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Deviations from uniform power law scaling in nonstationary time series
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A classic problem in physics is the analysis of highly nonstationary time series that typically exhibit
long-range correlations. Here we test the hypothesis that the scaling properties of the dynamics of healthy
physiological systems are more stable than those of pathological systems by studying beat-to-beat fluctuations
in the human heart rate. We develop techniques based on the Fano factor and Allan factor functions, as well as
on detrended fluctuation analysis, for quantifyingdeviationsfrom uniform power-law scaling in nonstationary
time series. By analyzing extremely long data sets of up toN5105 beats for 11 healthy subjects, we find that
the fluctuations in the heart rate scale approximately uniformly over several temporal orders of magnitude. By
contrast, we find that in data sets of comparable length for 14 subjects with heart disease, the fluctuations grow
erratically, indicating a loss of scaling stability.@S1063-651X~97!05101-5#

PACS number~s!: 87.10.1e
o

g
s
ir

ica
m

an
or
oin
l
im
,

hi
ilit

gu
s
ilit

t-
in
a
e
w

d
t

e
ent
hy-
der

ity

ited

vents

e
We
we

t

I. INTRODUCTION

A major challenge in biological physics is the analysis
time series that are typically highly nonstationary@1# ~Fig.
1!. Such nonstationarities may be due to stable physiolo
scaling associated with ‘‘fractal’’ properties or to instabilitie
related to internal or external perturbations. This highly
regular behavior has recently motivated investigators@2–7#
to apply time-series analyses that derive from statist
physics, especially methods for the study of critical pheno
ena where fluctuations at all length~time! scales occur.
These studies show that under healthy conditions, m
physiological time series exhibit long-range power-law c
relations reminiscent of physical systems near a critical p
@8#. However, the hypothesis@9# that normal physiologica
systems behave consistently over a wider range of t
scales than diseased systems hasnot been thoroughly tested
and there has been no study ofdeviationsfrom stable power-
law scaling in nonstationary time series. Here we put t
idea to an experimental test by studying the scaling stab
of human heartbeat fluctuations.

The healthy heartbeat is traditionally thought to be re
lated according to the classical principle of homeosta
whereby physiologic systems operate to reduce variab
and achieve an equilibriumlike state@1#. However, more re-
cent studies@2,7# reveal that under normal conditions, bea
to-beat fluctuations in the human heart rate display the k
of long-range correlations typically exhibited by dynamic
systems far from equilibrium. In contrast, heart rate tim
series from patients with severe heart disease may sho
breakdown of this long-range correlation behavior@2,4#.
Here we develop techniques based on theFano factor@10#
andAllan factor @11# functions, as well asdetrended fluctua-
tion analysis~DFA! @12#, to quantify scaling stability in hu-
man heart rate fluctuations for lengthy data sets~comprising
as many as 105 successive heartbeats!.

II. METHODS

We analyze the heartbeat data sets using two indepen
and complementary approaches. One treats the heartbea
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point process,while the other treats it as asequenceof in-
terbeat intervals@5,13#. Our intention is not to compare thes
two approaches, but rather to test, by using two independ
methods based on different descriptions of the data, the
pothesis that there may be a loss of scaling stability un
pathological conditions.

A. Fano factor and Allan factor methods

We first develop techniques to quantify scaling stabil
based on the Fano factor@10# and Allan factor functions
@11#. We choose these methods because they are well su
to the study of point processes@5#. A heartbeat time record
can be treated as a point process, i.e., as a sequence of e
~beats! distributed on the time axis@14#. We divide the entire
time axis into nonoverlapping ‘‘boxes’’ or windows of siz
t seconds and count how many beats are in each box.
compute these counts separately for each box and then
compute the Fano factorf (t), defined as thevarianceof the
counts divided by theirmean. In general, for a fractal poin

FIG. 1. Interbeat interval time series for a healthy subject~top
curve! and a subject with congestive heart failure~bottom curve!.
Such data are typically highly nonstationary.
845 © 1997 The American Physical Society
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FIG. 2. ~a! Double log plot of the Allan factor functionf 1(t) for a representative healthy subject and the surrogate data obtaine
randomly shuffling the interbeat interval time series. Successive values oft increase by a factor of 1.8. The shuffled data have the s
mean, variance, and higher moments as the original data, but temporal correlations are lost. The region of interest is fort.10 s, where the
original data and surrogate differ considerably. To obtain good statistics, we use a minimum of 300 nonoverlapping boxes. How
large t, we partially overlap the boxes to obtain 300 boxes. The scaling region is chosen so that there is no significant differen
scaling stability of the shuffled surrogate data obtained from normal and disease subjects~see the text!. ~b! Allan factor functionf 1(t) for a
representative healthy and a diseased subject, where the subscript indicates linear detrending~see the text!. We find that the function
f 1(t) scales more uniformly for the normal data than for data from subjects with heart disease. Specifically,f 1(t) has more curvature for
disease vs health.~c! Mean6 1 standard deviation of the local slopesg1(t) for normal~top curve! and disease data~bottom curve!. We find
that there is greater variation ing1(t) for disease data sets than for normal ones, especially fort,100 s, suggesting a loss of scaling stabili
with heart disease.
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process with persistent correlations,f (t) will increase when
we increase the size of the boxt. When plotting the function
f (t) versust on a double log scale, good linear behav
indicates the existence of scaling~fractal! properties in the
time series.

The box-counting method requires important modific
tions for studying nonstationary data@5,15–17#. If there are
trends in the data~e.g., if the average heart rate stead
increases or decreases over a given time period!, then the
above method gives spurious results. To correct for tre
and patchiness in the data, we use a modification of the F
factor known as the Allan factor, originally developed
study the stability of atomic-based clocks@11# ~see also
@18,19#!. The Allan factorf 1(t) is defined as the variance o
thedifferencebetween the number of beats in two success
boxes divided by twice the mean box count. This modific
tion eliminates alllinear trends in the data because takin
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successive differences of a linearly increasing quantity p
duces a constant, stationary variable@20#.

In the asymptotic region~large-t value!, we can define the
scaling exponentg1(t) asg1(t)[dlogf1(t)/dlogt, i.e., g1(t)
is the ‘‘local’’ derivative ~slope! of the log-log plot of
f 1(t) ~Fig. 2!. In actual calculation, we estimateg1(t) by
taking the slopeD logf1(t)/Dlogt5Dlogf1(t)/log1.8, where
1.8 is the ratio of successive values oft that we used. If
g1(t) is constant for differentt then the scaling is consisten
and stable. Substantial variation ing1(t) with t indicates that
the scaling properties of the system are not consistent,
are unstable even when linear trends in the data are remo

We next describe how we select the scaling region for
analysis. It is known that the scaling behavior of the All
factor appears only at relatively large time scales~asymptotic
region!. However, for biological data, it is impractical t
study the properties of any function in this region. Therefo
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FIG. 3. ~a! Double log plot of the DFA functionFD(n) for a representative subject and surrogate data obtained by randomly shu
the same interbeat interval time series. The DFA function does not have the ‘‘dip’’ observed in the Allan factor. We obtaina51/2 for the
shuffled data because of the absence of temporal correlations. The scaling region shown is approximately equal to the scaling
interest used for the Allan factor~see the text!. Successive values ofn differ by a factor of 21/4. ~b! DFA function FD(n) for the same
representative healthy and diseased subjects as in Fig. 2. We note the consistently higher values ofa in disease, consistent with previou
studies of heartbeat dynamics@2#. Moreover, the scaling instability indices are able to detect subtle deviations from uniform powe
behavior that are otherwise difficult to see directly by visual inspection.~c! Mean61 standard deviation of the DFA scaling exponents~local
slopes! a(n) computed for the normal~top curve! and diseased~bottom curve! groups of subjects. We find greater variability ofa(n) for
the diseased subjects than for the healthy ones, confirming the loss of scaling stability with disease.
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we need to carefully select a region that exhibits the sca
behavior of interest. To this end, we use shuffled time se
as controls.

When we shuffle the interbeat intervals for each time
ries, we find that the Allan factor functionf 1(t) steadily
decreases and then flattens fort.10 s for both healthy and
disease data sets~Fig. 1!, indicating a loss of long-range
correlations @5#. For small time scales@see region
log10t<10 in Fig. 2~a!#, the Allan factor function is different
for these shuffled data sets due to the strong influence o
probability distributions of the interbeat intervals~not their
dynamical properties!.

In contrast, for very large time scales, the scaling beh
ior is the same for the shuffled data from different subjec
i.e., f 1(t) is constant and the scaling exponent is zero. T
we can define a scaling region of interest where there ar
significant differences in scaling stability between t
healthy and disease data sets after shuffling. This requ
ment makes it more likely that any observed difference
scaling between the original normal and disease data se
g
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not due to differences in the probability distributions of t
interbeat intervals, but rather arises from intrinsic differenc
in the scaling behavior of long-range temporal correlatio
We find this region of interest to be 1.0< logt<3.5.

B. Detrended fluctuation analysis„DFA… method

The above treatment of the heartbeat time series as a p
process has possible limitations that arise from parametriz
the time series in terms of real timet. The Allan factor
f 1(t) has a ‘‘dip’’ neart510 s due to the anticlustering~i.e.,
regularity! of the heartbeat on these scales@5#. This effect is
partially caused by the ‘‘dead time’’ following each hear
beat during which the heart is refractory to stimulation@5#.
The dip causes the Allan factor to have curvature even u
t'100 s. For these reasons, the Allan factor may not alw
reliably separate effects due to the shape of the interb
interval distribution from those arising from long-range co
relations. DFA@12,4#, which treats the heartbeat as a tim
series parametrized by beat numberj rather than by timet, is
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not susceptible to these limitations and can be used
complement our Allan factor analysis@21#.

The DFA method@12# has been systematically compar
with other algorithms for measuring fractal correlations
Taqquet al. @22# and was found to be the best of the com
putationally efficient methods. It is summarized as follow
First, the interbeat interval time seriesu( j ) ~where j is the
beat number! is integrated to give a function
y( j )[( i50

j u( i ), which can be thought of graphically as
one-dimensional random walk. The sequencey( j ) is then
divided into a number of sub sequences of lengthn. For each
subsequence, linear regression is used to calculate an i
polated ‘‘detrended’’ walky8( j )[a1b( j2 j 0). We define
the ‘‘DFA fluctuation’’ by FD(n)[A^(dy)2&, where
dy[y( j )2y8( j ) and the angular brackets denote averag
over all pointsy( j ). We use a moving window to obtai
better statistics@23#. The DFA exponenta(n) is defined by

a~n![
dlogFD~n!

dlog~n13!
, ~1!

where the13 term is a correction important for smalln @23#.
We estimatea(n) by taking the slopeD logFD(n)/Dlogn,
whereD logn521/4 and 21/4 is the ratio of successive value
of n. Uncorrelated data give rise toa51/2, as expected
from the central limit theorem, while correlated data gi
rise to aÞ1/2. A constant value ofa(n) indicates stable
scaling, while departures indicate loss of scaling stability

We choose the scaling region of interest 1.5< logn<3.0
corresponding approximately to the one used for the Al

FIG. 4. Scaling instability indexs@g1(t)# for each subject. We
find thats@g1(t)# is considerably greater for diseased subjects t
for healthy subjects. Furthermore, there is more intragroup varia
ity in the subjects with heart disease, consistent with a wide ra
in the degree of pathologic disturbances. The values of the sca
instability index for the healthy and disease data sets are sig
cantly different (p,0.0002, Wilcoxon rank sum test!. However, if
each time series is randomly shuffled, then the resulting value
the scaling instability index are no longer different. This findi
indicates that there is a significant loss of scaling stability with he
disease. Furthermore, this loss of scaling stability cannot be
tected by measuring only the mean and variance of the inter
interval time series, i.e., the physiologically important scaling s
bility information is contained in the temporal ordering of the i
terbeat intervals rather than in their probability distribution.
to
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factor. However, the two scaling regions cannot be matc
exactly since the Allan factorf 1(t) is of necessity reference
to real time, while the DFA functionFD(n) is referenced to
beat number.

III. ANALYSIS

Our analysis is based on the digitized electrocardiogra
of beat-to-beat heart rate fluctuations over very long ti
scales~up to 24 h'105 beats! recorded with an ambulatory
monitor. We truncate each time series to 69 000 beats
eliminate spurious effects due to variations in data
lengths and we remove data points due to nonsinus b
associated with interbeat intervals greater than 1.8 s~Fig. 1!.
These deleted beats comprise a very small fraction of
records~less than 0.1%!

We study data from a group of 11 healthy subjects~mean
age, 32; range, 20–45! ~Fig. 2!. We find that the Allan factor
scaling exponentg1(t) is approximately constant for th
healthy data for different values oft as well as for different
subjects. Typically, we find for healthy subjects thatg1(t)
lies in the range 0,g1(t),2 in the region of interest.

We perform the identical analysis on 14 subjects with
life-threatening form of heart disease known ascongestive
heart failure ~mean age, 56; range, 22–71!. We find wide
variations ing1(t), indicating that fluctuations grow errati
cally and nonuniformly with time scalet, consistent with
scaling instabilities in the dynamics of the system.

We verify these findings using DFA. Figure 3 compar
the DFA scaling exponenta(n) for the normal and disease
subjects. We find that there is greater variation ina(n) for
diseased subjects than for healthy subjects.

We next define twoscaling instability indicesfor quanti-
fying departures from stable power-law scaling:s@g1(t)#
and r@g1(t)# are the standard deviation and range~i.e.,
maximum minimum!, respectively, of the scaling exponen
g1(t) in the region of interest 1.0< logt,3.5. Small values
of the scaling instability indices indicate uniform, stable sc
ing, while large values indicate deviations from stable sc
ing ~Fig. 4!. We further defines@a(n)# andr@a(n)# to be
the standard deviation and range, respectively, of the D
exponenta(n) in the scaling region 1.5< logn<3.0. We find
statistically significant differences between healthy and d
eased groups@24#. Specifically, as indicated in Figs. 2~c! and
3~c!, there is an underlying loss of uniform power-law sca
ing in disease. The observed differences between heart
ure and healthy control groups was not related to age effe

IV. DISCUSSION

Our results suggest that the scaling properties of the
namics for a group of healthy subjects are more uniform th
those from subjects with congestive heart failure~Fig. 4!.
The greater scaling consistency found for healthy subje
suggests that the fluctuations in heart rate scale in a m
stable fashion than in disease. The hypothesis that sca
instabilitiesmay be indicative of perturbed behavior is pla
sible for several reasons.

~i! Many systems, such as those regulating the heartb
are under neurophysiological control.

~ii ! Healthy neurophysiological control mechanisms reg
late their activity over a wide range of effective time scale
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Fluctuations on such widely different time scales are rema
ably similar to each other, leading to stable power-law sc
ing spanning several decades in healthy cases.

~iii ! The inability of a pathologic or aging@25# neuro-
physiological system to regulate itself over particular tim
scales may lead to a breakdown or instability of scaling
those time scales@7,26#.

V. CONCLUSION

In summary, we developed techniques to quantify sca
uniformity and its deviations in nonstationary physiologic
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time series and applied these techniques to complex car
interbeat interval time series obtained under healthy
pathologic conditions. These techniques may generalize
the analysis of a wide variety of nonstationary time serie
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