PHYSICAL REVIEW
LETTERS

VOLUME 48

22 MARCH 1982

NUMBER 12

Domany-Kinzel Model of Directed Percolation: Formulation as a Random-Walk Problem
and Some Exact Results

F. Y. Wu
Department of Physics, Northeastern University, Boston, Massachusetts 02115

and

H. Eugene Stanley
Center for Polymer Studies, Boston University, Boston, Massachusetts 02215
(Received 28 December 1981)

It is shown that the directed percolation on certain two-dimensional lattices, in which
the occupation probability is unity along one spatial direction, is related to a random-
walk problem, and is therefore exactly solvable. As an example, the case of the trian-
gular lattice is solved. It is also shown that the square-lattice solution obtained previ-
ously by Domany and Kinzel can be derived using Minkowski’s “taxicab geometry.”
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Directed percolation® has aroused considerable
recent interest among workers from many fields
of physics, because of its applications ranging
from Reggeon field theory? to Markov processes
involving branching, recombination, and absorp-
tion that arise in chemistry and biology.® The
combination of renormalization-group, Monte
Carlo computer -simulation, and series-expan-
sion procedures has led to a great deal of prog-
ress,*"1°

Relatively little is known in the way of exact
solutions for the directed percolation problem.
However, in a recent Letter, Domany and Kinze
have proposed a particularly elegant model of
directed percolation for a square lattice which is
amenable to exact solution. Consider a bond
percolation process for which the horizontal and
vertical bonds are intact (occupied) with respec-
tive probabilities p, and p,. Adopt the “sun-belt”
convention of placing westward and southward
arrows, respectively, on all horizontal and verti-
cal bonds.’? Domany and Kinzel considered gen-
eral py, py and also obtained for py=1, p,=p a
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closed form expression for the probability,
P(R, p), that a site R located to the south and
west of the origin could be reached by one or
more connected paths. They found that for large
R, there exists a p (R/|R|) such that P(R, p =p,)
=1 and that P(R, p ~p,~) ~exp(-R/&) with £=(p,

- p) =2,

Here we present the following further exact re-
sults on the Domany-Kinzel problem:

(i) We show that the Domany-Kinzel model of
directed percolation is related to a random-walk
problem.

(ii) We show more generally that directed perco-
lation on certain two-dimensional nets in which
the occupation probability is unity along one spa-
tial direction can also be formulated as a random-
walk problem, leading to a simple derivation and
analysis of the solution. As an example, the tri-
angular lattice is treated.

Consider first the Domany-Kinzel problem of
an infinite square lattice whose sites are denoted
by the coordinates (i,7), and let 0=(0,0), R=(N
-1, L), so that point R is N -1 units to the west
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of the origin and L units to the south of the ori-
gin.’? A bond configuration of the lattice is perco-
lating if there exists at least one directed path
running from O to R. Then the key to the Domany -
Kinzel solution lies in the fact that a unique path
can be singled out for each percolating configura-
tion. This can be accomplished by adopting the
convention of following the downward arrow when-
ever possible. Thus, starting from 6, one trav-
erses horizontally, unless there is a down arrow
originating from 6, in which case one follows the
down arrow immediately. Generally, one follows
the first down arrow en route to the next row, and
repeats the process. Clearly, a unique path con-
necting O to R will be singled out by this process
in each percolating configuration. (The path
shown in Fig. 1 of Ref. 11 follows the opposite
convention, going from R to 6, but the effect
is the same.)

Since p,=1, a given configuration must be
percolating as soon as the path reaches row L
at any point (z, L) with 0 <z <N -1, Hence one
can write

- N=-1
P(Rap) = E an,L-l ’ (1)
n=0

where W, ;_, is the probability that the path

shall reach the point (#, L =1) on row L~1, In
writing (1), we have already summed over all
percolating configurations corresponding to the
same path. Consider now the paths running from
(0,0) to (n, L =1). There are precisely » horizon-
tal and L -1 vertical arrows in such paths, with
each vertical arrow carrying a weight (probabil-
ity) p and each horizontal arrow a weight (prob-
ability) ¢g=1-p. It follows that

W L1 =pL-lann,L-1 ’ (2)

where C, ;_, is the number of distinct paths con-
necting (0, 0) and (n, L ~1). Since the vertical
and horizontal arrows can occur in any order,
we have

Cn,L-1=<nzL_-1-1>' )

This is the result of Domany and Kinzel who de-
rived it using a different (and more involved)
method of counting and analyzed it using a meth-
od whose generalization to other lattices is not
apparent,

It is of interest to point out here that the num-
ber C, ;-, also arises in taxicab geometry, a
metric system first proposed by Minkowski over
70 years ago,'® as the number of “straight” lines

776

between two fixed points.™ Specifically, C, ;-
is the total number of distinct “taxicab routes”
from point (0, 0) to point (z, L —1) on a directed
lattice; that C, -, is simply given by Eq. (3) is
demonstrated clearly in a recent popular account
of Minkowski’s taxicab geometry.'®

The paths connecting (0, 0) and (n, L —1) can
also be regarded as those traced by a random
walker on a directed lattice. Then W, ;_, is the
probability that the walker will eventually reach
(n, L =1). The formulation as a random-walk
problem offers a natural and clean way to ana-
lyze the results (2) and (3); it can also be ex-
tended to other two-dimensional lattices when
the occupation probability is unity along one spa-
tial direction.

As an example, consider the directed percola-
tion problem on a triangular lattice in which the
horizontal bonds are present with probabilities
py=1, the vertical bonds with probabilities p
=p, and the diagonal bonds with probabilities p
=p’. All bonds are directed in the south, west,
and southwest directions as shown in Fig. 1. We
again compute the probability P(R, p, p’) that the
sites 0=(0, 0) and R=(NV - 1, L) are connected by
at least one directed path. The Domany-Kinzel
case is recovered by taking p’=0.

As in the Domany-Kinzel problem, a key step of
the solution is to devise a convention which will
generate a unique path connecting O and R in per-
colating configurations. For this purpose we
adopt the convention of following the arrows in
the order of vertical, diagonal, and horizontal
at each site. Thus, starting from O and follow-
ing arrows according to the order just described,
we shall always reach Rin configurations which
are percolating.'® This convention also assigns
the weights p, ¢gp’, and gq’, respectively, to
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FIG. 1. A typical percolating configuration for the
triangular lattice with N —1=6 and L = 4. The bonds
are all oriented, and are intact with respective prob-
abilities py=1, py=p, and pp=p’. The heavy lines
denote the unique path associated with this configura-
tion.
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the vertical, diagonal, and horizontal arrows along the path, where g=1-p and ¢’'=1-p’.

In analogy to (1), we now have

N=2 ©
P(R’pypl) =(1 - qq,) E Wn,L-l +,DWN—1,L-1 = 1 —(1 —qq') E Wn,L-1 +pWN-1,L-19 (4)
n =0 n=N-1

where we have distinguished the case #=N ~1 from the cases 0 sn <N -2, The second equality follows
from the elementary fact that the point (e, L) is connected to the origin with probability 1.

To proceed further, we now regard W, .-, as the probability that a walker will reach (r, L —1) from
(0, 0) in a random walk on the triangular lattice with anisotropic probabilities 0, 0, 0, g¢’, p, gp’ for the
six directions. Then W, ;-, can be computed by standard means, leading to the expression'’

exp| —ing, —i(L ~1)@,]

1 T
W, o= do,d : : - -,
niL1 (217)2[]:« #1992 T g explioy) - pexp(ip,) — ap’ expli ¢, + ¥y |

Simply stated, W, ;_, is the coefficient of xyL-t
in the expansion of [1~qq'x —py —qp’xy] . If
we introduce z, =exp(-i¢,) and z,=exp(-ig,), the
integrations in (5) become contour integrals
around the unit circles in the z, and z, planes. It
is readily established that the simple pole in the
z, plane is always within the unit circle |z,|=1.
Therefore, after carrying out the z, integration,
we obtain

(5)

where
F, . (2)=2"(pz+qp' ) ""/(2 —qq')*. (7

For the Domany-Kinzel case, p’'=0, ¢’=1, and
(7) reduces to F, ;(2) =p* 2"t /(z = g)%, so
that a straightforward integration of (6) leads to
the result (2) and (3). For the general problem,
a direct evaluation of (6) and (4) yields a double
series which is not easily analyzed. But we can
substitute (6) into (4) and deform the contour in

—(Ll;
Wa, 2-1=(z z)Eﬁllz!ﬂ Foi(2)dz, (6) the first term to |z|=», gqq’ <7 <1, to permit
| carrying out the summation. This leads to
. 1-gq’ az
z|=r 2=

The integrals in (8) can be evaluated by the
method of steepest descent. For N =alL large, o
finite, we write Fy (2) =[ fo(2) ]*, fo(2) =2%(pz
+gp')/(z = qq’), and find that the integrand is
stationary at z, determined by f’(z,) =0. It can
be verified that f.(z,) attains its maximum value
of 1 at z,=1 and that 2,21 for a sa,, where «,
=q/(1 -qq’). Therefore F, (z,) =0 for z,+1 and
Fy, (1) =(1 =¢¢’)”". In the second integral in (8),
we can always deform the contour to pass z, so
that it gives rise to zero contribution after using
the method of steepest descent. The first inte-
gral is again zero for o >a,, since in this case
2z,<1 and the contour can be deformed continuous-
ly to the stationary point. But for a <« this de-
formation sweeps past the simple pole at z =1,
generating a residue —(1-gq’)Fy_,, (1) =-1.

For a=a, only half of the residue is generated.
Thus we find'®
PR, p,0')=1, a>a,,

1
0, a<a,,

"

, a=ag. (9)

=

In fact, for a<a,, we find after Taylor expand-
ing about z2,=1, P(R,p,p’) =[fol2,)]* ~exp(-R/E),

|With ¢~(a, —a)"% This leads to the same crit-
ical exponent v =2 as in the Domany-Kinzel solu-
tion, ™ reflecting a Gaussian distribution of the
profile of the percolation cone.?° It is also in-
structive to note that for p =0 (g =1) the lattice
is again simple quadratic with R situated at (N
- L~1,L). The resulting critical value then
reads a,-1=¢q'/(1-¢q’), in agreement with that
of Domany and Kinzel.

The connection of directed percolation with a
random-walk problem is more general and ap-
pears to be applicable whenever a unique path
can be associated with a percolating configura-
tion. In particular, it is applicable to the perco-
lation problem for which any number of bonds
are present between the sites (¢,j) and (i =k, j
+1), k=-1,0,1,2,3,..., with respective prob-
abilities p,, in addition to p,=1. In such cases
P(R,{p,}) can always be computed by considering
a corresponding random-walk problem.
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An exact vacuum solution of Einstein’s field equations is presented, deseribing two
isolated bodies balanced by their gravitational spin-spin interaction.

PACS numbers: 04.20.Jb

It is well known that Curzon’s static bipolar solution of the Einstein field equations® which describes
the axisymmetric gravitational field of two separated masses fails to satisfy the condition of elementary
flatness on the part of the axis between the two masses. In physical terms this can be interpreted as
meaning that the masses are held apart by a strut.®* With the recently developed techniques for gener-
ating stationary axisymmetric solutions from static ones, the question arose whether it is possible to
stabilize two masses by addition of angular momentum. This is indeed the case.

The metric for space-time has the usual form

ds?=f"Ue?(dp? +dz?) +p%d ¢%] —f (4t - w d@)?,

and Curzon’s bipolar solution for equal masses is given by

1_ 2
fo=e®=exp|- 4mx/(?~y?)], v, =—m®es _§2)4

(62 =1)(c* +6x%2 499 + (2 = y2)3], w,=0,
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