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Abstract

We review the general search problem of how to �nd randomly located objects that can only
be detected in the limited vicinity of a forager, and discuss its quantitative description using the
theory of random walks. We illustrate L�evy ight foraging by comparison to Brownian random
walks and discuss experimental observations of L�evy ights in biological foraging. We review
recent �ndings suggesting that an inverse square probability density distribution P(‘) ∼ ‘−2 of
step lengths ‘ can lead to optimal searches. Finally, we survey the explanations put forth to
account for these unexpected �ndings. c© 2000 Published by Elsevier Science B.V. All rights
reserved.

1. Introduction: how to quantify search processes

Search processes can be highly complex phenomena [1,2]. Extensive experimental
data exist for the special case of animal foraging, in which an animal optimizes its
search for, say, food [3–6]. On the one hand, animals have a certain degree of “free
will” to move and forage according to their choice. On the other, they are subject to
certain physical and biological constraints which restrict their behavior, e.g. if a foraging
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animal does not eat food for a certain maximum time then it will die. Moreover,
evolution has through natural selection led over time to highly e�cient – even optimal –
foraging strategies. According to optimal foraging theory, animals seek to maximize
the returns (in calories, nutrients, etc.) on their labor in deciding how best to forage [7].
Since physical as well as neurophysiological and evolutionary factors come into play,
foraging is a rich problem that continues to present multi-faceted and interdisciplinary
challenges.
Why study foraging? Foraging is often understood to mean biological foraging, where

the objects being sought are food sites, but it can be interpreted in a broader context.
For example, the “hunt” for criminals be police authorities may be governed by pro-
cesses identical — or at least related — to those found in animal foraging. Hence, the
general foraging problem is potentially more important than may at �rst appear from
a purely biological perspective. Indeed, quantifying the statistical properties of search
patterns is of practical relevance not only in physics but also in theoretical ecology,
industry, and conceivably even to problems such as the search for missing children.
Very recently, foraging concepts have even found application in information technology
(e.g., information foraging theory [8]).
The general problem of how to search e�ciently for randomly-located “target sites”

(e.g., food objects) can be quantitatively described using ideas developed in the study
of random walks [9–13]. Indeed, it can be argued that statistical physics is ideally
suited to the study of complex phenomena of this nature. Here we discuss the quanti-
tative description of the foraging problem and survey recent developments in statistical
physics relating to foraging.

2. L�evy and Brownian random walks

Random walks can be classi�ed either as Brownian (B) random walks or L�evy (L)
walks:
(B) The step lengths ‘j have a characteristic scale, usually de�ned by the �rst and by

the second moment (mean and variance, respectively) of the step length density
distribution P(‘);

(L) The step lengths have no characteristic scale, by which we mean that the sec-
ond moment or even the �rst moment diverge and the distribution has self-a�ne
properties: P(�‘) ∼ �−�P(‘); 1¡�63.

It is often possible to estimate experimentally the probability density distribution P(‘)
of the step or ight lengths ‘. Until recently it has often been assumed [9–12] that
such a histogram of ight lengths P(‘j) has a well-de�ned second moment. Hence
arise Gaussian, Poisson and other classical distributions that lead to Brownian behavior.
Indeed, it has generally been assumed a priori that foragers perform movements in their
environments that correspond to normal di�usion. An essential feature of such random
walks is that their mean square displacement increases linearly with the number of
steps taken.
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Fig. 1. 2-D random walks for � = 2:5; 2:0; and 1.5, respectively, with identical total lengths of 103 units.
Micro-organisms, mammals, birds, and insects show episodes of approximately straight locomotion randomly
interrupted by re-orientation events.

Recently, however, it has been questioned if this assumption is unnecessarily re-
strictive, and whether its predictions can be supported by existing experimental data
[3–6,14]. To address this question, one can assume the more general L�evy distribution
[11,12,15–17]

P(‘j) ∼ ‘−�j (1)

with 1¡�63 where, in fact, Gaussian behavior is a special case for �¿ 3 [18].
Values �61 do not correspond to normalizable probability distributions. Apart from
its intrinsic mathematical merit, as being the largest class of stable distributions, L�evy
distributions have found useful applications in biology [11,12], and foraging studies
speci�cally [3–6]. The mean square displacement of L�evy random walks grows with
time as t4−� for 2¡�¡ 3 and as t2 for �¡ 2. Here t is the time of the walk with
the assumption that a jump of length ‘j takes time t = ‘j. Strictly speaking, L�evy
ights are de�ned in [19,20] such that each jump regardless of its size takes one unit
of time. Since in this article we consider ights of birds and insects, we use the term
L�evy ights instead of L�evy walks throughout the paper. The behavior of L�evy ights
is dominated by extremely long but rare step lengths. Such behavior corresponds to
anomalous super-di�usive motion [11,12] (Fig. 1). L�evy ights have also been found to
be associated with enhanced di�usion in chaotic systems and continuous-time models
(see, for instance, Refs. [21–24]).
Microorganisms, insects, birds, and mammals have been found to follow a L�evy

distribution of ight lengths or times (assumed to be proportional or at least correlated
statistically) [3–6,14] (Fig. 2). Moreover, the exponent � appears to be the same in
many instances [14]. When the nectar concentration is low, the ight length distribution
of bumble bees [14,25] decays like Eq. (1) with � ≈ 2 (Fig. 2(a)). Similarly, the value
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Fig. 2. Double log plot of the ight length percentage distributions for foraging bumble bees, digitized from
Ref. [25]. Note the value � ≈ 2 for low nectar concentration. The value � ≈ 3:5 for (≈ 10×) higher
nectar concentrations in which long ights become very rare (see text) is also consistent with the theory.
The inset displays a double log plot of the histograms of ight times (in 1 h intervals) for the Wandering
Albatross [6]. (b) Double log plot of the foraging time (s) percentage distributions for deer in wild areas and
(c) fenced areas.

� ≈ 2 is also found for the foraging time distribution of the Wandering Albatross [6]
(Fig. 2(a) (inset)) and deer (Fig. 2(b) and (c)) in both wild and fenced areas [14,26].
Even the value 26�62:5 found for amoebas [4] supports the hypothesis that �opt = 2
might be a universal value of the exponent in L�evy ight foraging. What, might we
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ask, drives animals to this type of behavior and what bene�ts, if any, do they thus
derive from L�evy ight motion?

3. Bene�ts of L�evy ights

Why ights lengths might follow a L�evy distribution rather than a Gaussian or Pois-
son distribution is of general interest. The reasons behind the experimentally observed
L�evy ights in biological foraging have never been fully understood, but a number of
studies have shed some light. Levandowsky et al. [3,4] have suggested reasons why
microorganisms may perform L�evy ights in three dimensions (3-D), showing that a
L�evy distribution is advantageous since the probability of returning to a previously
visited site is smaller than for a Gaussian distribution, irrespective of the value of �
chosen [19]. A related explanation proposed by Shlesinger (see Ref. [6]) argues that
foragers may perform L�evy ights because the number of new visited sites is much
larger for n L�evy walkers than for n Brownian walkers [27–30]. The n L�evy walkers
di�use so rapidly that the competition for the resources (target sites) among themselves
is greatly reduced relative to the competition encountered by the n Brownian walkers,
who typically remain close to the origin, hence to each other. A L�evy ight strategy
is also a good solution for the related problem where N radar stations search for M
targets [31]. Yet another proposed hypothesis is that the fractal properties of the set
of sites visited by a L�evy walker are related to scale invariant properties of the un-
derlying ecosystem [6]. Speci�cally, a fractal distribution of target sites may explain
the observed L�evy ights [6]. Very recently, there has been a study of how the search
e�ciency depends on the value � of the L�evy exponent [14]. This study �nds that
there is an optimum value �opt = 2 which can lead to optimal foraging when the target
sites are randomly and sparsely distributed. Below, we discuss this latest development
in greater detail.
By studying how the search e�ciency varies with �, one can compare di�erent

classes of foraging strategies characterized by unique values of �. In the �rst case
of “nondestructive foraging”, the forager can visit the same target site many times.
Nondestructive foraging can occur in either of two cases: (i) if the target sites become
temporarily depleted, or (ii) if the forager becomes satiated and leaves the area. In
the second case of “destructive foraging”, the target site found by the forager becomes
undetectable in subsequent ights. Consider the following idealized model that captures
some of the essential dynamics of foraging in the limiting case in which predator-prey
relationships are ignored, and learning is minimized. Assume that target sites are dis-
tributed randomly, and the forager behaves as follows (see Fig. 3):
(1) If there is a target site located within a “direct vision” distance rv, then the

forager detects it with certain probability and moves on a straight line to the detected
target site.
(2) If there is no detected target site within a distance rv, then the forager chooses

a direction at random and a distance ‘j from the probability distribution, Eq. (1).
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Fig. 3. Foraging strategy: (a) If there is a target site (full square) located within a “direct vision” distance
rv, then the forager detects it with certain probability and moves on a straight line to it. (b) If the forager
does not detect a target site within a distance rv, then the forager chooses a random direction and a random
distance ‘j from the L�evy probability distribution P(‘j) ∼ ‘−�j , and then proceeds as explained in the text.

It then incrementally moves to the new point, constantly looking for a target within
a radius rv along its way. If it does not detect a target, it stops after traversing the
distance ‘j and chooses a new direction and a new distance ‘j+1, otherwise it proceeds
to the target as in step (1). (Memory e�ects are discussed below). In the following
we will assume for simplicity that the lower cuto� of the ight length distribution is
equal to the vision radius rv. This restriction may have biological motivation, since it
is unreasonable for the forager to change the direction of the ight within the distance
of the direct vision from the previous turning point.
One can solve this model as follows: let � be the mean free path of the forager

between successive target sites (for 2-D, � ≡ (2rv�)−1 where � is the target site area
density). The mean ight distance is

〈‘〉 ≈
∫ �
rv
dx x1−� + �

∫∞
� x−�dx∫∞

rv
x−�dx

=
(
� − 1
2− �

)(
�2−� − r2−�v

r1−�v

)
+
�2−�

r1−�v
:

(2)

The second term of this “mean �eld” calculation is an approximation because it assumes
that the distances between successive sites are identically equal to �, so that there are
no ights longer than �. A new target site is always encountered a maximum distance �
away from the previous target site, e�ectively resulting in a truncated L�evy distribution
[32]. A more rigorous treatment that considers not only the mean value but also a
Poisson distribution of the free paths does not seem to alter the results signi�cantly
and numerical simulations in which uctuations are taken into account support the
mean �eld picture (see discussion below).
One de�nes the search e�ciency function �(�) to be the ratio of the number of

target sites visited to the total distance traversed by the forager, so that

�=
1

N 〈‘〉 : (3)
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Here N is the mean number of ights taken by a L�evy forager in order to travel
between two successive target sites. The value of N can be found analytically in 1-D
case [33], when the L�evy ight starts from an arbitrary point x of the interval [0; L]
with absorbing boundaries (see Ref. [34] where similar problems are solved). The
average number of ights taken by the walker before it is absorbed is given by the
equation

N = C
(
x(L− x)
r2v

)(�−1)=2
; (4)

where the constant C does not depend on x, and L. For the Brownian random walk
with all steps equal to rv, which corresponds to �¿ 3 we recover the well-known
equation N = x(L− x)r−2v .
Consider �rst the case of destructive foraging, when the target site is “eaten” or

destroyed by the foraging animal and becomes unavailable in subsequent ights. This
situation corresponds in terms of Eq. (4) to the case when the walker starts from
the previously destroyed site that is about the same distance � away from the two
remaining target sites, so that x= L− x= �. Hence, the mean number of ights Nd in
case of destructive foraging is given by

Nd ∼ (�=rv)�−1 (5)

for 1¡�63. Here �− 1 is the fractal dimension of the set of sites visited by a L�evy
random walker [19]. Note that Nd ∼ (�=rv)2 for �¿ 3 (Brownian case). Consider the
common case in which the target sites are “sparsely” distributed, de�ned by �/ rv.
Substituting Eqs. (2) and (5) into (3) one �nds that the mean e�ciency � has no
maximum, with lower values of � leading to more e�cient foraging. Note that when
� = 1 + � with � → 0+, the fraction of ights with ‘j ¡� becomes negligible, and
e�ectively the forager moves along straight lines until it detects a target site.
Consider next the case of nondestructive foraging for sparsely distributed target

sites. Since previously visited sites can then be revisited, the mean number Nd of
ights between successive target sites in Eq. (5) overestimates the true number Nn
for the nondestructive case. This situation corresponds in terms of Eq. (4) to the case
when the walker starts from the small distance rv from the previously visited site and
the next site which is about distance � away, i.e., x = rv and L= �. Hence,

Nn ∼ (�=rv)(�−1)=2 (6)

for 1¡�63. This result has also been systematically tested using simulations and
found to become better and better as (�=rv) increases (cf. also Figs. 4(a) and (b)).Note
that if �/ rv then Nd/Nn. Substituting Eqs. (2) and (6) into (3) and di�erentiating
with respect to �, one �nds that the optimal e�ciency �= 1=(Nn〈‘〉) is achieved at

�opt = 2− � ; (7)

where � ∼ 1=[ln(�=rv)]2. So in the absence of a priori knowledge about the distribution
of target sites, an optimal strategy for a forager is to choose �opt =2 when �=rv is large
but not exactly known.
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Fig. 4. (a) The ratio log〈‘〉=log(�) as a function of � found from Eq. (2) and from simulations in 1-D, for the
case �=rv=104. (b) the product of the search e�ciency � and the mean free path � vs. � in 1-D for di�erent
�, found from Eqs. (2) and (3) (rv = 1) for the case of nondestructive foraging and (c) from simulations.
(d) �� found from simulations in 2-D for the case of non-destructive foraging with � = 5000 (rv = 1). In
each case, �opt ≈ 2 emerges as an optimal value of the L�evy ight exponent. Inset: the food is distributed
in patches of food-rich areas in an otherwise empty environment, for the case of non-destructive foraging.
The e�ective value of the distribution exponent �m is obtained by computing �m=−d logN (‘)=d log ‘ from
the histograms N (‘) of ight lengths. Only ights with log10 ‘¡ 4:5 are considered in order to eliminate
the e�ects of the periodic boundaries. Again, �m ≈ 2 seems to optimize the search e�ciency.
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Fig. 4. Continued.

The above results are independent of the dimension of the foraging space. This
is analogous to the behavior of random walks whose mean square displacement is
proportional to the number of steps in any dimension [9,10]. Furthermore, Eqs. (5)
and (6) describe the correct scaling properties even in the presence of short-range
correlations in the directions and lengths of the ights. Short-range correlations can
alter the width of the distribution P(‘), but cannot change �, so these �ndings remain
unchanged. Hence, learning, predator–prey relationships, and other short-term memory
e�ects become unimportant in the long-time long-distance limit. Note also that for both
destructive and nondestructive foraging, Brownian behavior, corresponding to �¿3, is
signi�cantly less e�cient than L�evy ight motion. This �nding suggests that a power
law distribution of ight lengths may be essential for optimal foraging when the target
sites are sparsely and randomly distributed. For completeness, consider also the case
in which the target sites are plentiful, i.e., �6rv. Then 〈‘〉 ≈ � and Nd ≈ Nn ≈ 1.
Hence, � becomes independent of �. This behavior does not correspond to L�evy ight
foraging but is more similar to a Brownian random walk. The independence of � on
� is a direct consequence of the extreme rarity of long ights with ‘j ¿ rv.
These theoretical results have been supported with numerical simulations which do

not depend on approximations. Indeed, 1-D and 2-D simulations have been performed
of the above model to study how � varies with � for the case of nondestructive foraging
by a single random walker. Fig. 4(a) shows that the mean ight paths estimated ana-
lytically and through simulations are consistent. For 1-D, the position of the maximum
in � for the simulation agrees with the analytical results (Fig. 4(b)), and approaches
�opt = 2 as � → ∞ (Fig. 4(c)). These simulations were performed for a �xed inter-
val of size � with no disorder, since this is a valid simpli�cation because there is no
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signi�cant di�erence between Poisson distributed � and �xed �, as discussed further
below. The simulation results for 2-D nondestructive foraging also show maxima near
�opt = 2. Fig. 4(d) shows simulated foraging in a system of size 104× 104 with rv=1,
periodic boundary conditions, and �=rv = 5 × 103, corresponding to a total number of
104 �xed target sites (of which the forager must �nd at least 102 sites), averaged over
102 initial con�gurations. (Care must be taken to avoid repetitive and endless jump-
ing between two �xed sites closer than rv to avoid spurious results.) Moreover, for
destructive foraging with �/ rv, simulations show that �→ 1 optimizes the e�ciency
as predicted. In contrast, if the target sites are densely distributed such that � ≈ rv,
then, as expected, we �nd no signi�cant e�ect of varying �. These �ndings agree
with the theoretical predictions and raise the possibility that L�evy ight foraging with
�¡ 3 may be con�ned to instances of low global target site concentration, since the
principal advantage of choosing small � – long ights – becomes negligible when there
are ample target sites (see also Figs. 4(c) and 2(a)). We stress that such simulation
results do not use the approximations inherent in Eq. (2) and e�ectively use a true
distribution of free paths, thereby showing that such approximations do not alter the
shape of the � curve, nor — most importantly — its maximum value near �opt = 2.
Our preliminary results show that this is still true in 3-D [33].
We also note that nondestructive foraging is more realistic than destructive

foraging because in nature, owers, berries, krill, �sh, etc., are usually found in patches
or clumps which are rarely completely depleted. Organisms are often in clusters for
reproductive purposes. Sometimes such clusters have fractal shapes [35]. Thus an an-
imal can revisit the same food patch many times, and a patch can restore itself by
regrowth. Simulations of destructive foraging in patchy target site distributions give
results consistent with nondestructive foraging for uniformly distributed target sites. As
an illustrative example, Fig. 4(d) (inset) shows �(�) found from simulating a patchy
distribution of food. There are many small randomly distributed food-rich regions, each
with radius R, outside of which there is no food to be found. To speed up the simula-
tions, it was assumed that the forager performs a L�evy Flight only outside the region of
radius R, and that it instead performs Brownian motion within, �nding food at each site
along the way separated by the local mean free path �=R=3. The system size used was
105×105. A low patch area to system area ratio of �×10−6 is achieved using a patch
radius of R = 10, and a number of patches np = 104. Here, �m ≡ −d logN (‘)=d log ‘
was measured from the histogram N (‘) of ight lengths instead of using the parameter
� from the model. Such a histogram represents an experimentally observable distri-
bution of ight lengths. Note that �m is consistent with the theoretically predicted
value �opt.
L�evy ights in foraging suggest the existence of dispersal or redistribution kernels

[36,37] which follow the L�evy distribution. Dispersal kernels are used in population
biology and occur in integrodi�erence equations such as

nt(x) =
∫


K(x; y)f(nt(y)) dy; (8)
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where nt(x) represents the population density in the generation t at location x, the
nonlinear function f describes density dependent processes at a given position in space,
and K is the kernel. Each value of � is related to a di�erent type of kernel, e.g. �¿3
corresponds to the normal (or similar) distribution, while �=2 corresponds to a Cauchy
distribution [38].

4. Prospects

Over the last decade there has been much progress in the study of L�evy ights in
search processes. A re-examination of existing experimental data for evidence of L�evy
ight behavior might be warranted, especially in the case of patchy food distributions.
It would also be interesting to compare in greater detail the L�evy ight foraging in
2-D and 3-D. Finally, we also note that a fuller treatment of foraging that takes energy
into account remains to be done.
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