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We propose numerical methods to evaluate the upper critical dimension dc of random percolation clusters in
Erdős-Rényi networks and in scale-free networks with degree distribution P�k��k−�, where k is the degree of
a node and � is the broadness of the degree distribution. Our results support the theoretical prediction, dc

=2��−1� / ��−3� for scale-free networks with 3���4 and dc=6 for Erdős-Rényi networks and scale-free
networks with ��4. When the removal of nodes is not random but targeted on removing the highest degree
nodes we obtain dc=6 for all ��2. Our method also yields a better numerical evaluation of the critical
percolation threshold pc for scale-free networks. Our results suggest that the finite size effects increases when
� approaches 3 from above.
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Recently much attention has been focused on the topic of
complex networks, which characterize many natural and
man-made systems, such as the Internet, airline transport sys-
tem, power grid infrastructures, and the world wide web
�WWW� �1–4�. Many studies on these systems reveal a com-
mon power law degree distribution, P�k��k−� with k�kmin,
where k is the degree of a node, � is the exponent quantify-
ing the broadness of the degree distribution �5�, and kmin is
the minimum degree. Networks with power law degree dis-
tribution are called scale-free �SF� networks. The power law
degree distribution represents topological heterogeneity of
the degree in SF networks resulting in the existence of hubs
that connect significant fraction of nodes. In this sense, the
well studied Erdős-Rényi �ER� networks �6–8� are homoge-
neous and can be represented by a characteristic degree �k�,
the average degree of a node, while SF networks are hetero-
geneous and do not have a characteristic degree.

The embedded dimension of ER and SF networks can be
regarded as infinite �d=�� since the number of nodes within
a given “distance” increases exponentially with the distance
compared to an Euclidean d dimensional lattice network
where the number of nodes within a distance L scales as Ld.
Percolation theory is a powerful tool to describe a large num-
ber of systems in nature such as porous and amorphous ma-
terials, random resistor networks, polymerization process,
and epidemic spreading and immunization in networks
�9,10�. Percolation theory study the topology of a network of
N nodes resulting from removal of a fraction q�1− p of
nodes �or links� from the system. It is found that in general
there exists a critical phase transition at p= pc, where pc is
the critical percolation threshold. Above pc, most of the
nodes �order N� are connected, while below pc the network
collapses into small clusters of sizes of order ln N. For lat-
tices in d�6, all percolation exponents remain the same and
the system behavior can be described by mean field theory
�9,10�. This is because at dc=6 the spatial constraints on the
percolation clusters become irrelevant and each shortest path
between two nodes in the percolation cluster at criticality can
be considered as a random walk.

In standard percolation theory, and in statistical mechan-
ics in general, most of the models are defined on some lattice
in a d dimensional space. In this case dc, the upper critical
dimension �UCD�, is defined as the lowest dimension d for
which the critical exponents take their mean field value. It is
well known that the UCD for percolation in d-dimensional
lattices is 6. Studies of percolation in ER networks, yield the
same critical exponents as in mean-field values of regular
percolation in infinite dimensions. This is because in ER net-
works spatial constraints do not appear and the symmetry is
almost the same as in Euclidean lattices, i.e., there is a typi-
cal number of links per node. However, SF networks with
2���4 have different critical exponents than ER networks
�11,12�. The regular mean-field exponents are recovered only
for SF networks with ��4. This is due to the fact that for
the classical mean field one needs two conditions �a� no spa-
tial constraint �b� translational symmetry, meaning that all
nodes have similar neighborhood. The second condition does
not apply for SF networks with ��4 due to the broad degree
distribution and thus we expect a new type of mean field
exponents �4�. Indeed, for SF networks with 3���4, the
UCD was shown to be �12,13�

dc �
2�� − 1�

� − 3
. �1�

Thus, dc is larger than 6 and for �→3, dc→�.
The networks discussed in this manuscript are not embed-

ded in any kind of space, and, in fact, cannot be embedded in
any finite dimensional space due to the exponential increase
in the number of nodes per shell. Therefore, it may seem
unnatural to discuss the upper critical dimension, or any
form of geometrical �rather than chemical� dimension.

To make sense of the upper critical dimension, two alter-
nate paths can be considered. One possibility is to start with
an embedded network model, such as the ones suggested in
Refs. �14–16�. Such models describe networks embedded in
a finite dimensional space, where the links between nodes
are not completely random, but rather nodes are connected to
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geometrically close nodes. In this case it is expected that
percolation in such networks will become similar to percola-
tion in mean field networks, in terms of the critical exponents
when the embedding dimension is at least d�dc.

An alternative approach to the critical dimensions, requir-
ing no change in the network generation model, starts with a
mean field, infinite dimensional network. Then, percolation
is performed on this network. When the percolation thresh-
old is reached, one attempts to embed the critical percolation
clusters in a finite dimensional space, where neighboring
nodes in the cluster are connected by a link of distance one
in the lattice. In this case, it is expected that the minimum
dimension needed to allow such an embedding is the upper
critical dimension, dc, and that the fractal dimension of the
embedded cluster will be df. For d�dc the relation between
the geometrical distance R between two sites on the cluster
and the shortest paths is similar to a random walk, i.e., R2

��. This is since space limitations for d�dc do not appear.
Thus, it is reasonable that when � is smaller, the network

is more complex �due to bigger hubs� and a higher upper
critical dimension is expected. However, Eq. �1�, that was
shown analytically to be valid for N→� was never verified
or tested numerically. It is also interesting to determine the
range of N values where the results of Eq. �1� can be ob-
served. Here we propose two numerical methods to measure
directly the value of dc for ER and SF networks with ��3
�17�.

Method I: Finite-size scaling arguments in d-dimensional
lattice networks predict �9,10� that the critical threshold
pc�L� approaches pc� pc��� via

pc�L� − pc��� � L−1/�, �2�

where L is the linear lattice size and � is the correlation
critical exponent. Equation �2� for lattices can be generalized
to networks of N nodes via the relation Ld=N, i.e., pc�N�
− pc����N�−1/d��. Since networks can be regarded as embed-
ded in infinite dimension and since above dc all exponents
are the same, we replace d by dc,

pc�N� − pc��� � N−1/dc� � N−�1. �3�

For ER and SF networks with ��4, we have dc=6 and �
=1/2, thus from Eq. �3� follows

pc�N� − pc��� � N−1/3. �4�

For SF networks with 3���4, we have �=1/2 and substi-
tuting Eq. �1� in Eq. �3�, it yield

pc�N� − pc��� � N�3−��/��−1�. �5�

We denote �1�2/dc as the theoretical value of method I to
distinguish between method I and method II described be-
low. To measure �1, using the finite size scaling of Eq. �3�,
we have to compute the dependence of the percolation
threshold pc�N� of ER and SF networks on the system size N.
To calculate pc�N�, we apply the second largest cluster
method �9,10�, which is based on determining pc�N� by mea-
suring the value of pc at the maximum value of the average
size of the second largest cluster �S2�. It is known that �S2�
has a sharp peak as a function of p at pc �9,10�. To detect this
peak we perform a Gaussian fit around the peak and estimate
the peak position which is pc�N� �18�.

To improve the speed of the simulations, we implement
the fast Monte Carlo algorithm for percolation proposed by
Newman and Ziff �19�. Basically, for each realization, we
prepare one instance of N nodes network with the desired
structure as the reference network. Then we prepare another
set of N nodes with no links as our target network. To keep
track of the size of the second largest cluster instead of the

TABLE I. The main results for SF and ER networks. The critical
percolation threshold pc��� indicates the numerical value calculated
according to Eqs. �6� and �7�. Theoretical � is the theoretical pre-
diction of � �from Eqs. �1� and �3��. Numerical �1 and �2 are the
numerical value we obtained from simulations using the two meth-
ods. The SF networks were generated with kmin=2.

� pc��� Theoretical � Numerical �1 Numerical �2

3.30 0.1271 0.130 0.140

3.50 0.2039 0.200 0.234 0.192

3.65 0.2574 0.245 0.260

3.75 0.2911 0.273 0.275 0.246

3.85 0.3234 0.298 0.284 0.263

4.50 0.5009 1/3 0.326

ER ��k�=4� 0.25 1/3 0.328 0.335
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FIG. 1. �a� The average size of the second largest cluster �S2� as
a function of the concentration p of links present in the ER net-
works. The typical number of realizations for each curve is 106. �b�
Log-log plot of pc�N�− pc��� as a function of N, where pc���
=1/ �k�=0.25 for ER with �k�=4.
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largest one, we use a sorted list of all the clusters in descend-
ing order according to their sizes. In the beginning is a list of
N clusters of size one. As we choose the links in random
order from the reference network and make the connection in
the target network, we update the list of the cluster size but
always keep them in descending order. The concentration
value, p, of each newly connected link is calculated by the
number of links after adding this link in the target network
divided by the total number of links in the reference network.
When each link is connected, we record S2 at the concentra-
tion value p of this newly connected link. We divide the
range 0 to 1 into 1000 bins. After many realizations, we take
the average of S2 for each bin.

Figure 1�a� shows �S2� as a function of p, for two different
system sizes of ER networks with �k�=4. The position of the

peak, obtained by fitting the peak with a Gaussian function,
yields pc�N�. Figure 1�b� shows pc�N� as a function N. Using
pc����1/ �k�=0.25 �6,7�, the fitting of Eq. �3� gives the ex-
ponent �1=0.328±0.003, very close to the theoretical pre-
diction for ER, �=1/3, Eq. �4�. We performed the same
simulations for ER with other average degrees, �k�=5 and 6,
and obtained similar results for �1.

To determine pc��� for random SF networks, we use the
exact analytical results �20�

pc��� �
1

	0 − 1
. �6�

Here 	0��k0
2� / �k0� is computed from the original degree dis-

tribution �P�k0�� for which the network is constructed. How-
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FIG. 2. Log-log plots of pc�N�− pc��� as a function of N for SF networks with kmin=2 and different value of �. The dashed line is the
reference line with indicated slope.
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ever, the way to compute the value of 	0 is strongly affected
by the algorithm of generating the SF network as explained
below.

To generate SF networks with power law exponent �, we
use the configuration model algorithm �21–23�. We first gen-

erate a series of random real number u satisfying the distri-
bution P�u�=cu−�, where c= ��−1� /kmin

1−� is the normalization
factor. Next we truncate the real number u to be an integer
number k, which we assume to be the degree of a node. We
make k copies of each node according to its degree and ran-
domly choose two nodes and connect them by a link. Notice
that the process of truncating the real number u to be an
integer number k which is the degree of a node actually
slightly changes the degree distribution because any real
number n
u�n+1, where n is an integer number, will be
truncated to be equal n. Thus, the actual degree distribution
we obtain using this algorithm is

P�k� = 	
k

k+1

cu−�du =
1

kmin
1−� �k1−� − �k + 1�1−�� . �7�

We use Eq. �7� to compute 	0 and pc��� defined in Eq. �6�.
Table I shows the calculated results of pc��� for several val-
ues of �.

We calculate �S2� for SF networks for different values of
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FIG. 3. The exponent �1�N� as a function of N−x for SF net-
works with kmin=2 and different value of �: �a� �=3.5, where x

0.11 and �b� �=3.65, where x
0.13. The theoretical values �
=0.2 ��=3.5� and �=0.245 ��=3.65�, are consistent with the
asymptotic values of �1�N� obtained for N→�.
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FIG. 4. Log-log plot of pc�N�− pc��� as a function of N for SF
networks with �=2.5, kmin=2 for a targeted attack. The dashed line
is the best fit with slope −0.33. Since we do not have a good esti-
mation for pc���, we modified pc��� to get the best straight line in
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function of the system size N. Results are for ER with �k�=4 ���;
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� and N and compute pc�N� by fitting with a Gaussian func-
tion near the peak of �S2� as for ER networks. Using the
values of pc��� for SF networks displayed in Table I, we
obtain �1 by a power law fitting with Eq. �3� as shown in
Fig. 2. As we can see for �=4.5, 3.85 and 3.75 we obtain
quite good agreement with the theoretical values. However
for �=3.65 and 3.5, the values of �1 become better when
fitting only the last several points �largest N� and still have
large deviations from their theoretical values. This strong
finite size effect is probably since for �→3 the largest per-
colation cluster at the criticality becomes smaller �24�. Thus,
we expect that as N increase, the exponent �1�N� obtained
by simulations should approach the theoretical value of �1
of Eq. �5�. To better estimate �1 we assume finite size cor-
rections to scaling for Eq. �5�, i.e.,

pc�N� − pc��� � N−�1�1 + N−x� . �8�

Thus, the actual �1�N� obtained from simulation is the suc-
cessive slopes

�1�N� � − � ln�pc�N� − pc����/��ln N� , �9�

from which we can see that �1�N� approaches �1 as a power
law

�1�N� − �1 � N−x. �10�

Indeed, Fig. 3 shows the exponent �1�N� as a function of
N−x for �=3.5 and 3.65. Figure 3�a� shows that for �=3.5
and x=0.11, we obtain a straight line and �1�N� approaches
0.2 as N→�, consistent with the theoretical value of �
�Table I�. Figure 3�b� shows, for �=3.65 and x=0.13, �1�N�
is again a straight line that approaches 0.245 for N→�, con-
sistent with the theory.

Next we estimate the value of dc for SF network under
targeted attack on the largest degree nodes �25–28�. For this
case since the hubs are removed we expect that for all �
�2, dc will be the same as for ER, i.e., dc=6. In Fig. 4, we
plot pc�N�− pc��� for SF with �=2.5 under targeted attack.

Indeed from Eq. �3� by changing pc��� and fitting the best
straight line in log-log plot, we obtain �1
0.33, i.e., dc

6, as expected.

Further supports of the analytical approach, we evaluate
by simulations P�s�, the probability distribution of the clus-
ter sizes at pc�N�, which should follow a power law for SF
networks �11�,

P�s� � s−� = s−�2+1/��−2��, 2 � � � 4. �11�

Figure 5 shows the simulations results for SF networks �
=3.5. The dashed line is the reference line with slope −2.67,
which is the theoretical value of � from Eq. �5�, showing
good agreement between theory and simulations.

Method II: We calculate the upper critical dimension us-
ing an alternative approach. Since at the upper critical di-
mension N�Rdc and ��R2, where R is the geometrical dis-
tance, N is the system size and � is the average distance
among all the pairs of nodes in the infinite incipient cluster at
criticality pc, we obtain

l � N2/dc � N�2. �12�

Thus measuring � versus N yields �2�2/dc from which dc
is directly obtained. Using pc��� from Table I, we bomb 1
− pc fraction of links randomly and calculate the average dis-
tance of all the pairs from the largest cluster in the remained
network, which is the infinite incipient cluster. For each sys-
tem size, we uses 10 000 realizations. Figure 6 shows the
results and the exponents obtained using method II are also
shown in Table I. Comparing the results from these two
methods in Table I, we can see that �1 is closer to the the-
oretical values when � approaches 3 and �2 is closer when �
approaches 4, which suggests different behaviors of finite
size effects.
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