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We study the current flow paths between two edges in a random resistor network on aL3L square lattice.
Each resistor has resistanceeax, wherex is a uniformly distributed random variable anda controls the broad-
ness of the distribution. We find that:sad The scaled variableu;L /an, wheren is the percolation connected-
ness exponent, fully determines the distribution of the current path length, for all values ofu. For u@1, the
behavior corresponds to the weak disorder limit and, scales as,,L, while for u!1, the behavior corresponds
to the strong disorder limit with,,Ldopt, wheredopt=1.22±0.01 is the optimal path exponent.sbd In the weak
disorder regime, there is a length scalej,an, below which strong disorder and critical percolation characterize
the current path.
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Transport in disordered media is a classic problem in sta-
tistical physics which attracts much attention due to its broad
range of applications. Examples include flow through porous
material, oil production, and conductivity of semiconducting
materials or metal-insulator mixturesf1–10g. These problems
have been studied using a random resistor network model
with bonds that have a resistance chosen from a probability
distribution mimicking the nature of the physical problem
under consideration. Among the different classes of disorder
distributions used, the most common ispercolationdisorder,
in which the resistance of a bond is either 1 or` f11g. Gauss-
ian distributions andpower-lawdistributions have also been
studied extensivelyf12,13g.

Here, we study a random resistor network withexponen-
tial disorderf14g. We consider the two opposite edges of a
L3L square lattice as sourceA and sinkB. Each bond con-
necting adjacent nodesi and j corresponds to one resistor,
whose resistancer ij is given byf1–4,15g

r ij = eaxij , s1d

wherea controls the disorder strength andxij is a random
number taken from a uniform distributionxij P f0,1g. Recent
experiments show that for quenched condensed granular Ni
thin films, the conductivity is well described by exponential
disorder with largea f2g. Exponential disorder enables us to
understand the magnetoresistance phenomenon that out of
109 grains, only a few govern the electric conductivityf5g.
Optimal paths in networks have also been studied with ex-
ponential disorder, where the optimal path is the path be-
tween two sites that minimizes the total weightopathe

axij

f16–20g, where the sum is over the bondssi j d along the path.
The length of the optimal path,opt has been shown to scale
with the system size asLdopt for the strong disorder limitsa
→`d f21g, where a single bond dominates the optimal path
sand conductance as we see belowd. The strong disorder limit

only has been related to critical percolationf1–3,19g.
Here we show that for exponential disorder, the flow paths

for all values ofa are controlled by critical percolation and
by the scaling properties of the optimal path in the strong
disorder limit. Indeed, the resistance of each path is equal to
the sum of its resistances. Whena→` the resistance of each
path is dominated by the largest resistance on this path
expsaxmaxd. Almost all currents must go along the path which
minimizesxmax. We denote this min-max value of disorder as
x1;minall pathsxmax. Among all the paths which go through
the bond withx1, the maximum current goes along the path
which minimizes the second largest value of disorderxmax8 ,
and so on. Thus the algorithm of selecting the path with the
maximum current is equivalent to selecting the optimal path
in the strong disorder limitsultrametric algorithmf16gd. As
a→` the maximum-current path coincides with the optimal
path in the strong disorder limit. On the other hand, since all
valuesxij on the maximum-current path are belowx1, this
path must belong to the percolation backbone with concen-
tration p equal to the fraction of bonds whosexij ,x1 f22g.
The value ofp at which percolation between two edges of
the system does occur has a narrow distribution with a mean
of p=pc and a standard deviation that scales as,L−1/n f23g,
wherepc is the critical percolation threshold,L is the linear
system size, andn is the connectedness length exponent.
Thus the value ofx1 also must have a narrow distribution of
width ,L−1/n.

Next we estimate the valuea at which the maximum-
current path starts to bifurcate. Consider the paths which do
not pass through bondx1 as if this bond has been cutf2g. The
maximum-current will then pass through bondx2.x1, which
is characterized by the same narrow distribution. Hencesx2

−x1d is of the order ofL−1/n. These paths become competitive
with the true optimal path if its resistance expsax2d becomes
of the same order as expsax1d or if asx2−x1d<aL−1/n<1.
This condition determines the crossover from weak to strong
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disorder. IfL!an, the disorder is strong and the maximum-
current path does not bifurcate. IfL@an the disorder is weak
and the maximum-current path can bifurcate. Moreover, the
value j,an determines the connectedness length below
which the disorder is strong and the maximum-current path
is determined by the unique optimal path and above which
the maximum-current path bifurcates.

To confirm these analytical predictions, we study the
problem numerically. If we define the electric potential at
nodei of the lattice asVi, and set the potentials at source and
sink asVA=1 and VB=0, we numerically solve the set of
Kirchhoff equations for allVi f24g. We begin by building an
intuitive understanding of the effect of changing the strength
of disorder on current flow. Figures 1sad–1scd show, for dif-
ferent values ofa, the magnitudes of the bond currents rep-
resented by the density of dots on each bond. We see that the
set of bonds carrying most of the current decreases asa
increases, so that only a few current paths dominate. This
confirms earlier findings that for largea, one or very few
paths dominate the current flowf1–3,8g. In Fig. 1sdd, we plot
the optimal path for the same disorder realization. The simi-
larity between the path of the current carrying bonds in Fig.
1scd and the optimal path in Fig. 1sdd exhibits how these two
quantities are related in the strong disorder limit and supports
the argument above that the maximum-current path coincides
with the optimal path.

Figure 1 illustrates that the paths used by the current are
intimately related to the disorder of the system. Therefore,

we study the ensemble of current paths on the lattice by
performing tracer dynamics with the particle launching algo-
rithm f25g. For a given realization, all bond currents are de-
termined by Kirchhoff equations and then tracers are injected
into nodeA and extracted at nodeB. At a given node, the
tracer follows the bond from nodei to j with probability

vi j =
Jij

o j
Jij

, s2d

where j runs over all the neighbor bonds of nodei, Jij = I ij if
I ij ù0, andJij =0 if I ij ,0, so that only “out” currents are
taken into account.

To understand the behavior of the current flow in the pres-
ence of disorder in all ranges of disorder, we calculate the
length distribution of all tracer paths,Ps, uL ,ad, from A to B
for a system of linear sizeL and disorder strengtha. We first
fix u;L /an and calculate the distributionPns,d; Ps, uL ,ad
for different system sizesL and the corresponding values of
a=sL /ud1/n. We obtain weak disorder whenu@1 and strong
disorder whenu!1, as found for the optimal path in net-
works f26g and as shown below for current flow. Moreover,
we find thatu is the only parameter that characterizes the
disorder and thus determinesPus,d.

In Fig. 2sad we show three normalized distributionsPus,d
with u=10 sweak disorderd, which collapses to a single curve
as shown in Fig. 2sbd. Figure 2sbd also shows two other
peaked curves withu=1.26 sclose to the crossoverd and u
=0.25 sstrong disorderd. Each curve shows the collapse of
three distributions with different system sizesL but the same
value ofu. This collapse implies thatPs, uL ,ad is controlled
by a single parameteru,

Ps,uL,ad ,
1

Ldopt
fuS ,

Ldopt
D . s3d

We confirmed this scaling numerically for values ofu be-
tween u=10 sweak disorderd and u=0.25 sstrong disorderd
for a.10 andL.15 f27g.

FIG. 1. Current maps for the same configuration of disorder on
a 15315 square lattice, with different values ofa: sad a=5, sbd a
=20, and scd a=45. Each bond represents one resistor. The dot
density of each bond increases when the bond current increases.
The source has coordinates0,7d and the sinks14,7d. sdd The corre-
sponding optimal path for the same configuration of disorder and
for a=45. The similarity betweenscd and sdd suggests a relation
between current flow paths for largea and the optimal path.

FIG. 2. sad Plot of Ps, uL ,ud vs , for square lattices with fixed
u;L /an=10 and different values ofL. sbd Plot of Ps, uL ,udL1.22 vs
, /L1.22. Three families of curves are shown and each family has the
same ratiou;L /an: u=10 fL=250 ssd, L=300 shd, L=350 sLdg;
u=1.26 fL=30 snd, L=40 svd, L=60 s,dg; u=0.25 fL=15 s1d,
L=20 s3d, L=27 spdg. The distribution curves with the same ratio
of u collapse both in weak disorder such asu=10 and in strong
disorder such asu=0.25, as well as in the intermediate regimeu
=1.26 for a.10 andL.15. We compute all the data with 1000
realizations of disorder and 105 tracers for each realization.
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To understand whyn and dopt play an important role in
determining the length of the current flow path in weak dis-
order as well as in strong disorder, we suggest the following
theoretical argument. In the weak disorder regime, there is a
characteristic lengthj,an below which strong disorder ex-
ists and critical percolation plays a crucial rolef28g. We thus
expect that for length scales up toj the tracers travel on
strong disorder path segments with a typical length of,j

,jdopt, and a tracer length deviation ofsj,jdopt sillustrated
in Fig. 3d. For a system of linear sizeL in weak disorder, the
ratio of the system size to the connectedness lengthu,L /j
roughly indicates the number of independent strong disorder
tracer path segments within a complete tracer path from
source to sink. The total length is obtained by multiplyingu
by the length of a segment,jdopt. Defining ,* as the maxi-
mum of Ps, uL ,ad, we thus predict that in the weak disorder
,* is

,* , ,̄ , ujdopt = Ldoptu1−dopt, s4d

where ,̄ is the mean average path length of the tracers
f29,30g. Thus for all values ofu, ,* can be written in a
unified form

,* , Ldoptg,sud, s5d

whereg,sud is a scaling function that satisfiesffrom Eq. s4dg

g,sud , Hu1−dopt, u @ 1

1, u ! 1.
J s6d

The arguments leading to Eq.s4d for weak disorder, also
imply that the standard deviations of , scales as

s , Îujdopt = Ldoptu1/2−dopt, s7d

and for all values ofu,

s , Ldoptgssud, s8d

with

gssud , Hu1/2−dopt, u @ 1

1, u ! 1.
J s9d

To test Eq.s5d we plot ,* /Ldopt as a function ofu in Fig.
4sad. We find that the best scaling is obtained fordopt=1.22,
the predicted value. WhenL@an su@1d, g,sud is asymptoti-
cally a power-law function with an exponent −0.21±0.02,
which is within the error of the predicted value 1−dopt=
−0.22±0.01ffrom Eq. s6dg. Similarly, in Fig. 4sbd, we plot
s /Ldopt as a function ofu=L /an and find thatgs is asymp-
totically a power law with an exponent −0.72±0.02 as pre-
dicted in Eq.s9d. All these results strongly support our pic-
ture of critical percolation regimes of sizej,an.

Equationss5d and s6d state that tracer path length scales
with system sizeL in the same way as the optimal path
length for all values ofu. For u!1, ,* ,Ldopt and the path is
a fractal with the same exponentdopt as for the optimal path
length,opt. In weak disordersu@1d, we obtain,* ,L as we
do for self-affine structuresf11g. This is consistent with the
interesting possibility that they belong to the same universal-
ity class. Asu!1, current flows only along the optimal path,
which explains the existence of the bottleneck at the perco-
lation thresholdpc f1–3,8g.

Our results also explain the simulation results of Ref.f2g
for the scaled plot logsRcut/Rd as a function ofa/L1/1.3,
whereR is the equivalent resistance of the two-dimensional
random resistor lattice andRcut is the equivalent resistance of
the system after cutting the bond with the maximal local
current. Before cutting this bond, the equivalent resistance in
the strong disorder limit is dominated by the maximal resis-
tance along the optimal pathR,eapc f1,3,8g. After cutting
this bond, the current will reorganize to follow a new optimal
path on which the dominant resistance isR,eap, making the
ratio Rcut/R,easp−pcd=eadp. Using the relationdp,j−1/n

,L−1/n f23g, we find that

Rcut

R
, ea/L1/n

. s10d

This result also analytically supports our assumption that the
ratio L /an characterizes the disorder and determines the
properties of current flow.

FIG. 3. Schematic illustration of the flow path inside and outside
the critical regimes in the weak disorder case,j=an!L. The pa-
rameteru=L /an determines the number of such unitssof sizejd in
a linear sizeL. While the total length of the flow path is linear with
L, for distancey,j sinside the critical regimed, we expect,
,ydopt.

FIG. 4. sad Log-log plot of ,* /L1.22 vs L /an for different values
of a: 10 ssd, 15 shd, 20 sLd, 25 snd, 30 svd, 34 s,d, and L
changes from 20 to 200. The slope of the dashed line is −0.21, in
agreement with Eqs.s5d ands6d. sbd The same assad but for s. The
slope of the dashed line is −0.72, in agreement with Eqs.s8d and
s9d.
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In summary, we find that the tracer path length, in flow
in the presence of exponential disorder behaves similarly to
the optimal path length,opt, and even has the same scaling
exponentssdopt for u!1 and one foru@1d. Moreover, we
also find that when the disorder is weak and,,L, there is a
connectedness lengthj,an, where strong disorder and criti-
cal percolation exist for regimes smaller thanj. As a result,

the probability distribution of, is determined by the ratio
L /an, which is the number of units of sizej,an in a linear
sizeL.
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