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We investigate the sandpile model on the two-dimensional Sierpinski gasket fractal. We find that the model
displays interesting critical behavior, and we analyze the distribution functions of avalanche sizes, lifetimes,
and topplings and calculate the associated critical exponents t51.5160.04, a51.6360.04, and
m51.3660.04. The avalanche size distribution shows power-law behavior modulated by logarithmic oscilla-
tions which can be related to the discrete scale invariance of the underlying lattice. Such a distribution can be
formally described by introducing a complex scaling exponent t*[t1id , where the real part t corresponds
to the power law and the imaginary part d is related to the period of the logarithmic oscillations.
@S1063-651X~96!03907-4#

PACS number~s!: 64.60.Ak, 02.60.Cb

I. INTRODUCTION

The concept of self-organized criticality ~SOC! has been
introduced by Bak et al. @1# to describe the tendency of a
large class of dynamical systems to spontaneously evolve
into a critical state without fine tuning of any external pa-
rameter. Sandpile models @1,2# have been introduced as an
example of this kind of phenomena and have been widely
studied numerically and analytically @3–7#. Two principal
analytical approaches have been followed: the first involves
the group theory formalism introduced by Dhar and co-
workers @8# and the second is a real-space renormalization
scheme recently developed by Pietronero et al. @9#. Other
theoretical approaches involve nonlinear continuous differ-
ential equations @10,11#.

Sandpile models are inspired by the dynamics of sand
flowing along the slope of a pile. By adding sand grains to
the pile the system eventually reaches a stationary state char-
acterized by avalanches of all length scales. The term criti-
cality refers here to the absence of any characteristic length
scale in this state. Sandpile models have been studied mostly
on Euclidean lattices. It has been shown that different kinds
of Euclidean lattices do not affect the critical exponents @4#.
This fact is similar to the universality observed in ordinary
critical phenomena. Moreover, in the case of the Bethe lat-
tice one recovers the mean field results @12,13#. However,
sandpile models, to our knowledge, have not been studied on
a fractal substrate, in particular on a simple deterministic
fractal such as that epitomized by the Sierpinski gasket ~SG!.

It has been shown, via specific calculations @14# and
through general rigorous analysis @15#, that for the standard
Ising model ~and for some more general models! on finitely
ramified fractals no spontaneous magnetization can exist at
any finite temperature. It might have happened that, by some
assumed analogy, no self-organized critical behavior has
been expected so far to occur on the deterministic fractals.
However, we shall demonstrate that the SOC phenomenon
exists on the SG fractal and displays interesting features.
Specifically, we study numerically the critical height sand-
pile model on the SG lattice with the generator scaling base
b52 which corresponds to the fractal dimension

D5ln3/ln2'1.58. We calculate the distribution of avalanche
sizes, their lifetimes, and topplings. The avalanche size dis-
tribution shows a power-law behavior modulated by logarith-
mic oscillations. This kind of oscillation has already been
observed in the scaling functions of different systems @16#,
and here it can be related to the discrete scale invariant na-
ture of the underlying fractal lattice. It is interesting to note
that complex scaling exponents have been recently detected
in earthquake statistics @17#.

The measured scaling exponents vary with the system size
L and the values, extrapolated to L→` , appear to differ
from those computed on the Euclidean lattices. Computing
expectation values, we are able to verify the relationships
between different critical exponents.

In addition, we investigate time correlations of the num-
ber of drops and topplings during the avalanche. Calculating
the power spectra, we find that as in the case of the two-
dimensional Euclidean lattice @18,19# there are no long-range
temporal correlations.

II. THE MODEL

Our cellular automata model is defined on the SG lattice
as shown in Fig. 1. The number n is related to the number of
sites L52n11 along one direction of the lattice and is used
hereafter as a measure of the system size. Within the sand-
pile model, all the sites of the fractal lattice are exposed to
the same local dynamical rules. The exceptions are the three
apex sites where the sand grains flow out of the system. The
dynamics begins when we associate an integer height vari-
able z i with every lattice site i . At each later step one lattice
site is chosen at random and its height is increased by one.
Whenever the height on a site i reaches the critical value
zc54, the site becomes unstable ~active! and relaxes accord-
ing to the following rules

z i→z i24, ~1!

z j→z j11, ~2!
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where j are the nearest neighbors of i . These rules conserve
the total number of grains, except on the three apex sites
~independent of the system size! where two sand grains are
lost. Successive relaxation events generate the sand flow that
eventually brings the sand out of the system. Due to the local
conservation, imposed by the dynamical rules, the system
finally evolves into the stationary state characterized by the
balance between the input and the output flow.

The critical exponents are extracted from avalanche dis-
tributions in the stationary state. We define the size S as the
number of distinct sites visited by an avalanche, the toppling
size m as the number of relaxation events, and the lifetime
T as the number of updating steps during an avalanche. All
these quantities are expected to be distributed as power laws

P~S !;S2t, ~3!

P~m !;m2m, ~4!

P~T !;T2a, ~5!

where t , m , and a are critical exponents of the respective
distribution functions P(S), P(m), and P(T). We can relate
these exponents by considering conditional expectation val-
ues for an average avalanche size ^ST& and an average top-
pling size ^mT& at a given avalanche lifetime T:

^ST&;T
b, ~6!

^mT&;T
g, ~7!

and similar other relations. By taking into account the defi-
nitions of critical exponents, given by Eqs. ~3!–~7!, scaling
relations between exponents can be derived @6#:

t511~a21 !/b , ~8!

m511~a21 !/g . ~9!

Finally we study temporal correlations by considering the
number of active sites and the number of grains falling out of
the system at each time step. The power spectrum of this
signal falls off as

S~ f !; f2f. ~10!

In the Euclidean case, f52 showing the absence of long-
range temporal correlations.

III. SIMULATION RESULTS

We perform numerical simulations for different lattice
sizes ranging from n53 to n57. The total number of sites
Sn11 of the system size n11 is related to the number of sites
Sn of the system size n via the equation Sn1153Sn23 with
S053, which corresponds to a total number of lattice sites
going from S3542 to S753282.

A simple way to characterize the properties of the station-
ary state is to compute the fraction pz of sites having height
z i51, 2, 3, and 4. We report these results in Table I for
different system sizes, together with an average height ^z&.
The obtained values are very close to those found on the
Euclidean lattice @4,5#.

In Fig. 2 we show the avalanche size distribution for dif-
ferent system sizes. One can see that there are quite a few
avalanches ~represented by the last peak of each distribution

FIG. 1. An example of the SG lattice with the generator b52, at
the stage of construction n52, and with linear size L55. Each site
has four neighbors except for the three apex sites with only two
neighboring sites. The arrows indicate the direction of sand flow
from a chosen site.

TABLE I. The fraction of sites having height equal to z51, 2,
3, and 4 and the average height ^z& as found for different system
sizes L52n11 and n53, 4, 5, 6, and 7.

n p1 p2 p3 p4 ^z&

3 0.075 0.143 0.306 0.476 3.18
4 0.070 0.136 0.302 0.492 3.22
5 0.069 0.133 0.299 0.499 3.23
6 0.068 0.132 0.298 0.501 3.23
7 0.068 0.132 0.298 0.502 3.23

FIG. 2. The distribution of avalanche sizes of the sandpile
model on a SG lattice. Different curves correspond to different
system sizes. The arrows indicate the peaks in the distribution.
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curve! which span the entire lattice. This occurs because the
balance between incoming and outgoing particles forces the
avalanches to reach the three apex sites. Due to the self-
similarity of the underlying lattice, the same phenomenon
occurs on all fractal substructures, which is manifested by a
series of peaks on each distribution curve.

The phenomenon described above is reflected in a pecu-
liar behavior of the active sites during the evolution of an
avalanche: the active sites are localized ~trapped! within frac-
tal substructures for many time steps. Such a trapping does
not occur in the Euclidean lattice where the active sites are
essentially on the avalanche front. This is apparent from Fig.
3 where the active sites for a typical avalanche in the Euclid-
ean square lattice are compared with an avalanche on the
fractal lattice. Similar differences which spring from differ-
ences in the topology of the lattices were noted before @20# in
a study of linear polymers on the diamond hierarchical lat-
tice.

The power-law behavior in a double logarithmic plot is

modulated by oscillations with a period p that can be related
to the scaling properties of the SG lattice. A self-similar
lattice is left invariant only by a discrete set of scale trans-
formations, namely, by those with a scaling parameter of the
form l5bn. Under this condition, it has been shown @21#
that the most general scale invariant function of the real-
space coordinates is a power-law multiplied by a logarithmi-
cally periodic function. These oscillations can be formally
described by introducing a complex scaling exponent
t*[t1id where the real part t corresponds to the power-
law exponent, while the imaginary part d is related to the
period of oscillations. In our case d52p/p52p/
ln355.72. To extract t , we fit the distribution with a power
law modulated by a periodic function.

The last peak in the distribution of avalanche sizes is a
consequence of the fact that at any system size there are only
three boundary points where the sand can flow out of the
system, in contrast to the Euclidean lattice where the number
of boundary points increase in proportion to the system size.
However, one can study the effect of boundaries by calculat-
ing the avalanche size distribution of the same sandpile
model on the Euclidean lattice with only four boundary
points, e.g., the four corner sites of the square lattice ~for the
rest of the edge points periodic boundary conditions apply!.
The results are shown in Fig. 4 for system sizes L54, 8,
16, and 32. The distributions are power laws with peaks at
the total numbers of sites on the lattice.

In the SG case, we report in Figs. 5 and 6 the distributions
of avalanche lifetimes and topplings in a double logarithmic
plot. Both distributions display pure power-law behavior
without any modulations. The power-law regimes grow with
the system size.

As in the case of the Euclidean lattice @4#, the scaling
exponents depend on the system size. We can, however, ex-
tract the asymptotic results by plotting the logarithm of the
exponents versus 1/log10L , where L is the linear size of the
lattice. This relationship is presented in Fig. 7, where we

FIG. 3. A snapshot of an avalanche on the Sierpinski gasket
lattice ~a! compared with an avalanche on the Euclidean square
lattice ~b!. Active sites are depicted in black and sites that have
toppled at least once are colored in gray.

FIG. 4. The distributions of avalanche sizes for a sandpile model
on a square lattice with four exiting points are depicted for several
system sizes L54, 8, 16, and 32. Data for L516 and L532 are
averaged at sizes S.50.
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depict also the extrapolated critical exponents in the limit
n→` . We found the extrapolated values t`51.5160.04,
a`51.6460.04, and m`51.3660.04 for the avalanche size,
lifetime and toppling distributions, respectively. The distri-
bution functions presented in these figures have been calcu-
lated by averaging over 217 avalanches.

To check the consistency of our results we compute the
scaling exponents of the conditional expectation values, i.e.,
exponents related to the average avalanche size ^ST& and
number of topplings ^mT& in dependence on the lifetime T .
Figure 8 shows results of our computation in a double loga-
rithmic plot. The slopes in the figure correspond to the ex-
ponents b and g as defined in Eqs. ~6! and ~7! and are found
to be b51.1360.05 and g51.7360.05. These two values
can be compared with the ones evaluated from the scaling

relations given by Eqs. ~8! and ~9!, and using the estimated
critical exponents t` , a` , and m` . Thus we find the values
b51.2460.12 and g51.7560.18, which are in agreement,
within the numerical error, with the directly obtained values
from Fig. 8.

Finally, within the scope of the sandpile model @1#, we
calculate the temporal correlations of two quantities: the
number of particles which fall out of a system in a unit time
and the number of topplings. The unit time in this case cor-
responds to one updating step of the lattice variables. We
calculate the power spectra of the above two quantities. In

FIG. 5. The distribution of avalanche lifetimes of the sandpile
model on a SG lattice as calculated for different system sizes. Data
are logarithmically binned at lifetimes T.50.

FIG. 6. The distribution of the number of topplings per ava-
lanche of the sandpile model on a SG lattice as calculated for dif-
ferent system sizes. Data are logarithmically binned at toppling
sizes m.50.

FIG. 7. The logarithm of the critical exponents found as a result
of a simulation for different lattice sizes plotted against 1/log10L .
Estimations of the three exponents in the limit of infinitely large
lattice size (1/log10L→0) are also shown. The extrapolated expo-
nents in the limit L→` are t`51.5160.04, a`51.6360.04, and
m`51.3660.04.

FIG. 8. The average avalanche size ^ST& and the average num-
ber of topplings ^mT& as functions of the lifetime T , presented in a
double logarithmic plot. The corresponding slopes are
b51.1360.05 and g51.7560.05. Data are logarithmically binned
at lifetimes T.50.
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both cases we find a 1/f 2 type of spectrum. Thereby, the type
of temporal correlations turns out to be the same as in the
original model on a two-dimensional square lattice @18,19#.
Our results are presented in Fig. 9. The flattening of the
1/f 2 spectrum at small frequencies is due to finite size ef-
fects. In contrast to other scaling exponents presented in this
paper, the exponents of power spectra do not vary with the
system size, that is, the 1/f 2 type of spectrum corresponds to
an exponential decay of temporal correlations independently
of the system size.

IV. CONCLUSION

We computed numerically the scaling exponents for the
avalanche distributions in the critical height sandpile model

on the Sierpinski gasket lattice with the generator base
b52. The lattice coordination number is the same as in the
two-dimensional square lattice and therefore the dynamical
rules of the sandpile model are exactly the same. The bound-
aries, however, are different, since on the SG lattice the sand
can flow out only through three sites at every scale. This fact
substantially changes the avalanche dynamics. The active
sites become trapped ~localized! and topple more than once
during a single avalanche.

In relation to the standard critical phenomena it is inter-
esting to note how the dimensionality and the topology of the
lattice affect the critical behavior of the model. In one di-
mension, the critical height sandpile model is trivial in that
avalanches are not power-law distributed @1#. A similar be-
havior occurs, for example, in the Ising model where no
phase transition is observed in dimension less than two. We
have shown, however, that on a finitely ramified fractal, the
sandpile has nontrivial critical behavior, in contrast to the
Ising model which has no phase transition on such a fractal
lattice @14,15#.

Finally, we note that self-similar lattices have been
proven very helpful in constructing exact real-space renor-
malization group transformations @22,23# for standard critical
phenomena. Having demonstrated that self-organized criti-
cality can exist on a fractal lattice, it would be beneficial to
find such a transformation for this model, trying to link the
rigorous approach of Dhar and co-workers @8# with the real-
space renormalization scheme presented in @9,24#.
Note added in proof: After finishing this work we came to

know about recent observations of complex critical expo-
nents; we thank D. Sornette @25# for calling these to our
attention.
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