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The g-state Potts model on the triangular lattice with both two- and three-spin interactions K
and L (the Schick-Griffiths model) is shown to be equivalent to the g-state Potts model on a 3-
12 lattice with only two-spin interactions J; and J,. In particular, the J; >0 and J, >0 model is
mapped into a Schick-Griffiths model for a range of the coupling parameters K and L, so that
the two models are in the same universality class. We also show that a recent conjecture by
Tsallis on the critical point of the 3-12 model is incorrect.

Consideration of spin models with multispin in-
teractions has proved to be fruitful in many fields of
physics, ranging from the determination of phase dia-
grams in metallic alloys!'? and exhibition of new
types of phase transition,? to site percolation.*® Most
of these considerations are carried out for one- and
two-component systems.

Several years ago, Schick and Griffiths® introduced
a three-state Potts model with both two- and three-
site interactions to describe the antiferromagnetic or-
derings on the triangular lattice. Since then this
problem has received considerable attention. Analy-
ses of the model have been carried out by renormali-
zation group,® series analysis,” and by Monte Carlo
simulation®; the generalization of the model to ¢
states has also been proposed.’ In particular, the
g =1 limit leads to site-bond percolation on the
honeycomb lattice,!!! and a special g = o limit gen-
erates the hard hexagon problem’ solved by Baxter.!2
The general g problem also admits some graph-
theoretical formulations.” Despite these efforts, how-
ever, the critical properties of the g¢-state Schick-
Griffiths model have remained unknown; the loca-
tion of the critical point is also undetermined.!?

In this Communication we report on some exact
results on the g-state Schick-Griffiths model. First
we establish an equivalence of the Schick-Griffiths
model with a Potts model on the 3-12 lattice with
pure two-site interactions. An immediate conse-
quence of this equivalence is that the two models are
in the same universality class, thus having the same
set of critical exponents. This result, while plausible
on intuitive grounds,!* does not appear to have been
proved rigorously. The equivalence of the two
models also permits us to test the validity of a recent
conjecture by Tsallis!® on the critical trajectory of the
Potts model on the 3-12 lattice. We shall see that in
terms of variables in the Schick-Griffiths model the
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Tsallis conjecture is incorrect.

We begin by showing in Fig. 1 the triangular lat-
tice, on which the g-state Schick-Griffiths model is
defined, and the related 3-12 lattice; the two lattices
have N and 6N sites, respectively. The Schick-
Griffiths model has nearest-neighbor pair interactions
K and a triplet interaction L between the three sites
surrounding each triangular face. The reduced Ham-
iltonian is
—_—:’—C=K E S o, O'j)+L E (o, (TJ')S](;(O'j, o)

kT (i (i) )

Here the first summation is over all neighboring sites
iand jand the second summation is over all triangu-
lar faces surrounded by sites i, j, and k. The spin
state at the ith site is specified by o;=1,2, ... ,4.
The 3-12 lattice has a similar reduced Hamiltonian,
but with only pair interactions J; and J,.

The equivalence of the two Potts models is sum-
marized as follows:

eX=s(J)I1 +q/(u2+3u)]? , 2)
el=1+¢*(*+3u>— @) /(> +3u+q)* , (3)
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FIG. 1. (a) The triangular lattice showing the Schick-
Griffiths model with two-site interactions K and three-site
interactions L. (b) The 3-12 lattice (solid lines) with interac-
tions J; and J, and its dual, the Asanoha lattice (broken
lines) with interactions J* and J5".
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where

u=e2—1 @)
and

s(x)=1+gq/(e*—1) . ©)

For continuity in reading, we reserve the derivation
of (2) and (3) to the end of this paper, and focus our
attention now on the implications of this equivalence.
The equivalence (2) and (3) is valid for any value
of the parameters, real or complex, but in practice
one is interested only in real values of interactions.
Therefore, it is necessary to consider J; >0 and
J, >0, since el has the sign of u or J; and, for ¢
> 1, eX has the sign of J;. It follows from (2) that K
>0. However, L can take on any value in (—oo,l,),
where the maximum value , =In[1+¢*2(2 +q )/
(3424 )31 >0 is attained at u =+/q.
Schick and Griffiths® introduce the variable

M=3K+2L (6

in place of L for reasons of symmetry. Using (2) and
(3), we find

eM=s3(JN[1+qQBu+q) /(WP +3u)]1> . (7)

For a given J, >0 and J, > 0, one can always use (2)
and (7) to find the equivalent K and M. In fact, the
transformation (2) and (7) maps the quadrant J; >0
and J, > 0 onto a region R bounded by the line seg-
ments

M=3K +21,>2In(1+Vg) (8)
and
M=3K <2In(Bup+q) , )

where ug +3ud =g, and a curve C given parametri-
cally by (2) and (7) with s(J;) =1. A plot of the re-
gion R for ¢ =100 is shown in Fig. 2. For smaller
values of g the plot is similar, with the area between
M =3Kand M =3K +21I, less pronounced. We
note that R is always in the ferromagnetic regime
{M > K,M > 0} of the Schick-Griffiths model.

The critical point of the Schick-Griffiths model is
exactly known for L =0,1%17 leading to an exact criti-
cal point at (M,K) =(3a,a) along the line M =3K,
where a is the root of the cubic equation

xX*=3x+qg-2 . (10)

It is significant that this point, indicated by X in Fig.
2, lies below the curve C for all ¢g. It is also clear that
the exact critical trajectory of the Schick-Griffiths
model will always intersect R. Then along this por-
tion of the critical trajectory at least, the Schick-
Griffiths model is in the same universality class as
the Potts model with pure pairwise interactions.!® In
particular, the exponents will have the den Nijs??
values for all ¢. For fixed g, the exponents take on
the same (universal) values along this section of the
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FIG. 2. The region R (shaded area) derived from the
transformation (2) and (3) for J; >0 and J, >0, and
q =100(199=0.686). The plots for smaller values of g are
similar, but the region 3K <M <3K +21, is less pro-
nounced. The curve C is obtained from (2) and (7) with
s(J;) =1. The cross denotes the exact critical point at
M =3K =4.723 and the heavy broken line denotes the locus
of the (exact) critical trajectory.

critical trajectory. Of course, we cannot rule out the
possible existence of a multicritical point outside the
range R. For g =3, this multicritical point occurs in
the second quadrant in Fig. 2 (K <0, M >0).73
Our results suggest that this multicritical point moves
to the right along the critical trajectory as g increases,
and it would be of interest to test this proposal by
numerical calculations.

It must be pointed out that the universality class
argument breaks down at any critical point which
happens to lie on the line segment (8) where the
derivative dL/du vanishes. It seems, however, that
this will not happen, as borne out by the exact result
for ¢ =2, and numerical results for ¢ =1, 3.

Very recently Tsallis!® has conjectured that the crit-
ical trajectory of the 3-12 Potts lattice of Fig. 1(b)
takes the form (10) with

_ s(Is*(J) +q 11

= 11

YT +s(Uy) +q—2 an
Using (2) and (3), we reduce (11) to

x=eK+ | 12)

so that the Tsallis conjecture can be restated in the
Schick-Griffiths variables as

KPBL=3eKktL L g2 | (13)

It is sufficient to disprove the conjecture (13) by
showing that it is incorrect in one special case. Con-
sider the hard hexagon problem limit of K — oo,

L ——co, eK*L—[(gq—1)/z1"6, and q — oo, for
which the critical point is known to be z.=(11
+5+/5)/2.7 1t is readily seen that (13) does not yield
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this value, and therefore must be incorrect.

The conjecture (13) is presumably restricted to the
region R corresponding to J; >0 and J, >0. It is of
interest, however, to continue outside R and compare
(13) with an earlier conjecture made by one of us®

SKPL=3eK4g -2 (14)

The two conjectures are identical for L =0 and for

g =2, a curious coincidence which happens to lead to
the exact critical point. For other values of the in-
teractions one can only compare with numerical
results. In the ¢ =3 model Enting and Wu’ have
shown that the Wu conjecture (14) gives the errone-
ous result K, =—oco along the coexistence line (M
=0) as compared to the numerical estimate of
K,=-2.00.7% In contrast, the Tsallis conjecture, if
continued to M =0, gives a value K,=—1.26189.
For site-bond percolation on the honeycomb lattice
(see, e.g., Ref. 20) the conjectures (13) and (14) lead
to the expressions

ps=1—2sin(7/18) =0.652704 . .. (15)
and
1+p3s2=3p2%2 , (16)

where p and s are, respectively, the critical bond and
site occupation probabilities. For pure bond percola-
tion (s =1) both (15) and (16) lead to the exact p,.
But for pure site percolation (p =1), (15) and (16)
lead to the critical probabilities s, =0.652 704 and
s.=0.707107. Both values differ significantly
from the best numerical estimate of s, =0.6962
+0.0006.21:22

Finally, we sketch the derivation of (2) and (3).
Consider the dual of the 3-12 lattice, the Asanoha or
hemp-leaf lattice, shown by the broken lines in Fig.
1(b). The interactions of the Asanoha lattice are J;*
and J given by the duality relations

=5, e =s(ly) . 17

Consider next the three intersecting J5 bonds, and
perform a star-triangle transformation as shown in
Fig. 3. It is well-known!® that such a transformation
is valid for special values of K* and L* given by
wr o uF
2 2 _
e[(* - e +e + q 2 , (1 8)

S
(Be'? +e'? +q—2)°

30X ¥
eL*= (e 2 +q—1)(3€ 2 +q—3)2 . (19)

wX gk
(2 +e'?+g—2)°

FIG. 3. The star-triangle transformation used in the
derivation of (18) and (19).

Therefore, for J, fixed we determine J5, hence

K* L*, from (17)—(19) to effect the star-triangle
transformation. This procedure results in a Schick-
Griffiths model with interactions

K=Jf +2K*, L=L* , (20)

which are independent of one another, thus complet-
ing the transformation. One obtains the relations (2)
and (3) after combining (20) with (17)—(19).

The equivalence between the partition functions of
the two models of Fig. 1 can also be calculated and -is
found to be given by

ZUn) =1 =132 = 1)%(2+2) /417 Z (K. L)
o)

The above transformation can be extended to the
case in which alternating triangular faces have arbi-
trary three-spin interactions L and L’,° so that our
results apply to the Kim-Joseph!® model (L’=0) as
well as the Schick-Griffiths® model (L =L').

In summary, we have mapped a g-state Potts
model with two-spin couplings into a particular Potts
model with both two- and three-spin couplings. This
result is important because it suggests that recent ex-
periments on systems with multisite interactions®
may not necessarily find critical behavior different
from systems with only two-site interactions.
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