
PHYSICAL REVIEW E 93, 042213 (2016)

Multiscale multifractal detrended-fluctuation analysis of two-dimensional surfaces

Fang Wang
College of Science, Hunan Agricultural University, Changsha, P. R. China

Qingju Fan*

Department of Statistics, School of Science, Wuhan University of Technology, Wuhan, P. R. China

H. Eugene Stanley
Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215, USA

(Received 10 September 2015; revised manuscript received 1 February 2016; published 21 April 2016)

Two-dimensional (2D) multifractal detrended fluctuation analysis (MF-DFA) has been used to study
monofractality and multifractality on 2D surfaces, but when it is used to calculate the generalized Hurst exponent
in a fixed time scale, the presence of crossovers can bias the outcome. To solve this problem, multiscale multifractal
analysis (MMA) was recent employed in a one-dimensional case. MMA produces a Hurst surface h(q,s) that
provides a spectrum of local scaling exponents at different scale ranges such that the positions of the crossovers
can be located. We apply this MMA method to a 2D surface and identify factors that influence the results. We
generate several synthesized surfaces and find that crossovers are consistently present, which means that their
fractal properties differ at different scales. We apply MMA to the surfaces, and the results allow us to observe
these differences and accurately estimate the generalized Hurst exponents. We then study eight natural texture
images and two real-world images and find (i) that the moving window length (WL) and the slide length (SL)
are the key parameters in the MMA method, that the WL more strongly influences the Hurst surface than the SL,
and that the combination of WL = 4 and SL = 4 is optimal for a 2D image; (ii) that the robustness of h(2,s) to
four common noises is high at large scales but variable at small scales; and (iii) that the long-term correlations in
the images weaken as the intensity of Gaussian noise and salt and pepper noise is increased. Our findings greatly
improve the performance of the MMA method on 2D surfaces.

DOI: 10.1103/PhysRevE.93.042213

I. INTRODUCTION

The fractal and multifractal theory developed by Mandel-
brot [1,2] has produced new ways of understanding image
analysis. We now see that there is a connection between the
gray value of an image and fractals in nature, that most natural
surfaces are spatially isotropic fractals, and that their intensity
images are fractal or multifractal [3].

In traditional multifractal analysis (MFA), the concept
of multifractal dimension is a powerful tool for describing
both the local and global structure of irregular objects and
their overall self-similarity. Its ability to characterize image
roughness is also consistent with the basic operation of the
human vision system [3]. MFA can also capture the scaling of
fluctuations, the mutation of gray levels, self-similarity, change
of phase, and frequency. This advanced tool can thus be used
to solve various traditional image processing problems, e.g.,
recognizing heterogeneity in medical images [4], detecting
decay in log cross-section images [5], and targeting the
location of remote sensing images [6]. Many existing MFA
techniques are limited to stationary object measurements,
however, and cannot deal with those that are nonstationary. To
overcome this inability, detrended fluctuation analysis (DFA),
in which certain trends hidden in the object are eliminated,
has been developed [7]. The performance of the DFA has been
proved to be superior to the wavelet method when dealing
with the nonstationary multifractal measure [8]. Both DFA
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and its multifractal version (MF-DFA) [9] have been used to
resolve various nonstationary time series in many research
fields [10–14]. Because real-world images may also embody
nonstationary measures, one-dimensional (1D) MF-DFA has
been extended to the two-dimensional (2D) case. Gu and
Zhou [15] proposed the 2D version of MF-DFA in 2006, and
the new method was adopted by a number of other researchers
to carry out 2D surface analysis [16–22]. Yadav et al. [19]
used 2D MF-DFA to analyze AFM images of the surface
morphologies of LiF thin films. Wang et al. used a global and
local generalized Hurst exponent obtained by 2D MF-DFA to
delineate lesions in six corn disease leaf images [20] and to
identify tree species from 15 different leaf images [21]. Yu
et al. [22] applied a new 2D MF-DFA-based segmentation
method to locate and segment tumor regions from magnetic
resonance images. These results strongly indicate that 2D
MF-DFA is a powerful tool for uncovering multifractality in
2D surfaces.

When MF-DFA is used to analyze the multifractal scaling
of an object’s fluctuations, the method can assume scales
that exceed the overall size of the studied object. Thus
crossovers [13,23] can appear in the double-log plot of the
fluctuation function Fq(s) versus scale s in standard MF-DFA,
e.g., the slope of the fluctuation functions can change at some
special scale. Because of multiple measures with different
properties, these crossovers can occur within a particular
scaling range in a time series or a 2D surface and produce
biased results. Solving for the 1D case, Stanley et al. used a
local Hurst exponent based on the DFA method to analyze
a heart rate series [24]. Grech and Mazur did the same for
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a stock price series [25]. In like manner Echeverria et al.
used an αβ filter based on the Kalman filter to estimate local
exponents and analyze human cardiac data [26]. Govindan
et al. quantified the long-range correlation of short fetal
cardiac data sets by computing the mean value of the local
exponents associated with the phase randomized surrogate
technique [27]. Castiglioni et al. estimated the temporal
spectrum of scale exponents α DFA(s) in their study of heart
rate variability and blood pressure [28,29]. All of these studies
use the monofractal DFA method but do not define fixed scale
ranges and instead vary the scales along the Fq(s) results
when producing the local DFA exponent αDFA(s), thereby
accessing the multiple properties caused by the differing
scales. Gieraltowski et al. [30] further this approach by
proposing multiscale multifractal analysis (MMA), which has
a spectrum with variable scale ranges and provides complete
information about fractal properties along the entire time scale.
This approach has also been used to solve problems associated
with traffic flow [31] and heart rate variability [32]. These
successful results indicate that MMA is workable for solving
1D series problems. Whether this is true for the 2D case is yet
to be verified.

Our goal here is to validate the MMA method for 2D
surfaces and explore the factors that potentially influence the
method. Section II describes the 2D version of MF-DFA and
MMA. Section III describes and discusses our approach. We
examine the universality of multiple scales on a 2D surface,
validate the 2D MMA method for 2D monofractal synthetic
surfaces, and do the same for the multifractal, stationary,
and nonstationary cases. We investigate the impact of two
key parameters on the 2D MMA method using eight natural
texture images, and we use real-world images to examine how
noise affects 2D MMA. Section IV provides a brief summary
of our study.

II. METHODS

A. 2D MF-DFA

We expand the 1D MF-DFA by Gu and Zhou [15] into a
2D version by calculating the h(q) exponents and measuring
the long-term correlation of gray values. We find a self-
similar surface represented by an M × N matrix X = X(i,j ),
i = 1,2, . . . ,M and j = 1,2, . . . ,N . We partition it into a
Ms × Ns nonoverlapping square subsurface of equal length
s, where Ms ≡ int(M/s) and Ns ≡ int(N/s) are positive
integers. Each subsurface is denoted by Xm,n = Xm,n(i,j ) with
Xm,n(i,j ) = X(r+i,t+j ) for 1�i,j�s, where r = (m−1)s
and t = (n − 1)s. Because M and N are not multiples of
the length s, we ignore the subsurfaces in the upper right
and the bottom. We repeat the partitioning procedure starting
from the other three corners and determine the cumulative
sum of each subdomain Gm,n(i,j ) = ∑i

1

∑j

1 Xm,n(k1,k2). For
each surface Gm,n we obtain a local trend G̃m,n by fitting it
with a prechosen bivariate polynomial function. The residual
matrix is then given by ym,n(i,j )=Gm,n(i,j )-G̃m,n(i,j ). We
then define the detrended fluctuation function F (m,n,s) for
the segment Xm,n to be

F 2(m,n,s) = 1

s2

s∑
i=1

s∑
j=1

ym,n(i,j )2. (1)

We average over all subsurfaces to obtain the qth-order average
fluctuation function

Fq(s) =
{

1

MsNs

Ms∑
m=1

Ns∑
n=1

[F (m,n,s)]q
}1/q

, q �= 0, (2)

Fq(s) = exp

{
1

MsNs

Ms∑
m=1

Ns∑
n=1

ln[F (m,n,s)]

}
, q = 0.(3)

Finally, we vary the value of s to get a series of Fq(s). If there
is a long-range power-law correlation for large values of s,
then

Fq(s) ∝ sh(q). (4)

This allows us to obtain the scaling exponent h(q) via
linearly regressing log Fq(s) on log s. The h(q) is the so-called
generalized Hurst index. The h(q = 2) can be related to the
Hurst exponent H of the surface directly, i.e., h(q = 2) = H

for the stationary surface and h(q = 2) = H + 2 for the
nonstationary signal [33]. In addition, if the h(q) is dependent
on q, the surface is considered multifractal; if not, it is
monofractal. In general, the h(q) plot for q < 0 refers to those
subsurfaces with a low variance (small fluctuations) of Fq(s),
while for q > 0 the plot characterizes the subsurfaces with a
large variance (large fluctuations). Note that when q is positive,
h(q) yields more stable results.

Note that we use a local trend G̃m,n to determine the
detrended fluctuation function. Using Zhou et al. [33], we
set the quadratic trending function to be G̃m,n(i,j ) = ai2 +
bj 2 + cij + di + ej + f , where a, b, c, d, e, and f are free
parameters to be determined by the least-squares method. Note
also that when we calculate the family of curves Fq(s) we must
choose an appropriate range for scale s. If we do not choose
an appropriate range the fitting exponent will be biased. If s is
too large, the division of the time series will produce too few
windows. If s is too small, the detrending procedure will be
executed on a set of points too few in number. Drawing on 1D
research [30,31] and previous 2D research [17,21], we set the
usable range of scales in this work to be s ∈ [6,min(M,N )/4]
with 20 isometrics in the logarithmic coordinates, where
(M,N ) is the size of the surface.

B. Multiscale MF-DFA

Because the single scaling exponent h(q) may be missing
important information associated with different scales, we
propose using multiscale multifractal analysis (MMA) [30]
in which the local scaling exponent is on certain scales of
the MF-DFA. This 2D MMA uses a series of h(q) in all
the local scale ranges instead of a single series produced
using standard MF-DFA. We use MF-DFA to calculate all
Fq(s) and sweep through the entire range of scale s along
the Fq(s) plot with a moving fitting window. In each window
we calculate the local scaling exponent from the slope of the
fitting line between the log[Fq(s)] and log(s) belonging to
the window. We thus obtain the entire temporal spectrum of
scale exponents, which allows us to study the quasicontinuous
changes in the h(q) dependence versus the range of scale s

and to obtain the generalized dependence h(q,s) (the Hurst
surface). On the Hurst surface, the h(q,s) embodies the
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FIG. 1. Two samples of synthetic surfaces merged by 2D multi-
fractal signals and uniformly distributed random noises.

long-term correlation of gray values on a 2D surface at all
scales, which yields information about the fluctuation levels
at the different frequency bands. As an important notion
worthy of mentioning, our Hurst surface is calculated by using
identical scales’ range regardless of the potential of different
multiscale properties which exist in the orthogonal directions
of the 2D surface, in other words, our generative mechanism
of the Hurst surface is an approximation when analyzing a 2D
surface.

The fit is made only for points currently inside the moving
window. The calculated h(q,s) is highly dependent on two
factors: (i) the length of the moving fitting window (WL) and
(ii) the slide length (SL). Because the fluctuation functions
Fq(s) are presented in double-log coordinates, the moving
fitting window expands logarithmically and seems to be of
constant width. Its length determines the number of scales s

and corresponding Fq(s) in each window, which refers to the
fitting accuracy of the h(q,s). The SL gives the shift length of
windows and determines the number of the local h(q), which
refers to the shape of the Hurst surface. We investigate how
the WL and SL affect the 2D MMA method in Sec. III 3. On
a 2D surface of size 512 × 512 we assign the values WL = 4
and SL = 4. The starting window includes scale s ∈ [6,24],
the second subwindow includes scale s ∈ [10,40], and then we
move and expand it to reach the final subwindow s ∈ [30,120]
[see Fig. 2(b)]. We use the center point of the Hurst surface to
calibrate the scale axis in each fitting window, i.e., we begin
at s = 15 (the center point of the first subwindow s ∈ [4,24])
and end at s = 75 (the center point of the final subwindow
s ∈ [30,120]). Note that we use a linear axis on the Hurst
surface. This differs from the plot of Fq(s) versus s, which
uses a logarithmic axis for the scale s.

III. RESULTS AND DISCUSSION

A. The universality of the multiple scales in 2D surface

To describe the different multifractal properties that occur at
different scales [i.e., how h(q) is oscillatory at different scales],
we use 2D measurements to merge the results of two tests
of a synthetic surface. We first use multiplicative cascading
to create a multifractal surface. We begin by partitioning a
square into four subsquares of the same size. We then assign
four measurement proportions p1, p2, p3, and p4 (subject
to p1 + p2 + p3 + p4 = 1, here we set p = [p1,p2,p3,p4]
= [0.1, 0.2, 0.3, 0.4]). Each subsquare is further partitioned
into four smaller squares, and the measurement is reassigned
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FIG. 2. Multifractal structures of the merged surfaces. The main
panel is the Fq (s) versus s in double-log plot. The vertical lines show
two examples of the fitting windows for the small scales s ∈ [6,24]
and the large scales s ∈ [30,120]. Inset is the h(q) curves calculated
for the small (red dash line) and for the large scales (green solid line).

with the same proportions. The procedure is repeated nine
times, and the result is a 2D multifractal measurement of size
512 × 512 pixels. In the first test, according to Ref. [30], we
remove all values < 0.000001 from this multifractal surface
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FIG. 3. Hurst surface h(q,s) dependence calculated for the
surfaces A1 and A2 with WL = 4 and SL = 4.
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FIG. 4. 2D synthetic fractal surfaces generated by fBM model and fGn model with known Hurst exponents.

so that only a few of the largest elements are left. In their
place, we substitute uniformly distributed random numbers
from the range [0, 0.0001] (similar to the largest values in
the quadrinomial cascade). We obtain a quadrinomial cascade
surface embedded in random noise (see A1 on the left side of
Fig. 1). We analyze this 2D signal and find it is multifractal
at small scales but monofractal at larger scales because of the
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FIG. 5. Estimated multifractal long range correlation scaling
exponents for the fBm surfaces B1 and B2 with given Hurst indices H .
Error bars indicate standard deviation calculated from 20 independent
realizations of the corresponding processes.

effect of noise. Figure 2(a) shows its multifractal structure;
Fig. 2(b) shows a multiplicative cascading process with p =
[0.1, 0.2, 0.3, 0.4] that produces a multifractal surface of size
16 × 16 and then replaces every point xij with 1024 points
(forming a matrix of 32 × 32) generated using the formula
xij r , where r denotes a uniformly distributed random number
from the range [0, 3]. We thus obtain another surface of
quadrinomial cascade embedded in random noise (see A2 on
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FIG. 6. Estimated multifractal long range correlation scaling
exponents for the fGn surfaces B3 and B4 with given Hurst indices
H . Notation as in Fig. 5.
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FIG. 7. Multifractal structure of the synthetic multifractal surface
generated p model by with parameter p = [0.1, 0.2, 0.3, 0.4]. (a) is
the fluctuation function Fq (s) versus scale s calculated using 2D
MF-DFA with kinds of q. Inset: corresponding h(q) dependence.
(b) is the Hurst surface for the synthetic surface in (a).

the right side of Fig. 1). Its properties are the reverse, i.e., it is
monofractal at small scales and multifractal at large scales.

As expected, similar to the crossovers appeared in 1D
case checked by the MMA [30], the coexistence of the
measurements of monfractality and multifractality in those
two surfaces produces crossovers, which suggests that the
h(q) changes over the varying scales. Figure 2(a) shows that
the multifractality dominates in the small scale range (i.e.,
s ∈ [6,24]) and that monofractality dominates in the large
(s ∈ [30,120]). In contrast, in Fig. 2(b) the horizontal red line
in the subplot is the monofractality that dominates in the small

scale range, and the falling green curve is the multifractality
that dominates in the large. Both of those indicate that the
crossovers are caused by a change of the fractal properties
with scale on the surfaces. We thus employ a surface of h(q,s)
to characterize the fractal properties instead of h(q), which
means that here we must use MMDFA instead of the standard
MF-DFA. The fractal properties of A1 and A2 are depicted by
the Hurst surfaces, shown in Figs. 3(a) and 3(b), respectively.

B. Testing for 2D synthetic surfaces

To test the validity of using 2D MMA on a 2D surface, we
use MATLAB software FracLab 2.04 developed by INRIA to
generate a fractional Brownian motion (fBm) function [15],
a typical nonstationary signal. We also generate a fractional
Gaussian noise (fGn) function [34], a classical stationary
signal, using the mixed second partial derivatives of the 2D
fBm [35]:

∂2

∂x∂y
BH (x,y) = [BH (x,y) − BH (x − 1,y)]

−[BH (x,y − 1) − BH (x − 1,y − 1)]. (5)

Note that both of the fBm and fGn surfaces possess
monofractal natures. Note also that the h(q) of the fBm
surface and fGn surface come in direct contact with the
Hurst exponents. The relationship between the h(q) and the
Hurst exponent H for the fBm surface is H = h(q) − 2 and
H = h(q) for the fGn surface [33]. We set two H values,
0.3 and 0.7 [i.e., h(q) = 2.3 and 2.7 for the fBm surface;
h(q) = 0.3 and 0.7 for the fGn surface], to generate the four
monofractal surfaces of size 512 × 512 pixels, denoted B1,
B2, B3, and B4, respectively (see Fig. 4). Figures 5 and 6
show the results of the four monofractal signals. Note that for
every scale s we obtain flat Hurst surfaces at 0.3 [Figs. 5(b)
and 6(b)] and 0.7 [Figs. 5(c) and 6(c)].

To further test the validity of using the 2D MMA method
on a 2D surface, we use a multiplicative cascading process
(Sec. III A) to generate a multifractal surface of size 512 × 512

FIG. 8. Eight natural textures in Brodatz album.
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TABLE I. The average of h(2,s) over all the scales and �h(q,s) between the maximum and minimum of h(q,s) calculated for the textures
C1–C8 by 2D MMA with different combination {WL, SL}. The number in the parentheses of the first column is the number of scales for each
WL, SL combination. The number in the parentheses beside the h(2,s) is the standard deviation of the h(2,s) over all the scales.

{WL,SL} Observation C1 C2 C3 C4 C5 C6 C7 C8

{2,4} (19) h(2,s) 1.72(0.33) 1.91(0.27) 2.29(0.20) 1.09(0.56) 1.91(0.14) 2.07(0.24) 1.89(0.27) 1.87(0.05)
�h(q,s) 1.58 2.32 2.67 3.33 2.39 2.93 1.59 1.21

{2,6} (13) h(2,s) 1.73(0.34) 1.91(0.28) 2.29(0.21) 1.10(0.58) 1.91(0.15) 2.08(0.25) 1.90(0.28) 1.88(0.05)
�h(q,s) 1.56 2.32 2.67 3.33 2.39 2.93 1.59 1.07

{2,10} (8) h(2,s) 1.76(0.37) 1.94(0.30) 2.30(0.20) 1.13(0.64) 1.93(0.15) 2.10(0.27) 1.93(0.29) 1.89(0.05)
�h(q,s) 1.56 2.32 2.67 3.33 1.57 2.93 1.31 1.07

{4,4} (9) h(2,s) 1.84(0.28) 2.01(0.23) 2.37(0.14) 1.18(0.58) 1.96(0.10) 2.14(0.19) 2.00(0.21) 1.87(0.03)
�h(q,s) 1.44 1.92 1.77 3.02 1.35 1.99 1.10 0.99

{4,6} (6) h(2,s) 1.86(0.30) 2.03(0.24) 2.38(0.14) 1.21(0.62) 1.97(0.10) 2.16(0.21) 2.01(0.28) 1.87(0.03)
�h(q,s) 1.44 1.92 1.77 3.02 1.28 1.99 1.11 0.99

{4,10} (4) h(2,s) 1.88(0.34) 2.03(0.28) 2.38(0.16) 1.26(0.70) 1.97(0.12) 2.18(0.25) 2.02(0.26) 1.88(0.03)
�h(q,s) 1.44 1.92 1.62 3.00 1.27 1.72 1.05 0.98

pixels. Figure 7 shows the multifractal structure of the 2D
surface. Note that we have satisfying results because the shapes
of h(q,s) [Fig. 7(b)] on all available scales strongly resemble
the standard shape of the multifractal h(q) dependence [see
insert plot in Fig. 7(a)]. Although the large fluctuations in Fq (s)
at negative q values causes slight fluctuations, we still get a
multifractal property and an accurate estimate of the scaling
exponent for the multifractal surface with the multiplicative
cascading from the Hurst surface. These results indicate that
the 2D MMA method can be used for a 2D surface.

C. Effect of moving windows length and sliding length

As mentioned above, window length (WL) and slide length
(SL) can change the shape of h(q,s) (the Hurst surface). Here
we explore how the WL and SL affect the 2D MMA results for
a 2D surface and determine the combination of {WL, SL} that
yields the most accurate results. We focus our investigation
on eight natural textures of 640 × 640 pixels, C1, C2, . . . ,

C8, randomly chosen from the free Brodatz album [36] (see
Fig. 8; their numbers of C1, C2, . . . , C8 in our work and
corresponding serial number in original Brodatz album are
also shown below each figure). Once again, if the WL values
are too large, we will not be able to observe variations in
the local exponents. If they are too small, noise will bias the
results. We investigate six {WL, SL} value combinations, {2,
4}, {2, 6}, {2, 10}, {4, 4}, {4, 6}, and {4, 10}. Figure 9 shows
the dependence of the Hurst surfaces h(q,s) calculated for
texture image C1 using the six {WL, SL} value combinations.
Many folds appear in the Hurst surface when the WL is small
because there are huge fluctuations in the fitting slope h(q,s).
When the surface is too smooth (e.g., combination {4, 10}),
the results produce less Fq(s) information.

Table I displays the result of our calculations of h(q = 2,s),
the Hurst exponent, and �h(q,s), the multifractality strength,
for the eight textures. Note that the number of scales differ with
the {WL, SL} value combinations. Under the corresponding
combinations there are 19, 13, 8, 9, 6, and 4 scales, respectively.
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FIG. 9. Hurst surface h(q,s) dependence calculated for the texture image C1 with different parameter combinations {WL, SL}. The red
points correspond to h(2,s).
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FIG. 10. Two images in the real world.

Note that Table I shows the standard deviation of the h(2,s)
over all the scales in the table. The results indicate the
following:

(i) The WL is more critical than the SL when estimating
the Hurst exponent, and the WL is the primary cause of the
Hurst surface oscillation.

(ii) The h(2,s) increases slightly with increasing WL.
Conversely, the �h(q,s) sharply decreases with increasing
WL. This indicates that increasing WL will enhance the
long-term correlation of the gray surface somewhat, but will
greatly seemingly weaken the obtained multifractal properties
of the surface.

(iii) The standard deviation of the h(2,s) is relatively
small when WL is large and SL small, indicating that this
combination produces more robust results. We thus suggest
that 2D MMA use the {4, 4} combination for a 2D image.

D. Effect of noise

Noise is always present in the acquisition and transmission
of real-world images, and thus it affects the 2D MMA

results for a 2D surface. In Sec. III A we merged synthetic
surfaces with random noise and found that noise can affect
the multifractality or monofractality of the original synthetic
surface at both small and large scales. Here we determine
how noise affects 2D MMA results for real-world images.
We choose two real-world images of size 512 × 512 pixels,
“Mandrill” (D1) and “House” (D2), from the free USC-SIPI
image database [37] (see Fig. 10). We add four common
noises [38], (i) Gaussian noise with zero mean and variance of
0.01, (ii) salt and pepper noise with 4% density, (iii) Poisson
noise with zero mean and variance of 0.04, and (iv) speckle
noise, also with zero mean and variance of 0.04. Figure 11
shows the dependence of the Hurst surfaces h(q,s) when WL
= 4 and SL = 4 calculated for the D1 image when the four
kinds of noise are added.

Figure 11 shows that when q is negative and the scale
small, the h(q,s) value is sharply altered and the Hurst surface
of the original image differs greatly from the Hurst surface
of the noised image. All noises except salt and pepper noise
reduce the h(q,s) value when q is negative and the scale
small. This indicates that noises have more of an influence
on segments with small fluctuations (when q is negative) than
on segments with large fluctuations (when q is positive). To
further explore how noise affects 2D MMA results at different
scales, we calculate h(2,s) for images D1 and D2 and for
noised versions of D1 and D2 (see Fig. 12). Table II lists three
key Hurst surface characteristics, max

q,s
{h(q,s)}, min

q,s
{h(q,s)},

and �h(q,s). Figure 12 shows detached lines when the scale is
small, indicating that the noises strongly impact h(2,s). When
the scale is large, however, the properties of h(2,s) are robust.
This finding tells us how noise affects an image and enables
us to use 2D MMA to analyze a noised image. Table II shows
the difference in degree of influence each noise has on D1 and
D2. In general, the noises reduce the h(q,s) values in both
images. All noises except salt and pepper noise strengthen the
multifractality in D1 and weaken it in D2.
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FIG. 11. Hurst surface h(q,s) dependence calculated for the image D1 added on different noises. The red points corresponds to h(2,s). The
presented results have been averaged over 20 realizations of the test series.
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TABLE II. The maximum and minimum of h(q,s) and �h(q,s) calculated for the original images and noised images. The presented results
have been averaged over 20 realizations of the test series.

Image D1 Image D2
Noise max

q,s
{h(q,s)} min

q,s
{h(q,s)} �h(q,s) max

q,s
{h(q,s)} min

q,s
{h(q,s)} �h(q,s)

Original 2.6258 1.7775 0.8483 3.3304 1.9465 1.3839
Gaussian 2.4625 1.4581 1.0044 2.3673 1.2101 1.1572
Salt and pepper 2.5218 1.6077 0.9141 4.0842 1.3887 2.6955
Poisson 2.5777 1.6866 0.8911 2.4660 1.3307 1.1353
Speckle 2.4185 1.5196 0.8989 2.2875 1.1974 1.0901

To determine whether noise affects the estimation accuracy
of h(q,s), shown as the fitting error between fluctuation
function Fq(s) and scale s in a double-log plot, and to evaluate
the error, we define a distance error DE function

DE = 1

n

√√√√ n∑
i=1

(kxi + c − yi)2

(1 + k)2
, (6)

where y = kx + c is the fitted line, y is log Fq(s), x is log s,
and n is the number of points in each scale. Figure 13 shows
the average DE over the all scales for images D1 and D2.
All of the DE are less than 0.01 for D1 and less than 0.02
for D2, indicating that the noise immunity of 2D MMA is
robust.

We thus conclude that noise does not destroy the efficiency
of 2D MMA but in varying degrees does impact the h(2,s)
results. Because varying the intensity of a noise changes its
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FIG. 12. The h(2,s) calculated for the images D1 and D2 added
on different noises. The presented results have been averaged over 20
realizations of the test series.

impact on the results, we apply a varying peak signal-to-noise
ratio (PSNR) to images D1 and D2. We add Gaussian noise
with six PSNR values (27 to 32 dB at 1 dB steps) and salt-
and-pepper noise with six PSNR values (36 to 46 dB at 2
dB steps) to images D1 and D2. Figures 13 and 14 show the
Hurst surface h(q,s) dependence calculated for image D1 with
Gaussian noise and salt and pepper noise added at different
PSNR values. Figure 16 shows the average distance errors.
Figures 14 and 15 show that the shape of the Hurst surface is
basically unchanged, and Fig. 16 shows that the all of the DE
are less than 0.012. Those results indicate that the performance
of 2D MMA is robust.

To quantify the impact of the two kinds of noise with
different PSNR values on different scales using 2D MMA,
we calculate the relative error of the h(2,s) between the noisy
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FIG. 13. Average distance error of h(q,s) over all the scales
calculated for the kinds of noised images. The presented results have
been averaged over 20 realizations of the test series.
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FIG. 14. Hurst surface h(q,s) dependence calculated for the image D1 added on Gaussian noises with different PSNR. The red points
corresponds to h(2,s). The presented results have been averaged over 20 realizations of the test series.

images and the original images (see Fig. 17). As in Table II, we
include the original values of the max

q,s
{h(q,s)}, min

q,s
{h(q,s)},

and �h(q,s) in Tables III and IV. From them we conclude the
following:

(i) For both kinds of noise, the relative error increases with
the noise intensity and the PSNR decreases. This occurs when
the scale is small, e.g., as in initial scale range s ∈ [6,24] and
the following scale range s ∈ [10,40], but the relative error is
< 10% when the scale exceeds s ∈ [14,56]. This indicates that
when the scale is large h(2,s) is more stable and less affected
by noise. 2D MMA can thus be used to calculate this exponent
for a 2D image when the scale is large.

(ii) Increasing the Gaussian noise decreases the h(q,s)
value in both images but increases the degree of multifractality.
In the D1 image �h(q,s) increases as the noise increases. In the
D2 image �h(q,s) decreases as the noise increases. We also
find that increasing the Gaussian noise decreases the long-term
correlation of the gray surface.

(iii) In the D1 image, increasing the salt and pepper noise
decreases the h(q,s) values and increases the �h(q,s) values.
In the D2 image, when q is negative the max

q,s
{h(q,s)} values

increase and the PSNR values decrease. When q is positive,
the reverse occurs. When using standard MF-DFA the negative
q values correspond to those segments of the surface that have
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FIG. 15. Hurst surface h(q,s) dependence calculated for the image D1 added on salt and pepper noises with different PSNR. The red points
corresponds to h(2,s). The presented results have been averaged over 20 realizations of the test series.
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FIG. 16. Average distance error of h(q,s) over all the scales
calculated for the noised image of D1 with different PSNR. The
presented results have been averaged over 20 realizations of the test
series.

small fluctuations. Because the negative exponential effect
increases the influence of small fluctuations, they function as
noise and increases the max

q,s
{h(q,s)} values too quickly. This

may bias the results. Thus the results when q < 0 should be
viewed with suspicion. The min

q,s
{h(q,s)} values apply only to

salt and pepper noise on the D2 image, and their decrease as
noise increases is similar to that found in the D1 image.

IV. CONCLUSIONS

Advances in statistical physics have strongly contributed
to research on the multifractal scaling of fluctuations on a 2D
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FIG. 17. Relative error of the Hurst exponent h(2,s) calculated
for the noised images of D1 and D2 with different PSNR. The upper
one denotes the image D1; the bottom one denotes the image D2. The
presented results have been averaged over 20 realizations of the test
series.

surface. Although the MF-DFA technique in its 2D version has
become a powerful tool in surface analysis, standard MF-DFA
results are a univariate function of q at a constant scale s,
and thus much information disappears. To recover the missing
information produced at different scales, we have applied
2D multifractal detrended fluctuation analysis (2D MMA) to
investigate the fractal properties of 2D surfaces and have used
a spectrum of local Hurst exponents: h(q,s) (Hurst surface).

TABLE III. The values of maximum and minimum of h(q,s) and �h(q,s) calculated for the Gaussian noises images with varying PSNR.
The presented results have been averaged over 20 realizations of the test series.

Image D1 Image D2
PSNR max

q,s
{h(q,s)} min

q,s
{h(q,s)} �h(q,s) max

q,s
{h(q,s)} min

q,s
{h(q,s)} �h(q,s)

32 2.6013 1.7610 0.8403 2.6388 1.3186 1.3202
31 2.6073 1.7190 0.8884 2.5732 1.3030 1.2702
30 2.5765 1.6397 0.9368 2.5266 1.2851 1.2415
29 2.5611 1.5647 0.9964 2.4561 1.2394 1.2167
28 2.4595 1.4260 1.0335 2.3870 1.2464 1.1406
27 2.2210 1.2557 0.9654 2.2745 1.1789 1.0956
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TABLE IV. The values of maximum and minimum of h(q,s) and �h(q,s) calculated for the salt and pepper noise images with varying
PSNR. The presented results have been averaged over 20 realizations of the test series.

Image D1 Image D2
PSNR max

q,s
{h(q,s)} min

q,s
{h(q,s)} �h(q,s) max

q,s
{h(q,s)} min

q,s
{h(q,s)} �h(q,s)

46 2.5713 1.7343 0.8370 3.3477 1.7762 1.5714
44 2.5250 1.7002 0.8248 3.3435 1.6119 1.7316
42 2.4869 1.6594 0.8275 3.9429 1.4891 2.4538
40 2.4354 1.5818 0.8536 4.1272 1.3602 2.7670
38 2.4002 1.4966 0.9036 4.0235 1.2696 2.7539
36 2.3408 1.3967 0.9441 4.1439 1.2440 2.8999

The 2D MMA method allows us to analyze the multifractal
properties of the 2D surface at multiple scales.

We first examine the validity of the 2D MMA method for a
2D surface. We use two merged surfaces, amalgamated mul-
tifractal measure and uniform distribution random variables,
that cause the monofractality and multifractality coexist, and
find that the 2D MMA method can capture the properties in
both small scales and large. We use the fBm model and the fGn
model with given Hurst exponents to generate two synthetic
surfaces and obtain useful results on the flat Hurst surfaces
produced by the 2D MMA, located at the Hurst exponents. We
generate a synthetic surface using multiplicative cascading
and find that all of the h(q,s) values in every scale s exhibit
the standard shape of multifractal h(q) dependence, indicating
that 2D MMA can accurately estimate Hurst exponents on 2D
surfaces. These results also indicate that 2D MMA can both
estimate generalized Hurst exponents for a 2D surface and
quantify fractal properties at different scales.

We next measure how moving window length (WL) and
sliding length (SL) affect the 2D MMA method. We perform
2D MMA using six combinations of {WL, SL} on eight
natural textures selected from the Brodatz album and find that
WL causes the h(q,s) to fluctuate and that SL does not. We

determine that combination {4, 4} used with 2D MMA on a
2D image produces the most stable behavior in h(2,s).

In the final section we examined the effect of noise. We
introduce four kinds of noise into two real-world images and
find that they affect h(2,s) only at small scales. We also find
that the long-term correlation properties in the two images
decrease when noise, either Gaussian or salt and pepper, is
increased.

In summary, our findings are of great importance when
applying 2D MMA to 2D surfaces.
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