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Cascading failures in the internet have attracted recent attention due to their unpredictability and destructive
consequences. Exploring the failure behavior patterns is necessary because they can provide effective interven-
tion approaches to prevent huge network disasters. To analyze internet flow behaviors during cascading failures
(chain reactions in router and link failures), we characterize the internet as two coupled networks, the router
network and the flow network. Here the flow network is an abstract representation of data correlations obtained
from the router network. We use this coupled network to build a cascading failure model for studying flow
transmission and competition, which is reflected in bandwidth competition given by limited link capacity. We
first study the dependency between routers and flows to explore the flow transmission efficiency when a failure
event occurs. Moreover, we find that rerouting enables flow competition area (the number of flows with which
one flow has a competitive relationship) to initially remain stable during a failure episode, but that it then quickly
drops due to poor physical network connectivity. Additionally, in the early stage after the failure event, the degree
of flow competition sharply increases because of the growing number of the flows and congestion. Subsequently,
the flow competition decreases due to the failure of flow transmission.
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I. INTRODUCTION

Cascading failures in complex systems have attracted much
attention in recent years [1–12] due to their destructive conse-
quences. Failure propagations are hard to predict because sys-
tem components are highly interdependent. But small random
attacks [13] can destroy such systems as power grids [14–17],
communication networks [18–20], and transportation sys-
tems [21–26]. Because the internet is highly interdependent
and an essential part of the social infrastructure, it is partic-
ularly vulnerable to network failure. A small initial shock,
such as a flow burst or the breakdown of an internet router
can trigger cascading failure. Understanding the response of
internet flow to the occurrence of failure is essential, because
it directly affects the quality of internet service [27,28]. The
number of internet flows is enormous, and its relationship with
network components (routers and links) is complicated; thus,
analyzing flow behavior is extremely difficult.

Failure will happen in routers and links if they are heav-
ily overloaded, which means that the routers or links are
no longer able to forward upcoming data flows. Therefore,
cascading failures will bring devastating consequences by
destroying network structures and functions. We describe
these consequences as macroscopic behaviors, because they
are happening on real physical entities. Learning macrolevel
behavior during a failure is an efficient and direct approach to
trace the reason behind it, and many researchers have done
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much work on this topic recent years. Crucitti et al. [29]
propose a cascading failure model based on dynamic flow
redistribution. They find that, if a single node is carrying
a load above a certain high threshold, its failure can cause
system collapse. The resilience of the internet has been de-
scribed as “robust yet fragile” (RYF) [30–32]. Guo et al. [31]
propose a load-capacity model based on network dynamic
protocols and flow load patterns to analyze the RYF phase
transformation of network damage during failure. Simulation
results show that the RYF behavior in the internet is similar to
an abnormal network load pattern. Liu et al. [33] discover that
the router failure can increase the flow load pressure of related
routers and cause cascading failure in the router network.
Note that all of these research findings focus on how failure
affects internet macrolevel behaviors, e.g., network efficiency
and network phase transition [34]. An adequate analysis of
microlevel behaviors, such as flow behaviors, has not yet been
carried out.

In this paper we model the internet as two coupled net-
works, the physical network of routers and links and the flow
network of individual internet flows. We use this model to
analyze the flow dynamic behavior in cascading failure, taking
flow rerouting capacity and dynamic network resource allo-
cation into consideration. As to network resource allocation,
bandwidth is one of the most relevant network resources in
the internet; flows with different priorities take up different
bandwidth resources following specific rules, and this is called
network resource allocation.

Based on the cascading failure model established, we study
the dynamic dependency between routers and flows during
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FIG. 1. An example of the internet and the corresponding flow
network. (a) An example of the internet. Nodes represent routers,
edges represent links. Flows numbered 1–5 are transmitted in this
network; flow paths are shown with different colors. (b) The corre-
sponding flow network. In the flow network, each node represents a
packet flow, and the node number in panel (b) is in accord with the
flow number in panel (a). Connections between flows represent the
competitive relationships.

failure. We also examine flow competition behaviors, includ-
ing flow competition areas and competition degrees during
the failure process. Flow competition usually is reflected in
bandwidth competition due to the limited link capacity, and
flow competition area refers to the number of flows with
which one flow has competitive relationships. The behaviors
mentioned above indicate how cascading failure affects inter-
net flow patterns and enable us to increase internet robustness.

We organize the paper as follows. Sections II and III
describe the coupled network and cascading failure models,
respectively. Section IV explains the transmission and compe-
tition behaviors of the internet flows during failure. Section V
is a summary and provides some conclusions.

II. COUPLED NETWORK MODEL

To start, we define what flow is. The internet flow is not a
single data packet. It is a continuous packet flow where pack-
ets have the same source and destination address, belonging
to the same service request.

Since flows compete for finite network resources, such as
bandwidth resource, we construct a flow network to character-
ize the competitive relationships among flows [see Fig. 1(b)].
In the flow network G f = (Vf , E f ), node set Vf represents the
flows in the internet and edge set E f competitive relationships
between flows. Wf = {w f } is the node weight matrix of G f =
(Vf , E f ) that quantifies the degree of flow congestion. w f =
(d f − b f )/d f , where d f and b f represent the flow bandwidth
demand and the actual transmission bandwidth, respectively.

When two flows share links in the internet, there is poten-
tial competition between them, and we connect them in the
flow network. For example, Fig. 1(a) shows a small mesh
network with six routers. Packet flows, numbered 1–5, are
transmitted in this network. Flow 3 and flow 4 share two links
in Fig. 1(a), so there is an edge between node (flow) 3 and
node (flow) 4 in Fig. 1(b). However, there is no connection
between flow 2 and flow 4 because they do not share links. The
flow network reflects the competitive relationships between
internet flows, and we could better observe the competition
degree and its trends during cascading failures by applying
this flow network.

Furthermore, to clearly show how flows and routers inter-
act with each other, we model the internet as two coupled

FIG. 2. The coupled networks of the internet. The top layer is the
flow network. The bottom layer is the router network. Connections
between the two networks reveal the dependencies between flows
and routers.

networks (see Fig. 2); the top layer is the flow network, and
the bottom layer is the router network. We use Gr = (Vr, Er )
to describe the router network, where Vr represents routers and
Er represents links between routers. Wr = {wr} is the edge
weight matrix of Gr = (Vr, Er ) that quantifies the transmis-
sion capacity l of links, wr = l . The dependencies between
the flow network and the router network are established by
the following rule. When a flow passes through a router, there
is a connection between flow and router. For example, flow 3
passes through routers A, B, C, and D [see Fig. 1(a)], so we
connect flow 3 with routers A–D (see dotted lines in Fig. 2). In
return, we could locate one of the possible transmission paths
of a flow by tracing the dependent connections in the coupled
networks.

Cascading failure process is usually described by the chain
reaction in node and link failure. During this failure process,
flow interactions and the dependencies between flows and
routers change because of the rerouting rule; thus the coupled
network established above is also dynamic.

III. CASCADING FAILURE MODEL

In previous work, the cascading failure is usually modeled
by the chain reaction in node failure, where an overload
condition destroys a node as a whole [21–26]. However, this
may not match the real internet. In fact, routers have multiple
ports working in parallel, and link capacity determines the
maximum forwarding packets in each port. If more packets
arrive at the router port than the port capability, the overload
packets will have to wait in a buffer, resulting in link conges-
tions. When the congestion reaches a certain level, the port
stops working normally, resulting in the functional failure in
the attached links. Therefore, in the real internet congestions
will cause failures of the corresponding links, not directly in
the whole router.

Based on the failure principles of ports and links mentioned
above, we abstract the cascading failure process as follows:
in our model of cascading failure, overloaded ports cause
failures in the attached links by losing their ability to transfer
flows, and subsequent flows bypass these failed links and
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choose alternate paths. This causes a redistribution of flows,
which can cause overloads and failures in other links. As
this process continues, cascading failures occur. Recovery is
possible during an overload failure, but it is often slowed by
such complex congestion relief mechanisms, such as buffer
management and queue scheduling [35,36]. Thus, we do not
consider device recovery in our model.

A bandwidth allocation algorithm is introduced to under-
stand how flow load is distributed and overload failure occurs.
In the router network, L = {l} is the transmission capacity of
the link. In the flow network, D = {d} is the flow bandwidth
demand. The B = {b} value is the actual flow transmission
bandwidth. (d − b) is the number of packets waiting in the
buffer per unit time. Obviously, the transmission bandwidth
is no more than the bandwidth demand, i.e., b � d; � =
{φ}denotes the flow priority. Higher priority services can be
transmitted preferentially. In general, the flow transmission
bandwidth is in proportion to its priority [37,38].

For each flow, once its source and destination are deter-
mined, a path from the source to the destination is chosen
based on a specific routing algorithm. If there are multiple
paths, we choose one randomly. Suppose the path of flow fo

is represented by link set {er,1, er,2, . . . , er,i, . . . , er,N }. Using
the proportional allocation algorithm [37,38], the transmission
bandwidth of flow fo allowed by link er,i is

b fo,er,i = min

{
ler,i

φ fo∑
fo∈Fer,i

φ fo

, d fo

}
, (1)

where ler,i is the transmission capacity of link er,i, φ fo and d fo

are the priority and the bandwidth demand of flow fo, respec-
tively, and Fer,i is the set of flows that pass through link er,i.

The transmission bandwidth of flow fo is also affected by
the other links that support its transmission. Since the band-
width is continuous on the whole path, the final transmission
bandwidth of flow fo on every link of its path is decided by
the minimum bandwidth:

b fo = min
{
b fo,er,1 , b fo,er,2 , . . . , b fo,er,i , . . . , b fo,er,N

}
. (2)

For link er,i, the transmission load is

l ′
er,i

=
∑

fo∈Fer,i

b fo. (3)

In the same way, we can calculate the transmission band-
widths of all flows and transmission loads of all links.

Thus far we have obtained the initial flow load distribution
in the network, and we can use this quantity to further study
link overload failures. In the internet, if more packets arrive
at router ports than they are able to process per unit time, the
extra packets wait in a buffer and build up queues. According
to TCP/IP protocol [39], the buffer size is determined by the
link capacity and the round-trip time (RTT) of packets. We
use parameter β to reflect the RTT; then the buffer size is
described as

Qer,i = βler,i . (4)

If the congested packets in link er,i are larger than the buffer
size Qer,i , i.e., when∑

fo∈Fer,i

d fo − l ′
er,i

> Qer,i , (5)

an overload failure occurs in link er,i. Otherwise, link er,i

works normally.
Using the initial flow load distributions of Eq. (1) and the

link failure criterion of Eq. (5),we found the failed links and
temporarily removed them from the network. Flows will then
reroute and find alternate paths based on the new network
structure. Through flow rerouting, flow loads are redistributed
according to the proportional bandwidth allocation algorithm
provided by Eqs. (1) and (2), and can cause failures in
other links. As this process continues, cascading failures
occur.

Based on the failure model established, we further model
the flow behaviors during a failure process. In the coupled
networks of the internet (see Fig. 2), cross-layer connections
between flows and routers reflect the transmission paths of
flows. So we quantify the dependency connections to reflect
the flow transmission efficiency. ρ is the dependency intensity,
which is described as

ρ(t ) = μ(t )

NRouterNFlow
, (6)

where t is the flow load redistribution time, revealing the
failure process. NRouter is the number of routers, and NFlow

is the number of flows. NRouterNFlow denotes all the possible
dependency connections. μ is the actually existing intercon-
nections, which may change during the cascading failure. For
each flow, the connection with routers is one more than its
path length. Thus,

μ(t ) =
∑

fi∈NFlow

[len( fi, t ) + 1], (7)

where len( fi, t ) is the path length of flow fi. ρ then equals

ρ(t ) =
∑

fi∈NFlow
[len( fi, t ) + 1]

NRouterNFlow
. (8)

When the flow number is large enough, we can use average
path length s̄ to further obtain the theoretical value of ρ:

ρ∗(t ) = [s̄(t ) + 1]NFLow

NRouterNFlow
= s̄(t ) + 1

NRouter
, (9)

where s̄(t ) is the average path length of flows. Usually, a lower
value of ρ∗ means a shorter average path length of flows,
implying a higher flow transmission efficiency.

In addition to flow transmission behaviors, we also model
flow competition behaviors. The giant component in a net-
work is often used to measure the effect of cascading fail-
ures [40–43]. In a flow network, gF reflects the maximum
competition area:

gF = N ′
Flow

NFlow
, (10)
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where N ′
Flow is the number of flows in the giant component of

flow network.
Further, the flow competition degree γ is described as

γ = 1

NFlow

NFlow∑
i=1

ki(t )

kmax
w fi (t ), (11)

where ki is the degree of flow fi, and kmax is the initial
maximum degree of flows. ki/kmax quantifies the competition
density of fi; w fi is the congestion degree of fi that quan-
tifies the competitive strength. According to the definition
of w fi ,

γ = 1

NFlowkmax

NFlow∑
i=1

ki(t )

[
1 − b fi (t )

d fi

]
. (12)

The maximum value of γ equals

γmax = 1

NFlowkmax

[
1 − bmin(t )

dmax

] NFlow∑
i=1

ki(t )

= k̄(t )

kmax

[
1 − bmin(t )

dmax

]
,

(13)

where k̄(t ) is the average degree of flows, bmin(t ) is the
minimum transmission bandwidth of flows, and dmax is the
maximum bandwidth demand of flows.

We have modeled flow behaviors from perspectives of
flow transmissions and flow competitions. In the next section,
simulations are conducted by utilizing our model.

IV. SIMULATION AND ANALYSIS

To generate the router network, a Barabási-Albert (BA)
network and the Erdős-Rényi (ER) random network are taken
into consideration. For BA scale-free networks, the network
size is NBA = 2000 with exponent λ = 2.6. For ER random
networks, NER = 2000 and the average degree is k̄ = 10. We
use α to adjust the link transmission capacity:

l = αl0, (14)

where l0 = 10(Gps) is the basic capacity and β = 0.1(s) to
measure the average RTT of packets.

To initially trigger cascading failures, we randomly and
intentionally select 5% of routers for attack respectively,
induce a redistribution of flow load, and create a congested
network environment. Both attacked routers and attached
links are removed. When the attacks are random, the routers
are removed indiscriminately. When they are intentional, the
higher degree routers are removed. Here 100 000 flows are
randomly distributed in the router network, which means the
source-destination pairs are randomly chosen. The paths are
assigned through the Dijkstra shortest path algorithm. Flows
are endowed with random priorities � ∈ {1, 2, 3, 4, 5}, and
flow bandwidth demands obey a normal distribution d ∼
N (0.2, 0.4).

Figure 3 shows the dependency intensity ρ in several cou-
pled networks under different attacks when α = 1. The x axis
(t ) is the flow load redistribution time, revealing the failure
process. In the rest of the paper, for simplicity, the coupled

FIG. 3. Dependency intensity when ρ when α = 1. t is the load
redistribution time, revealing the failure process. For a BA coupled
network and ER coupled network, the router number is NRouter =
NBA = NER = 2000; 5% of routers are initially attacked. β = 0.1 to
measure the average RTT of packets. 100 000 flows are randomly
distributed with random priorities � ∈ {1, 2, 3, 4, 5}. The paths are
assigned through the Dijkstra shortest path algorithm. The flow
bandwidth demands obey a normal distribution d ∼ N (0.2, 0.4).
Simulation settings are the same below.

networks derived from the BA scale-free internet is called a
BA coupled network, and the coupled networks derived from
the ER random internet is called the ER coupled network.
From Fig. 3 we can see that ρ and ρ∗ have almost the same
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tendency, which means ρ does have a positive correlation
with the average path length of flows s̄. Utilizing this, we can
measure the flow transmission efficiency by ρ. For example,
BA networks are more efficient in packet delivery than ER
networks because of lower values of ρ when t = 0 (no attack).

When a failure occurs, some links will fail and be removed
from the network, and the affected flows will choose other
paths. Since the network is now less dense, the alternative
paths are usually longer. Thus ρ increases at the beginning
of the failure, and the flow transmission efficiency becomes
progressively lower. The length of the rising period of ρ also
reflects the network resilience. During this period, the router
network is able to carry the flow load, although the flow
transmission efficiency declines. The longer the rising period,
the better the network resilience. In BA coupled networks the
rising period is shorter than in ER coupled networks, which
means that when there is a cascading failure, the resilience of
the BA scale-free internet is poorer.

As the failure progresses, ρ and ρ∗ decrease. To explain
this phenomenon, we further calculate the proportion of flows
that fail to be transmitted during the failure process [see
subfigures p(len = 0) in Fig. 3]. The turning point of ρ

from increasing to decreasing is where there is a fair number
of untransmitted flows. The path lengths of untransmitted
flows equal zero, leading to the decrease of ρ and ρ∗. Also,
the decreasing trend indicates that there is a deteriorative
connectivity of router network. For example, in BA coupled
networks under intentional attacks [see Fig. 3(a)], the value of
ρ drops approximately 80%, and nearly 90% of flows failed
to be transmitted. The failure effect on network structure
and connectivity is clearly serious. Furthermore, the vertical
amplitude of ρ differs in different coupled networks. In BA
coupled networks, the range of the amplitude is wider, indicat-
ing that more flows are affected by the failure and resulting in
a clear effect on flow rerouting paths, especially when attacks
are intentional.

Figure 4 shows the fluctuations of flow maximum com-
petition area gF during the failure process. When the flow
redistributes, the connections between flows are rebuilt, and
we recalculate. For simplicity, the flow network derived from
the BA internet is called the BA flow network, and the flow
network derived from the ER internet is called the ER flow
network. Figure 4 shows that BA flow networks are vulnerable
to both intentional and random attacks. The maximum com-
petition area is initially gF = 1 and then quickly drops as the
cascading failure progresses. Initially, most flows interrupted
by the failure can reroute, find alternate paths, and maintain
their competitive relationship with other flows. As the failure
continues, the connectivity of the router network deteriorates,
and many flows become isolated [see subfigures p(len = 0) in
Fig. 3] and are no long able to compete for network resources.
Thus, the size of the flow competition area drops quickly.
In ER flow networks, however, the gF values decrease very
little under both random and intentional attacks, and most
flows maintain their ability to compete for network resources.
The competition area gF in ER flow networks can be as
much as four times the size of the competition area in BA
flow networks. Furthermore, by increasing link capacity, the
robustness of the flow network can be obviously improved,

FIG. 4. Competition area gF of flows. gF reflects the maximal
flow competition area. The decreasing trend of during failures in BA
flow networks is much more obvious than that in ER flow networks.
α = 1, 2, 4, 8 separately to adjust the link transmission capacity (l).
l0 = 10(Gps). Simulation settings are the same as in Fig. 3.

and many more flows stay in the giant component and be
transmitted successfully.

Figure 5 shows the flow competition degree γ under dif-
ferent attacks. Note that γ increases at the beginning of the
failure, because most of the flows affected by failure links
reroute successfully at the beginning of the collapse. However,
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FIG. 5. Competition degree γ of flows. The flow competition
degree in BA flow networks is more intense and concentrated.
The difference of γ and γmax gets smaller as the failure continues.
Simulation settings are the same as in Fig. 3.

as the number of links and network resources decrease, the
degree ki of flow increases, and the transmission bandwidth

b fi declines, jointly leading to an increasing trend in γ . As
the failure continues, γ decreases. Since router network con-
nectivity deteriorates, an increasing number of flows become
isolated. For these flows, the flow degree k = 0, leading to a
decreasing trend in γ . All in all, the flow competition degree is
affected by two factors, flow degree ki and flow transmission
bandwidth b fi . By ignoring the influence of b fi , we obtain
the maximum value γmax [Eq. (13)]. From Fig. 5, γ and
γmax have the same trend, and as the failure continues, the
difference gets smaller (see subfigures γmax − γ in Fig. 5).
Since the calculation complexity of γmax is much smaller,
we could use γmax to roughly evaluate the scale of flow
competition degree. Last, due to the heterogeneous structure
of BA networks, flows in BA networks are more concentrated.
Due to this circumstance, network attacks will influence more
flows compared with ER networks. Thus, γ varies much more
obviously in the BA flow network.

V. CONCLUSION

We have modeled the internet as two coupled networks.
We examined the cascading failure process and analyzed flow
dynamic behaviors, including flow transmission and compe-
tition. The way in which flow depends on routers indicates
the flow transmission efficiency and network performance.
The intensity of this dependence increases at the beginning
of a failure event because flows are seeking alternative paths,
which are invariably longer. As the failure intensifies and
continues to spread, an increasing number of flows stop
transmitting, and the transmission dependency thus rapidly
decreases. Because flows are able to reroute, initially the flow
competition area remains stable, but as the router network
connectivity continues to deteriorate, the competition area
sharply drops. We also have studied the degrees of flow
competition during the failure process. Initially the compe-
tition degree increases because the degree of flow clustering
and congestion both increase. As the failure progresses, the
competition degree decreases due to the failure transmission
of flows.

The cascading failure model and the flow behavior findings
supplied in this paper will assist those developing ways of
improving internet robustness when it responds to failure
events.
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