ ⟩. When 

3ν>  there is a finite epidemic threshold. The HMF approach 
has been highly successful in describing the dynamics of epi-
demic spreading for two reasons, i.e. (i) we only need to know 
the degree distribution and (ii) HMF is able to uncover how 
topological heterogeneity affects epidemic spreading, e.g. there 
is no epidemic threshold when the degree distributions are 

highly heterogeneous. Researchers have generalized the HMF 
approach to investigate the effects of weight distribution [76], 
degree-degree correlations [77], and multiplicity [75, 78, 79]. 
For example, Wang et al [75, 79] generalized the HMF  theory 
to study the effect of asymmetrically interacting spreading 
dynamics on complex layered networks and found that the 
 epidemic outbreak on the contact layer can induce an outbreak 
of information on the communication layer, and that the infor-
mation spreading can effectively raise the epidemic threshold.

The HMF approach is usually effective when the networks 
have an infinite topological dimension, i.e. when the number of 
nodes in a neighborhood grows proportionately to network size 
N with the topological distance from an arbitrary origin [80]. 
Although random networks above the percolation threshold 
indeed have an infinite dimension, some researchers find that 
the HMF approach can fail because two important factors are 
not taken into consideration [81–84]. First, because the HMF 
approach describes the network topology using degree distri-
bution as the only input parameter, the quenched connections 
among the nodes are neglected. Second, the dynamical correla-
tions among the states of neighbors are neglected, since equa-
tion (5) assumes that the states of neighbors are independent 
[81]. This simplified assumption allows the HMF approach to 
accurately capture spreading dynamics on annealed networks 
[85]. When epidemics spread on quenched networks, the HMF 
description of the dynamics is only qualitative [82].

2.1.3. Quench mean-field (QMF) approach. Because neither 
the MF nor the HMF approach can describe the full network 
structure, researchers use the adjacency matrix A to represent 
the full contact network topology. The Aij component values of 
matrix A are Aij  =  1 when nodes i and j are connected. Incor-
porating the adjacency matrix, the quench mean-field (QMF) 
approach is widely used to study the spreading dynamics. 
Note that other approaches also use the adjacency matrix to 
describe network topology, including the discrete-time Mar-
kov chain approach [86] and the N-intertwined approach [87, 
88]. At time t a susceptible node i is infected by its neighbors 
with a probability A tj

N
ij j1 ( )β ρ∑ = , where t s t1j j( ) ( )ρ = −  is the 

probability that neighboring node j of node i is in the infected 
state at time t. Thus the evolution of ti( )ρ  can be expressed

t

t
t t A t

d

d
1 .i

i i
j

N

ij j
1

( ) ( ) [ ( )] ( )∑
ρ

ρ β ρ ρ= − + −
=

 (9)

The first (second) term on the right hand side of equation (9) 
is the probability that node i recovers (becomes infected by its 
neighbors) at time t. The fraction of nodes in the infected state 
at time t is t N t1 i

N
i1( ) / ( )ρ ρ= ∑ = . Since only a vanishing small 

fraction of nodes are in the infected state at the beginning of 
the spreading, i.e. 0 0i( ) →ρ , we linearize equation (9) around 

t 0i( ) →ρ  and rewrite it in matrix form

t
t

t A t
d

d
,

( ) ( ) ( )
→

→ →ρ ρ β ρ= − + (10)

where ti( )ρ  is element i of the vector t t t, , N
T

1( ) ( ( ) ( ))→ρ ρ ρ= ! . 
Using the same tool as that used to obtain equation  (8), the 
epidemic threshold is given by
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1
,c

A

QMFβ =
Λ (11)

where AΛ  is the largest eigenvalue of A. The epidemic thresh-
old predicted by the QMF approach is dependent only on 
network topology. In uncorrelated scale-free (SF) networks 
with a power-law degree distribution, k kc

QMF 2⟨ ⟩/⟨ ⟩β ∝  when 
2.5ν< , which produces the same threshold as equation  (8). 

When 2.5ν> , k1c
QMF

max/β ∝ , which indicates that there is 
no epidemic threshold in the thermodynamic limit [89]. This 
result is in contrast to the prediction from the HMF approach. 
The discrepancy between the HMF and QMF approaches is 
addressed in [18, 29, 33, 42].

The QMF approach uses the adjacency matrix to describe 
network topology and to predict epidemic sizes and thresh-
olds more accurately than those predicted by the MF and 
HMF approaches. However the dynamical correlations among 
the states of neighbors are still neglected in equation (9), and 
this produces deviations between the theoretical predictions 
and numerical simulations. Some researchers doubt the acc-
uracy of the epidemic threshold value predicted by the QMF 
approach and some consider it completely wrong in some 
specific situations [14, 15, 33, 42]. To validate the effective-
ness of the QMF approach in predicting a epidemic threshold, 
Goltsev et al [42] define an indicator, the inverse participation 
ratio (IPR), that quantifies the eigenvector localization of AΛ . 
The IPR of AΛ  is given by v fA i

N
i A1

4( ) ( )Λ = ∑ Λ= , where fi A( )Λ  
is the ith element of the eigenvector f A( )→

Λ  of AΛ . If f A( )→
Λ  is 

delocalized, v O 0A( ) ( )Λ ∝ . If f A( )→
Λ  is localized, v O 1A( ) ( )Λ ∝  

[18]. Goltsev et al [42] claimed that f A( )→
Λ  is delocalized for 

2.5ν< , which implies that the epidemic size is finite when 

c
QMFβ β> . However f A( )→

Λ  is localized when 2.5ν> , which 
means that only hubs and their neighbors are infected, and as a 
consequence the epidemic grows very slowly and may die out 
due to fluctuations. Thus they found that this localized state 
does not constitute a true active state and that the epidemic 
threshold is closer to that given by equation (8).

Recently Pastor-Satorras and Castellano [13] have further 
proven that f A( )→

Λ  of AΛ  is localized on the hubs when 5 2/ν>  
and localized on nodes with the largest index in the K-core 
decomposition [35] when 5 2/ν< . To explain why the epi-
demic threshold predicted by the QMF approach sometimes 
fails, we must understand the physical meaning of f A( )→

Λ , 
which can be regarded the centrality of a node (i.e. the eigen-
vector centrality) [5]. The eigenvector centrality assigns to 
each node a centrality proportional to the sum of the eigenvec-
tor centralities of its neighbors. Unfortunately the hubs with 
high centralities induce high centralities in their neighbors, 
who in turn feed the centralities back to the hub. As a result, 
the centrality of the hub is overestimated. Similarly we know 
that the probability that a node is in the infected state is also 
overestimated. The variable ti( )ρ  grows as tj( )ρ  increases, and 
the value of tj( )ρ  also increases when ti( )ρ  increases. Thus the 
infection is transmitted back and forth through the same edge, 
which results in an ‘echo chamber’ effect, and the infection 
probability of susceptible nodes is overestimated [90]. We 

know that equation  (9) overestimates the probability that a 
node is in the infected state.

2.1.4. Dynamical message passing (DMP) approach. To 
overcome the weaknesses of the QMF approach but retain 
its advantages, i.e. to take into consideration the full network 
structure, the dynamic message-passing (DMP) approach was 
first proposed by Karrer and Newman [91] in their study of 
the SIR model and generalized later by Shrestha et al [74] to 
describe the SIS model. The DMP approach disallows a node 
in the ‘cavity’ state from transmitting an infection to its neigh-
bors but allows it to be infected by them (see figure 2). This 
prevents the epidemic from passing back and forth through 
the same edge, causing an ‘echo chamber’ [90] effect in equa-
tion  (9) that decreases the overestimation of the infection 
probability of susceptible nodes. Some dynamic correlations 
among the states of the neighbors are also taken into consider-
ation. The DMP approach is exact in tree-like networks [91], 
i.e. in networks with no loops. Based on the DMP approach, 
the time evolution of ti( )ρ  can be written

t

t
t t A t

d

d
1 ,i

i i
j

N

ij j i
1

( ) ( ) [ ( )] → ( )∑
ρ

ρ β ρ θ= − + −
=

 (12)

where tj i→ ( )θ  is the probability that node j is infected by its 
neighbors at time t in the absence of node i (i.e. node i is in 
the cavity state). The first term on the right hand side of equa-
tion (12) takes into account the probability that node i recov-
ers. The second term is the probability that it will be infected 
by its neighbors. If node j recovers from the infected state, 

tj i→ ( )θ  will decrease, but if node j is infected by its neighbors 
in the absence of node i, tj i→ ( )θ  will increase with a prob-
ability t t1 j j i j[ ( )] → ( )( )\β ρ θ− ∑ ∈ℓ ℓN , where j( )N  is the set of 
neighbors of node j. Combining these two factors, the evo-
lution of tj i→ ( )θ  can be written

t

t
t t t

d

d
1 .j i

j i j
j i

j
→ ( )

→ ( ) [ ( )] → ( )
( )\
∑

θ
θ β ρ θ= − + −

∈ℓ
ℓ

N
 

(13)
Using equations (12)–(13) we obtain the evolution of the 

states of the nodes. Note that there will be 2E  +  N differential 
equations, where N and E are the number of nodes and edges. 

Figure 2. An illustration of node in the cavity state. The test node 
i is assumed to be in the cavity state, i.e. it can not transmit the 
decease to its neighbors but can be infected by them. The arrow 
direction indicates the direction of the infection.
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Initially 0 0j i→ ( ) →θ , since only a vanishing small fraction of 
nodes are in the infected state. Thus linearizing equation (13) 
around 0 0j i→ ( )θ = , equation (13) can be rewritten

t
t

t tB
d

d
,

( ) ( ) ( )
→

→ →θ θ θ= − (14)

where B is the non-backtracking matrix [92], and tj i→ ( )θ  is an 
element of the vector t( )→

θ . The element of B is

B 1 ,j i h jh i,→ → ( )δ δ= −ℓ ℓ (15)

where iδ ℓ is the Dirac delta function. The physical meaning of 
Bj i h,→ →ℓ  is that when i≠ ℓ the edge h→ℓ  can influence edge 
j i→ . With arguments similar to those used to obtain equa-
tion (8), the epidemic threshold can be expressed

1
,c

B

DMPβ =
Λ (16)

where BΛ  is the largest eigenvalue of the non-backtracking 
matrix B.

The DMP approach is widely used in such network  science 
topics as spreading dynamics [74, 91], percolation [93–95], 
and cascading [96–98]. It is widely applicable because (i) it 
describes the complete network structure by using the non-
backtracking matrix, and (ii) it captures some dynamical 
correlations among the states of neighbors by assuming that 
‘cavity’ nodes cannot transmit messages. This means that the 
DMP approach produces exact results in networks that are 
tree-like. Through extensive numerical simulations, Shrestha 
et al [74] found that the DMP approach accurately predicts the 
SIS model in many real-world networks. Similar results were 
found for the SIR model in [91, 99].

Note that the DMP approach has two drawbacks, (i) the 
equations  are highly complex, and (ii) it is inaccurate in 
non-local tree-like networks. We recall that it is difficult to 
analytically solve equations  (12) and (13) because there are 
2E  +  N differential equations. To resolve drawback (i), we 
simplify the DMP approach by assuming that each edge has 
the same probability of connecting to infected neighbors. This 
simplified DMP (SDMP) approach and can be applied only 
to uncorrelated local tree-like networks (e.g. to uncorrelated 
configuration networks). Thus a susceptible node connects to 
an infected neighbor with a probability

t
E

t
1

2
.

j i
j i( ) → ( )

→
∑ θΘ = (17)

When we classify nodes according to their degree, for 
uncorrelated networks equation (17) can be rewritten

t
k

k P k t
1

1 ,
k

k( )
⟨ ⟩

( ) ( ) ( )∑ ρΘ = − (18)

which was first derived by Barthélemy and his collaborators 
[19, 59]. Inserting equation (18) into equation (5), Barthélemy 
et al predicted the velocity and hierarchical structure of the 
epidemic spreading on scale-free networks. In this approach 
the epidemic threshold is

k
k k

.c
SDMP

2

⟨ ⟩
⟨ ⟩ ⟨ ⟩

β =
− (19)

To resolve drawback (ii) we decrease the ‘echo cham-
ber’ effect caused by finite loops. Radicchi and Castellano 
introduce a more complicated DMP approach to excluding 
redundant paths caused by triangles and obtain more accurate 
predictions on both artificial and real-world networks [90]. 
We still need to develop more accurate approaches to describ-
ing the dynamics in real-world networks with degree correla-
tions, motifs, and community structures.

2.1.5. Pairwise approximation (PA) approach. The DMP 
approach cannot accurately capture the dynamic  correlations 
in non-tree-like networks. The pairwise approx imation 
(PA) approach best captures the dynamic correlations [100, 
101] by considering the evolution of the pair node states, 
instead of the evolution of the nodes. Denote tx xi j( )ψ  as 
the probability that nodes i and j are in the xi and xj states 
and x S I,{ }∈ , the following relationships are fulfilled, 

t t tI I S I ji j i j( ) ( ) ( )ψ ψ ρ+ = , ψ ψ ρ ψ+ = +t t t t,I I IS i S Si j i j i j
( ) ( ) ( ) ( )  

( ) ( )ψ ρ= −t t1S I ii j , and t t t1S S IS ji j i j( ) ( ) ( )ψ ψ ρ+ = − . With 
these equations in mind, equation (9) can be written [102]

t

t
t A t

d

d
.i

i
j

N

ij S I
0

i j

( ) ( ) ( )∑
ρ

ρ β ψ= − +
=

 (20)

The first term is the probability that node i recovers from the 
infected state, and the second term is the probability that node 
i becomes infected by its neighbors. If we neglect the dynami-
cal correlations between neighbors, i.e. t s t tS I i ji j( ) ( ) ( )ψ ρ= , 
equation (20) reduces to equation (9).

In discussing the evolution of tS Ii j( )ψ , three events cause 
tS Ii j( )ψ  to decrease, i.e. (i) node j recovers from the infected 

state, (ii) node i is infected by neighboring node j with a prob-
ability tS Ii j( )βψ , and (iii) the susceptible node i is infected by 
another neighbor node ℓ with a probability ti j I S Ii j

( )( )\β φ∑ ∈ℓ ℓN , 
where I S Ii j

φ
ℓ

 is the probability that node i, j, and ℓ are respec-
tively in the susceptible, infected, and infected states at time t, 
and i( )N  is the neighbor set of node i. There are two events that 
cause tS Ii j( )ψ  to increase, (i) node i recovers from the infected 
state with a probability tI Ii j( )ψ , and (ii) the susceptible node 
j is infected by another neighbor node ℓ with a probability 

tj i S S Ii j
( )( )\β φ∑ ∈ℓ ℓN , where S S Ii j

φ
ℓ
 is the probability that node i, j, 

and ℓ are respectively in the susceptible, infected, and infected 
states at time t, and j( )N  is the neighbor set of node j. Based 
on this, the evolution of tS Ii j( )ψ  is given by

∑

∑

ψ
ψ βψ β φ

ψ β φ

= − − −

+ +
∈

∈

N

N

ℓ

ℓ

ℓ

ℓ

t

t
t t t

t t

d

d

.

S I
S I S I

i j
I S I

I I
j i

S S I

i j

i j i j i j

i j i j

( )
( ) ( ) ( )

( ) ( )
( )\

( )\

 
(21)

To complete equation (21), we apply a pair approximation, i.e. 
we consider only the pair dynamic correlations as

t
t t

x t
,x x x

x x x x

j
i j

i j j l( )
( ) ( )

( )
φ

ψ ψ
≈

ℓ (22)

where xj(t) is the probability that node j is in the x S I,{ }∈  
state at time t. Inserting equation (22) into equation (21) and 
combining it with equation (20), the evolution of the the states 
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of the SIS model can be described using N E+  differential 
equations.

To obtain the epidemic threshold, we linearize equation (21) 
around the initial conditions 0 0I Ii j( ) →ψ  and 0 1S Si j( ) →ψ . 
Using arguments similar to those for obtaining equation  (8) 
we get the epidemic threshold when the largest eigenvalue of 
L is zero, where L is the Jacobian matrix of equation (21), and 
the elements of L are [102]

β
β

δ β β
β

= − +
+

+
+
+

L
k

A1
2 2

2
2 2

.ij
i

ij ij

2

( ) ( )
 (23)

At the expense of increasing the complexity of the equa-
tions  in the PA approach, we use the adjacency matrix to 
accurately describe the full network topology, and we capture 
the dynamical correlations among the states of neighbors by 
considering the evolution of the pair node states. Performing 
extensive simulations, Mata and Ferreira demonstrated that 
the epidemic size and threshold predictions of the PA approach 
are more accurate than those predicted using other methods, 
e.g. MF and HMF [102]. Although the PA approach can cap-
ture some of the dynamical correlations among the states of 
neighbors, solving the above equations numerically is time-
consuming, which hinders its wide application. In order to 
reduce the number of equations  researchers assume that all 
nodes of the same degree are statistically the same [103, 104]. 
Thus we use kmax

2  to describe the spreading dynamics because 
it decreases the complexity of the equations. Eames and 
Keeling, for example, used the PA approach to describe the 
spread of sexually transmitted diseases on heterogeneous net-
works, and their results are often in excellent agreement with 
simulations [101]. Gross et al used the PA approach to capture 
the assortative degree correlation, oscillations, hysteresis, and 
first order transition when an epidemic spreads on an adaptive 
network [104–106]. Kiss et al used the PA approach to theor-
etically predict non-Markovian epidemic spreading dynam-
ics [107]. Recently researchers developed a generalized PA 
approach to study epidemic spreading on weighted complex 
networks [52, 108].

2.2. Specific approaches using the SIR model

2.2.1. Link percolation (LP) approach. In contrast to the 
reversible SIS model, the irreversible SIR model allows us to 
examine the final state of the epidemic at which an individual 
is either susceptible or recovered. The most commonly-used 
approach is link percolation (LP) approach, and the most stud-
ied version is the time-continuous Kermack–McKendrick [3] 
formulation in which an infected individual transmits the dis-
ease to a susceptible neighbor at a rate λ and recovers at a rate 
γ. This SIR version has been widely studied in the epidemio-
logical literature, but unfortunately it allows some individuals 
to recover immediately after being infected, which is unreal-
istic since any real-world disease has a characteristic average 
recovery time. To overcome this shortcoming, many studies 
use the discrete Reed–Frost model [109] in which an infected 
individual transmits the disease to a susceptible neighbor with 
a probability λ and recovers tr steps following the time of 
infection. In the discrete updating method the transmissibility 

β is the probability that an individual will infect one suscep-
tible neighbor before recovery, and it is given by

1 1 1 .
u

t
u t

1

1
r

r( ) ( )∑β λ λ λ= − = − −
=

− (24)

Note that in the continuous time updating approach 
e1 //β λ γ≈ − ≈λ γ−  is used in [23].

The order parameter M MR R( )β = , which is the final frac-
tion of recovered nodes, overcomes a second-order phase 
transition at the epidemic threshold c

LPβ , which is determined 
by the network structure. Note that the Reed–Frost model 
can be mapped into a link percolation process [23, 110–112]. 
Heuristically, the relation between SIR and link percolation is 
sustained because the probability β that a link is traversed by 
the disease is equivalent to the occupancy probability p in link 
percolation. Thus both processes have the same threshold and 
belong to the same universality class. In addition, each reali-
zation of the SIR model corresponds to a single cluster of link 
percolation. This feature is relevant when mapping between 
the order parameters g p g( )β= =  of link percolation and 
MR for epidemics, as we will explain below. In a SIR realiza-
tion, only one infected cluster emerges for any value of β. In 
contrast, in a percolation process when p  <  1 many clusters 
with a cluster size distribution are generated [113]. Thus we 
need criteria to distinguish between epidemics (the giant con-
nected cluster in percolation) and outbreaks (finite clusters). 
The cluster size distribution over many realizations of the SIR 
process, close to but above criticality, has a gap between small 
clusters (no epidemics) and large clusters (epidemics). Thus 
when defining a cutoff sc of the cluster size as the minimum 
value before the gap interval, the cluster sizes below sc are not 
considered epidemics but those above sc are (see figure 3(a)). 
Note that sc depends on N. Then averaging those SIR realiza-
tions larger than the cutoff sc we find that the fraction of recov-
ered individuals MR maps exactly with g (see figure 3(b)). In 
our simulations, we use sc  =  200 for N  =  105.

When we use a cutoff close to criticality, all the exponents 
that characterize the transition are the same for link percola-
tion and epidemic spreading [114–116]. Above but close to 

c
LPβ  we have

M ,R c
LP( ) ( )β β β∼ − α (25)

g p p ,c( )∼ − α (26)

with [117]

      ⩾      
 α

ν

ν
ν

=
−

< <

⎧
⎨⎪
⎩⎪

1 for SF with 4 and ER networks,
1

3
for 3 4. (27)

The exponent τ of the finite cluster size distribution in perco-
lation close to criticality is given by

5
2

for SF with 4 and ER networks;

1
2

2 for 2 4.

      ⩾      

 

⎧
⎨
⎪⎪

⎩
⎪⎪

τ
ν

ν
ν

=

−
+ < <

 (28)
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Near criticality the probability of a cluster of size s, P(s), 
has an exponent 1τ−  in which τ is given by equation  (28) 
(see figure 3(a)). For SF networks with 3⩽ν  in the thermody-
namic limit, the threshold is zero and there is no percolation 
phase transition. In addition, all the exponents take mean-field 
values when 4⩾ν  for SF networks and ER networks.

In an uncorrelated network with a degree distribution P(k), 
the probability of reaching a node with a degree k by follow-
ing a randomly chosen link on the graph is kP k k( )/⟨ ⟩, where 
k⟨ ⟩ is the average degree. This is because the probability of 

reaching a given node by following a randomly chosen link 
is proportional to the number of links k connected to that 
node, and k⟨ ⟩ is needed for normalization. Note that when 

we arrive to a node with a degree k by following a random 
chosen link, the total number of outgoing links or branches 
of that node is k  −  1. Thus the probability of arriving at a 
node with k  −  1 outgoing branches by following a randomly 
chosen link is also kP k k( )/⟨ ⟩. This value is the excess degree 
probability [7, 118].

To obtain the threshold of link percolation, we consider a 
randomly-chosen occupied link. To compute the probability 
that through this link an infinite cluster will not be reached we 
assume, for simplicity, that we have a Cayley tree with a given 
degree distribution. Note that link percolation can be thought 
of as many realizations of a Cayley tree with an occupancy 
probability p that gives rise to many clusters. The probability 
that when starting from an occupied link we will not reach 
shell n through a path of occupied links is given by

Q p
k P k

k
p pQ p1 ,n

k
n

k

1
1

1( ) ( )
⟨ ⟩

[( ) ( )]∑= − +
=

∞

−
− (29)

G p pQ p1 ,n1 1[( ) ( )]= − + − (30)

where G x kP k k xk
k

1 1
1( ) ( )/⟨ ⟩= ∑ =

∞ −  is the generating func-
tion of the excess degree distribution. As n increases, 
Q Q un n 1≈ =−  and the probability that we will not reach an 
infinite cluster is

u G p p u1 .1[( ) ]= − + (31)

Thus the probability that the starting link connects to an infi-
nite cluster is f p u1( ) = −∞ . From equation (31), f p( )∞  is 
given by

f p G p f p1 1 .1( ) [ ( )]= − −∞ ∞ (32)

The solution to equation  (32) can be geometrically under-
stood as the intersection of the identity line y  =  x and 
y G p x1 11( )= − − , which has at least one solution at the 
origin, x f p 0( )= =∞ , for any value of p. If the deriva-
tive of the right hand side of equation  (32) with respect to 
x is G px pG1 1 1 1x1 0 1[ ( )] ( )− − | = >′ ′= , we will have another 
solution in x0 1⩽< . This solution x f p( )= ∞  is the probability 
that a randomly-selected occupied link is connected to an infi-
nite cluster for a given value of p. The criticality corresponds 
to the value of p  =  pc at which the curve 1  −  G1(1  −  px) has a 
slope equal to one. Thus pc is given by [119]

p
G

k
k k

1
1

,c
1

2( )
⟨ ⟩

⟨ ⟩ ⟨ ⟩
= =

−′ (33)

which is the same epidemic threshold as that obtained using 
the SDMP approach (see equation  (19)). On the other hand 
we can obtain the order parameter of link percolation g, which 
represents the fraction of nodes that belongs to the giant 
cluster when a fraction p of links are occupied. The prob-
ability that a node with degree k does not belong to the giant 
component is given by the probability that none of its links 
connect the node to the giant connected cluster (GCC), i.e. 

p f p1 k[ ( )]− ∞ . Thus the fraction of nodes that belong to the 
GCC is g P k p f p1 1k

k
0 ( )[ ( )]= −∑ −=

∞
∞ . Since the relative 

Figure 3. Effects of the cutoff sc on the mapping between the 
SIR model and link percolation for a Poisson degree distribution 
network (ER) with k 4⟨ ⟩ =  ( 0.25c

LPβ = ), N  =  105 . In (a) we show 
the probability P(s) of a cluster of size s (including the size of the 
giant component) in the SIR model for 0.27β =  (◯) and 0.40β =  
(!). We can see that the gap between the epidemic sizes and the 
distribution of outbreaks increases with β. As β is at the threshold 
the slope is 1 3 2/τ− =  marked by dashed lines and s 200c≈ . In 
figure (b) we show the simulation results for MR for sc  =  1 (!) and 
sc  =  200 (◯). Note that when sc  =  200, we average the final size 
of infected clusters only over epidemic realizations. Considering 
only the conditional averages, we can see that MR maps with g 
(solid line) for sc  =  200. The simulations are averaged over 104 
realizations.
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epidemic size in the SIR model maps exactly with the relative 
size of the giant connected cluster, we find that

M g G pf p1 1 ,R 0 [ ( )]= = − − ∞ (34)

where G x P k xk
k

0 0( ) ( )= ∑ =
∞  is the generating function of 

the degree distribution and f p( )∞  is the non-trivial solution 
to equation (32) for p  >  pc. It is straightforward to show that 
in ER networks G x G x k xexp 10 1( ) ( ) [ ⟨ ⟩( )]= = − −  and thus 
f p MR( ) =∞ . In pure SF networks with k1 ⩽ <∞ the generat-
ing function of the excess degree distribution is proportional 
to the poly-logarithm function G x Li x1( ) ( )/ ( )ξ λ= λ , in which 
( )ξ λ  is the Riemann function [118].

The LP approach assumes that every link does not con-
nect to the GCC with the same probability u. Note that when 
we calculate u only the outgoing branches are considered in 
equation (31) and some dynamical correlations are thus cap-
tured. In addition, the LP approach uses the degree distribu-
tion to describe the network topology. Thus the LP approach 
can predict the final epidemic size and threshold on networks 
with an infinite uncorrelated local tree-like configuration [23]. 
Note that SIR spreading is a dynamical infection process with 
an intricate interplay between complex network structure and 
dynamical correlations, and this differs from the static link 
percolation model. Thus the network topology, the time evo-
lutions, and the dynamical correlations among the states of 
neighbors cannot be described using the classical LP approach, 
especially near the critical point [120]. For epidemic spread-
ing on finite size networks or when there is a non-uniform 
infectious time distribution, research has shown that the final 
state of the SIR model differs from that of the link percolation 
model, including in particular the epidemic threshold, mean 
epidemic size, and epidemic size distribution [114, 120]. A 
number of advanced LP approaches have been developed 
to address specific configurations. For example, Miller et al 
[121] and Allard et al [122] generalized the LP approach to 
study nodes with different levels of infection and susceptibil-
ity, Noël et al developed the LP approach for finite uncorre-
lated tree-like networks [123], and Marder generalized the LP 
approach to obtain the time evolution of the SIR model [124]. 
Recently some researchers also developed LP approaches to 
address the effects of clustering [57, 125], degree-degree cor-
relations [126], community structure [56], and multiplexity 
[127, 128] in the SIR model. In addition, Newman derived the 
LP approach for multiple epidemic spreading dynamics, ana-
lyzed the interactions between the epidemics [129–131], and 
found a co-infection condition in the interacting epidemics. 
Parshani et al developed a modified LP approach to predicting 
the threshold of the SIS model [32].

2.2.2. Message passing (MP) approach. In the LP approach 
the probability of reaching the infinite cluster by following a 
randomly chosen link on the graph is assumed to be the same 
for all links. This assumption is true for uncorrelated tree-like 
networks but is not valid for real-world networks, which may 
have, e.g. degree correlation, clustering, and communities. To 
take these into account, Karrer and Newman developed the 
message passing (MP) approach [93] to study the final state 

of the SIR model, which differs from the description supplied 
above. They assumed that zj i→  is the probability that node j is 
infected by its neighbors in the absence of node i, i.e. node i is 
in the cavity state. When there is a vanishing small fraction of 
initially infected nodes, zj i→  satisfies the relationship

z z1 1 ,j i
j i

j→ ( → )
( )\
∏ β= − −
∈ℓ

ℓ
N

 (35)

where z1j i j( → )( )\ β∏ −∈ℓ ℓN  is the probability that node j is not 
infected by any neighbors in the absence of node i. Node i is 
infected by the epidemic with a probability

f z1 1 .i
j i

j i( → )
( )
∏ β= − −
∈N

 (36)

Thus the relative epidemic size is given by

∑=
=

g
N

f
1

.
i

N

i
1

 (37)

To obtain the value of zj i→  we iterate equation (35) from a ran-
dom initial value and substitute the results into equation (36) 
and, using equation (37), we obtain the relative epidemic size 
of the SIR model. From equation (35), we have 

z A z A zln 1 ln 1 ln 1 .j i j j ji j i( → ) ( → ) ( → )∑ β+ = − − −
ℓ

ℓ ℓ

 
(38)

Defining the vectors u→ and v→ whose ( j i→ )th components are 
u zln 1j i j i→ ( → )= +  and v zln 1j i j i→ ( → )β= − , respectively, 
equation (38) can be written

u vB ,→ →= (39)

where B is the non-backtracking matrix of the network. If a 
global epidemic breaks out, equation  (39) will have a non-
trivial solution. Thus the epidemic threshold is the inverse of 
the largest eigenvalue of matrix B, which is the same as that 
described in equation (16) for the SIS model predicted by the 
DMP approach.

The advantages and drawbacks of the MP approach are 
the same as those in the DMP approach (see details above). 
Unlike the DMP approach, which describes the time evolution 
of the spreading dynamics, the MP approach uses different 

Figure 4. Schematic of (a) t( )Φ , (b) S(t) and tS( )ξ  of the EBC 
approach.
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formulas and considers only the final state of the SIR spread-
ing dynamics. Since the MP approach uses a non-backtrack-
ing matrix that allows a description of the full structure of 
the network but disallows nodes in the ‘cavity’ state to trans-
mit the epidemic, it accurately predicts the epidemic size and 
threshold in artificial and in some real-world networks [99]. 
Recently the MP approach has been used to control the spread 
of an epidemic [71], to identify patient zero [132, 133], and 
to locate the most influential seeds [134, 135]. Using the MP 
approach, Morone and Makse studied influence maximization 
in complex networks through optimal percolation and found 
that the low-connected nodes play an important role in influ-
encing maximization problems [134]. Hu et al discovered that 
the influence maximization problem is a local optimization 
problem, not a global one [135].

2.2.3. Edge-based compartmental (EBC) approach. Because  
the LP and MP approaches are static, they are usually used 
to address the final state of the SIR model. To investigate the 
time evolution of the SIR model, the edge-based compart-
mental (EBC) approach was developed [73, 136–139]. It is 
based on the cavity theory (i.e. the MP approach) in which a 
node i in the cavity state cannot transmit the infection to its 
neighbors but can be infected by its neighbors. Unlike the 
MP approach in which each edge has a different probabil-
ity of transmitting the infection to its neighbors, the EBC 
approach makes the same assumption as the LP approach, 
i.e. the probability of infection transmitted through each 
link is the same. The EBC approach is based on a gener-
ating function formalism widely applied to branching and 
percolation processes in complex  networks. The fraction of 
susceptible, infected, and recovered  individuals at time t are 
denoted s(t), t( )ρ , and r(t), respectively. The EBC approach 
describes the evo lution of the probability that a denoted 
root will be susceptible. To compute this probability, an 

edge is randomly chosen and a direction given in which a 
node j on the target of the arrow is the root, and the base 
is one of its neighbors. Disallowing the root j to infect its 
neighbors, t( )Φ  is the probability that neighbor i does not 
transmit the disease to root j, with t( )Φ  given by

t t t t ,S I R( ) ( ) ( ) ( )ξ ξ ξΦ = + + (40)

where tS( )ξ , tR( )ξ , and tI( )ξ  are the probabilities that the 
neighbor is susceptible, recovered, or infected but has 
not yet transmitted the disease to the root node j (see fig-
ure  4(a)). The probability that node j with connectivity k 
is susceptible is thus t k( )Φ , and the fraction of susceptible 
nodes is given by

s t P k t G t .
k

k
0( ) ( ) ( ) ( ( ))∑= Φ = Φ (41)

Figure 4(b) shows a schematic of this model. We next solve 
tS( )ξ , tI( )ξ , and tR( )ξ . A neighbor node i of the root node j can 

only be infected by neighbors other than j. Then node i is sus-
ceptible with a probability

t
P k k t

k
G t ,S

k
k 1

1( ) ( ) ( )
⟨ ⟩

( ( ))ξ =
∑ Φ

= Φ
−

 (42)

where P k k k( ) /⟨ ⟩ is the probability that an edge connects a node 
with degree k in an uncorrelated network (see figure 4(c)). In 
the discrete updating method there are two conditions that 
allow the increase of tR( )ξ , i.e. (i) the infected node has not 
transmitted the infection to j with a probability 1 β− , and (ii) 
the infected node is removed with a probability 1. Taking these 
two events into consideration, the evolution of Rξ  is given by

t

t
t

d
d

1 .R
I

( ) ( ) ( )ξ
β ξ= − (43)

At time t the rate of change in the probability that a random 
edge has not transmitted the infection is equal to the rate at 

Table 1. Some characteristics of the existing approaches used for SIS and SIR models including those that take into account network 
topology or describe the dynamical correlations. We indicate when the approach is fully (✓) or partially (♣) able, or is unable (×) to 
describe the corresponding characteristic. The number of equations needed are also listed. Here n is the number of states needed to describe 
each approach. The system size is denoted by N and kmax is the largest degree a node can have.

Approaches SIS model SIR model Network topology
Dynamical 
correlations

Number of 
needed equations

Mean-field (MF) ✓ ✓ × × 1
Heterogeneous mean-field 
(HMF)

✓ ✓ ♣ × kmax

Quench mean-field (QMF) ✓ ✓ ✓ × N
Dynamical message-passing 
(DMP)

✓ ✓ ✓ ♣ N  +  2E

Link percolation (LP) ♣ ✓ ♣ ♣ 1
Edge-based compartmental 
(EBC)

× ✓ ♣ ♣ 4

Pairwise approximation (PA) ✓ ✓ ✓ ♣ N  +  E
Continuous-time Markov 
(CTM)

✓ ✓ ✓ ✓ nN

Rep. Prog. Phys. 80 (2017) 036603



Review

11

which the infected neighbors transmit the infection to their 
susceptible neighboring nodes through edges. Thus

t
t

t
d

d
.I

( ) ( )βξΦ = − (44)

Combining equations  (43) and (44) with initial conditions 
0 1( )Φ =  and 0 0R( )ξ = , we obtain  ξ β β= −Φ −t t1 1R( ) [ ( )]( )/ , 

which together with equations (44) and (40) allows us to obtain 
the evolution of t( )Φ ,

t
t

t G t t
d

d
1 1 .1

( ) ( ) ( ( )) [ ( )]( )β β βΦ = − Φ + Φ + − Φ − (45)

Using the evolution equations  for the infected and 
removed nodes, which are t t s t t td d d d( )/ ( )/ ( )ρ ρ= − −  and 
r t t td d( )/ ( )ρ= , respectively, we can compute the node 

 density in each state at an arbitrary time. In the final state, 
i.e. t td d 0( )/Φ = , 1( )Φ ∞ =  for t →∞ is a trivial solution of 
equation  (45), and a nontrivial solution emerges only when 
β is above the critical transmission probability cβ . Using an 
analysis similar to the one used to obtain equation  (8), the 
epidemic threshold is

k
k k

.c
EBC

2

⟨ ⟩
⟨ ⟩ ⟨ ⟩

β =
− (46)

In the continuous updating method equation (43) is rewrit-
ten [17]

t

t
t

d
d

.R
I

( ) ( )ξ
ξ= (47)

Thus we have t t1R( ) [ ( )]/ξ β= − Φ  and obtain the epidemic 
threshold

k
k k2

.c
EBC

2

⟨ ⟩
⟨ ⟩ ⟨ ⟩

β =
− (48)

Unlike the LP and MP approaches, the EBC approach 
takes the time evolutions of SIR spreading into consideration. 
Although the EBC approach also uses the degree distribution 
as the only input parameter to describe network topology, it 
more accurately predicts the epidemic size and threshold than 
the HMF approach. The EBC approach is based on the cav-
ity theory in which a node in the cavity state cannot transmit 
infection to its neighbors but can be infected by its neighbors. 
Thus the EBC approach can capture some of the dynamical 
correlations among the states of neighbors. Researchers have 
found that the EBC approach is exact for the SIR model on 
infinite uncorrelated local tree-like networks [24, 140–143] 
not only in reproducing the dynamics but also in determin-
ing the final state of the model. For example, Wang et al gen-
eralized the EBC approach to study epidemic spreading on 
weighted networks, and found that increasing the heterogene-
ity of the weight distribution decreases the size of the epidemic 
and increases the threshold [24]. Recently these same authors 
developed the EBC approach for a non-Markovian social con-
tagion and found a transition in which the final adoption size 
depends on such key parameters as the transmission probabil-
ity, which can change from discontinuous to continuous [144]. 

The transition can be triggered by such parameters and struc-
tural perturbations to the system as decreasing the adoption 
threshold of individuals, decreasing the heterogeneity of the 
adoption threshold, increasing the initial seed size or contact 
capacity, or enhancing network heterogeneity [144–146].

3. Discussion and outlook

We have illustrated seven widely used approaches to the 
dynamics of epidemic spreading, including the MF, HMF, 
QMF, DMP, LP, EBC, and PA. Other approaches, such 
as master equations, are described in [147–149]. Table  1 
shows which characteristic behaviors are described by each 
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Figure 5. Predicting the epidemic threshold for the SIR model on 
uncorrelated networks and 56 real-world networks. Theoretical 
predictions of c

MFβ  (black solid lines), c
QMFβ  (red dished lines), 

c
DMPβ  (blue dish-dotted lines) and numerical prediction (gray 

squares) versus network size N for power-law degree distribution 
P k k( )∼ ν−  with degree exponent 2.1ν =  (a) and ν = 3.5 (b). In (c), 
each symbol a threshold of a real-world network. c

MFLβ , c
QMFβ  and 

c
DMPβ  are the theoretical predictions by the MFL, QMF and DMP, 

respectively. The value of cβ  is the numerical prediction by using a 
variability measure r r r2 2⟨ ⟩ ⟨ ⟩ /⟨ ⟩∆ = −  [15]. Reproduced from 
[15] under CC-BY 3.0.
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approach. Note that all seven approaches can be used in the 
irreversible SIR model, but that prior to now the EBC has not 
been used in the reversible SIS model. Unfortunately none 
of these approaches can adequately describe both the full 
topology of a network and its dynamic correlations. Table 1 
shows that in order to more accurately capture both network 
topology and dynamic correlations, the number of required 
equations  increases and they become increasingly complex. 
To describe network topology, we use the adjacency matrix 
and non-backtracking matrix as illustrated in the QMF and 
DMP approaches, respectively. To capture the dynamical cor-
relations, we use cavity theory to prevent the ‘echo chamber’ 
effect or the evolution of pair node states.

To capture both network topology and dynamical correla-
tions, we adopt the continuous-time Markov (CTM) approach 
[150–152] and find exact results for epidemic spreading. The 
CTM approach uses the adjacency matrix to describe the 
network topology, and uses the transform matrix generator 
Qq qN N×  to describe the evolution of the epidemic spreading and 
the dynamic correlations. Once the value of Q is obtained the 
probability that a node will be in each state can be computed. 
Although the CTM approach provides an exact description it is 
not widely used in the field of spreading dynamics because the 
generator Qq qN N×  is difficult to obtain, and also it is difficult to 
solve the complicated equations, especially for large scale net-
works. The CTM can be used, however, to obtain exact solu-
tions in a few specific scenarios of the SIS model [152].

For a given epidemic spreading dynamics, these theor-
etical approaches sometimes yield different epidemic sizes 
and thresholds [84, 153]. Wang et al classified the theoretical 
approaches into three categories according to the topological 
information used [99]. The first is the mean-field like (MFL) 
approach, which uses the degree distribution as the sole input 
parameter. This category includes the HMF, the LP, EBC, 
and PA approaches. The second type is the quenched mean-
field (QMF) approach, which describes the topology of each 
 network using the adjacency matrix. Examples include the 
discrete-time Markov chain and the N-intertwined approach 
[86, 87]. The third type is the dynamic message passing (DMP) 
approach, which describes network topology in terms of the 
non-backtracking matrix. Wang et al determined the effective-
ness of these three approaches using extensive numerical simu-
lations of the SIR model on artificial and real-world networks 
[99]. For configuration networks they found that the MFL and 
the DMP approaches perform better than the QMF approach 
(see figures 5(a) and (b)). For real-world networks, the DMP 
approach performs well in most situations (see figure 5(c)).

In summary, we began by describing in terms of increas-
ing complexity the seven most popular theoretical approaches. 
We explain their main ideas and basic assumptions, and we 
describe the relationships among them. These approaches 
have also been widely used in studying the dynamics of 

social contagions [144–146, 154–158]. As network science 
has developed and expanded, many of the existing theoretical 
approaches have been challenged, and we now must take into 
consideration numerous intricate mechanisms and network 
topologies when we build epidemic spreading models.

The first challenge is how to describe epidemic spreading 
on complex real-world networks that are, for example, mul-
tilayer or temporal. With the availability of real-world data, 
many researchers believe that treating real-world networks 
as single or static networks is no longer a viable approach, 
and that one must utilize multilayer and temporal networks 
[8, 9]. Although we may want to adopt the tensor formalism 
to describe the topology of multilayer and temporal networks, 
the network topology and dynamic correlations are difficult 
to capture [159–162] with this formalism. In addition, differ-
ent spreading mechanisms such as preference spreading [60] 
and layer-switching [163] are produced, and the intricate net-
work topology further increases the difficulty of describing 
the spreading of an epidemic.

The second challenge is how to describe epidemic spread-
ing once human behavior is included. Human behavior will 
markedly affect epidemic spreading dynamics [31, 164] due 
to burst, memory [165–168], and mobility effects [51, 169–
173]. These features induce a non-Markovian effect in the 
spreading dynamics that causes strong dynamic correlations 
that are difficult to describe [71]. The existing theoretical 
approaches can address only some specific situations, and a 
general framework for non-Markovian spreading dynamics 
is still lacking.

A third challenge is how to describe coevolution spreading 
dynamics. In real-world systems when two strains of the same 
disease spread in the same population and interact through 
cross-immunity [91, 174, 175] or mutual reinforcement [176], 
the information from each competes for the limited attention-
span of the participants [177], and there is an asymmetric 
interaction between the spread of information and the spread 
of the epidemic [75, 79, 178, 179]. An accurate, unified theor-
etical approach for coevolution dynamics is still lacking and 
presents great challenges because, in this case, the dynamic 
correlations are enhanced.
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Appendix. Definitions and abbreviations of parameters

c
QMFβ Epidemic threshold predicted by the QMF 

 approach

c
DMPβ Epidemic threshold predicted by the DMP 

 approach

c
SQMFβ Epidemic threshold predicted by the simplified 

QMF approach

c
LPβ Epidemic threshold predicted by the LP 

 approach

c
EBCβ Epidemic threshold predicted by the EBC 

 approach
C Jacobian matrix of C kk P k kkk k k,( )/⟨ ⟩β δ= −′ ′′ ′

k k,δ ′ Dirac delta function

AΛ Largest eigenvalue of adjacency matrix

BΛ Largest eigenvalue of non-backtracking matrix

f A( )Λ→ Eigenvector of AΛ
fi A( )Λ The ith element of the eigenvector f A( )Λ→

 of AΛ
f p( )∞ Probability that the a random chosen link 

 connects to the GCC
fi Probability that node i connects to the GCC

tj i→ ( )θ Probability that node j is infected by neighbors 
at time t in the absence of neighbor i

zj i→ Probability that node j is infected by neighbors 
in the absence of neighbor i

tx xi j( )ψ Probability that nodes i and j are in the xi and xj 
state, respectively

tx x xi j
( )φ
ℓ

The probability that nodes i, j and ℓ are in the xi, 
xj and xℓ state, respectively

t( )Φ Probability that a randomly selected edge has not 
transmitted the infection to a neighbor by time t

tS( )ξ Probability that a neighbor of a node is in the 
susceptible state at time t

tI( )ξ Probability that a neighbor of a node which is 
in the infected state and has not transmitted the 
infection to it by time t

tR( )ξ Probability that a neighbor of a node is in the 
recovered state and has not transmitted the  
infection to it by time t

Table A1. Definitions of parameters and abbreviations.

Parameter/ 
Abbreviation Definition

MF approach Mean-field approach
HMF approach Heterogeneous mean-field approach
QMF approach Quench mean-field approach
DMP approach Dynamical message-passing approach
PA approach Pairwise approximation approach
LP approach Link percolation approach
EBC approach Edge-based compartmental approach
CTM approach Continuous-time Markov approach
GCC Giant connected cluster
P(k) Degree distribution
A Adjacency matrix
B non-backtracking matrix
E Number of edges in the network
N Network size
p Edge occupancy probability
g The relative size of the GCC
u The endpoint of a randomly selected edge  

is not connected to the GCC
tr Recovery time
fi Probability that node i is infected by neighbors

j( )N Neighbor set of node j
G0(x) Generation function of the degree distribution
G1(x) Generation function of the excess degree  

distribution
MR The final fraction of recovered nodes
ν Exponent of power-law degree distribution
k⟨ ⟩ Average degree

k2⟨ ⟩ Second moment of the degree distribution
kmax Maximum degree of networks
λ Infection transmission rate
γ Recovery rate
β Effective transmission rate

t( )ρ Fraction of infected node at time t
t( )ρ→ Vector of tk( )ρ

( )ρ ∞ Fraction of infected node in the steady state
s(t) Fraction of susceptible node at time t
sc Cutoff in the cluster size to split epidemic from 

outbreaks
tk( )ρ At time t, the fraction of infected node with 

degree k
sk(t) At time t, the fraction of susceptible node with 

degree k
t( )Θ Probability that a susceptible node connects to 

an infected neighbor
ti( )ρ Probability of node i in the infected state at time t

si(t) Probability of node i in the susceptible state at 
time t

r(t) Fraction of removed node at time t

cβ Epidemic threshold
pc Critical edge occupied probability

c
MFβ Epidemic threshold predicted by the MF 

 approach

c
HMFβ Epidemic threshold predicted by the HMF 

 approach

Parameter/ 
Abbreviation Definition
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