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We study an aggregation-disaggregation model which is relevant to biological processes such as the growth
of senile plaques in Alzheimer disease. In this model, during the aggregation each deposited particle has a
probability of producing a new particle in its vicinity, while during disaggregation the particles are anihilated
randomly. The model is held in a dynamic equilibrium by a feedback mechanism which changes the disag-
gregation probability in proportion to the change in the total number of particles. We also include surface
diffusion which influences the morphology of growing aggregates and colonies. A colony includes the descen-
dents of a single particle. We investigate the statistical properties of the model in two dimensions. We find that
unlike the colonies, individual aggregates are fractals with a fractal dimension of D f51.9260.06 in the
absence of surface diffusion. We show that the surface diffusion changes the fractal dimension of aggregates:
at a small aggregation-disaggregation rate, D f is independent of the strength of the surface diffusion, D f

51.7360.03. At larger aggregation-disaggregation rates and different strengths of surface diffusion, aggre-
gates with fractal dimensions between D f51.73 and 1.92 form. The steady-state distribution of aggregate sizes
is shown to be power law if the aggregation-disaggregation process dominates over the surface diffusion. In the
limit of weak aggregation-disaggregation and strong surface diffusion the size distribution is log-normal.
@S1063-651X~99!01008-9#

PACS number~s!: 87.10.1e

I. INTRODUCTION

Pattern formation and fractal growth phenomena in phys-
ics have attracted much attention in recent years @1,2#. Physi-
cal pattern formation phenomena have many interesting
analogies in biological systems that are usually too complex
to be described in terms of simple equations @3#. Although
biological growth involves biochemical reactions, transport
and production, the specific processes that underlie biologi-
cal growth and its rate are unknown. In part this is because
the essential processes that give rise to a particular structure
of a growing aggregate cannot be examined directly. Rather,
lattice models @4,5# are used to mimic the essential features
of the observed growth patterns @6#. Accurate modeling of
the growth in turn sheds light on the possible biochemical
mechanisms that govern the phenomena, and contributes to a
deeper understanding of biological morphogenesis and evo-
lution.

In this paper we study a model motivated by the growth
of senile plaques in the cortex of the brain of Alzheimer
patients @7#. It is well known that Alzheimer disease is asso-
ciated with senile plaques, macroscopic aggregates of
amyloid-b (Ab) protein of 40-42 amino acids in length.
Our approach to the modeling of plaque formation is based
on several experimental observations. Although the precur-
sor peptide Ab is produced uniformly throughout the cortex
of the brain, the aggregated Ab deposits are anatomically
discrete, roughly spherical aggregates of Ab fibrils. The
amount of Ab deposits is not correlated with the duration or

the severity of the disease @8,9#. This observation suggests
that after the onset of the disease the process of plaque for-
mation reaches a dynamic equilibrium. Computerized image
analysis has shown that the size distribution of Ab senile
plaques can be well fit to a log-normal distribution @10#.
Finally, recent quantitative analysis of confocal micrographs
of senile plaques in three dimensions has revealed their very
specific porous structure @11#.

In order to answer the question of what kind of mecha-
nisms produce such porous morphology at equilibrium, we
consider general principles of aggregation. Mechanisms
which are responsible for the growth should depend on the
diffusion constant of Ab as compared to its aggregation rate.
If the diffusion is slower than aggregation, an aggregate with
a ramified treelike structure is formed that belongs to a dif-
fusion limited aggregation ~DLA! universality class @12#. If
the diffusion is faster than aggregation, a compact spherical
structure is formed, which belongs to the Eden universality
class @12#. These two models are limiting cases of a more
general finite-diffusion-length model @13# that also predicts
DLA-like nonfractal structures. The DLA and Eden models
are essentially mimicking nonequilibrium phenomena, which
is in disagreement with dynamic equilibrium. The DLA
model can be modified into an equilibrium process by intro-
ducing disaggregation @14#. However, the resulting aggre-
gates have a smaller fractal dimension than DLA aggregates,
and are thus appropriate to describe branched-polymer con-
figurations but not the observed porous senile plaques. There
are also cluster-cluster aggregation ~CCA! models @1#, based
on DLA, that can be modified into equilibrium growth mod-
els by introducing sources and sinks @15# ~steady-state CCA!
or by allowing aggregates to break ~reversible CCA! @16#.
However, the morphologies of the resulting aggregates are
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highly ramified, exhibiting fractal properties. Moreover,
since plaque aggregation in the brain is believed to be a slow
process on a time scale of years as opposed to a much faster
diffusion, the models of the DLA type are unlikely to be
directly relevant to the growth of Ab plaques.

Our approach to modeling senile plaque formation is
based on the birth-death type of aggregation models that are
generally used for studying the dynamics of populations, epi-
demics @17#, chemical reactions with creation and anihilation
processes @18#, and even evolution through mutations @19#.
Our model, based on aggregation and disaggregation, is
modified in such a way that it accounts for both a dynamic
equilibrium and a specific porous structure of the observed
senile plaques @11#. The disaggregation process is natural to
postulate, since recent experiments suggest that certain
agents in the brain interfere with Ab aggregation and poten-
tially trigger reversal of Ab aggregate @20#.

The model is introduced in Sec. II. In order to achieve the
growth at a dynamic equilibrium, we introduce a feedback
mechanism into our model. The disaggregation process is
modified at each simulation step such that it becomes stron-
ger if the number of particles increases, and conversely is
weakened otherwise. We discuss several ways to change the
disaggregation process through feedback, and we compare
two possibilities that lead to a different asymptotic behavior
of the system. Under the assumption of the existence of one
dynamic steady state, we then choose the feedback mecha-
nism in which the disaggregation probability is changed in
proportion to the change in the total number of particles. In
Sec. III we present statistical properties of the model, and
study the fractal dimension and size distribution of aggre-
gates in dependence on the aggregation-disaggregation rate
and surface diffusion. We also examine the growth rate of
the whole colony of aggregates @21#, and show that it scales
in a nonfractal way.

II. MODEL

The model is based on two processes, aggregation and
disaggregation. At each simulation step the rules for aggre-
gation and disaggregation are applied to each particle in the
lattice, thus mimicking the time evolution of particles. The
whole growth process can thus be viewed as an example of a
birth-and-death branching process @22,23#. Although a par-
ticle in our terminology means an aggregate composed of
many Ab molecules, it is, on the other hand, much smaller
compared to a fully evolved senile plaque. One can think of
a particle as a fibril of amyloid b peptides as experimentally
observed in vitro @24#. We are not modeling the microscopic
biochemical processes that give rise to Ab fibrils, but we
take them as basic to our explanation of the anatomical ex-
perimental observations of Ab deposits. In this sense our
model is phenomenological ~‘‘coarse grained’’! and not mi-
croscopic.

A. Aggregation-disaggregation process

We study the model on a two-dimensional discrete lattice.
Each lattice site is either empty or occupied by a particle. For
each particle we first decide with equal probabilities, 1

2 ,
which rule, either for aggregation or disaggregation, will be
applied.

~i! If a particle is chosen to aggregate at a time step t, it
has a certain aggregation probability Pagg to create a new
particle in the next time step t11 at some empty site in its
vicinity; otherwise nothing happens. The new particle per-
forms a random walk from the original particle site in the
lattice until it encounters the first vacant site, where it is
attached. In this way every particle in the lattice has an equal
probability to create a new particle; thus the growth is uni-
form.

~ii! If the disaggregation rule applies, the particle will be
anihilated with the disaggregation probability Pdis at the time
step t11.

Since the rules defining the growth model are independent
of the local geometry of the growing aggregates, we can
relate the number of particles N t11 at time t11 with the
number of particles N t at time t:

N t115N t1
1
2 ~Pagg2Pdis!N t . ~1!

The factor of 1
2 comes from the fact that on average half of

the particles follow the aggregation rule and the other half
the disaggregation rule. We have to emphasize that Eq. ~1!
applies only on average, it is thus a ‘‘mean-field’’ equation.
The solution of the above recursion relation @Eq. ~1!# is

N t5N0S 11

Pagg2Pdis

2 D
t

.

For Pagg.Pdis the number of particles increases exponen-
tially, while for Pagg,Pdis it decreases exponentially. Start-
ing from a given configuration of particles, the system, ac-
cording to Eq. ~1!, reaches equilibrium if Pagg5Pdis . In the
parameter space (Pagg versus Pdis), Pagg* 5Pdis is the critical
line.

We can use a theory of branching processes @22# to cal-
culate what happens to the descendents of one particle after t
time steps at the critical point, Pdis5Pagg . We define a prob-
ability PN ,t such that after t steps we end up with N descen-
dents of the initial particle. We create a generating function
g t(x),

g t~x ![ (
N50

`

xNPN ,t , ~2!

which is by definition normalized such that g t(x51)51. By
taking into account three possible outcomes for each particle
from the time step t to the time step t11, we can express
g t11(x) in terms of g t(x) through the recursion relation

g t11~x !5

Pdis

2
1S 12

Pagg1Pdis

2 D g t~x !1

Pagg

2
g t

2~x !.

~3!

For Pdis5Pagg it is possible to show @22# that the solution is

g t~x !512

2

Paggt
1

4

Pagg
2 t2 (

N51

`

expF2

2N

Paggt
GxN

10S 1

t2D .

~4!

For x51, the term with the sum in the Eq. ~4! represents a
probability that after t steps there will be one or more de-
scendents of the original particles. The probability that after
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t steps the number of descendents will be zero is equal to
122/(Paggt). Thus asymptotically at large t the probability
of having zero descendents of one particle goes to 1. Note
that the generating function given by Eq. ~4! consists of two
parts, one corresponding to N50 and the other correspond-
ing to N>1. This latter part is analytical, and, as we show in
the Appendix, can be derived from the Fokker-Planck equa-
tion.

Knowing the probabilities PN ,t , we can calculate the mo-
ments ^N& and ^N2&. As expected, ^N&51, meaning that on
average we expect that the number of descendents is 1. On
the other hand, ^N2&5Paggt . This means that the standard
deviation of the distribution PN ,t at large times grows as At .

If we start with N0 original particles at Pdis5Pagg , the
probability of having zero particles after large t is @1
22/(Paggt)#N0'122N0 /(Paggt). This probability is thus in-
creasing with time, although the average number of particles
remains the same, equal to N0. We therefore showed that for
any finite system of initial particles, even at the critical point
(Pdis5Pagg), the model as defined above is unstable due to
fluctuations and will eventually yield an empty lattice.

B. Dynamic feedback

The model defined in Sec. II A is unstable: regardless of
the initial state and regardless of how the two probabilities
for aggregation and disaggregation Pagg and Pdis are chosen,
the system either dies or grows until the whole lattice is fully
covered by particles. In order to be able to describe a dy-
namical system with both processes at equilibrium, it is nec-
essary to introduce a feedback mechanism that pushes the
system toward equilibrium. The importance of the feedback
mechanism has been recognized in other cellular automata
models, in particular in self-organized critical models where
feedback plays the role of a restoring force that drives the
system back to the dynamical critical point @25#.

One way to introduce a feedback mechanism is to specify
the average number of particles in the steady state N f , and to
modify Pdis at each step according to

Pdis~ t11 !5Pdis~ t !1W~N t2N f !/V , ~5!

where W is a feedback parameter and V is the total number of
lattice sites, so that N f /V is the concentration of particles in
the steady state.

In order to find the approximate asymptotic behavior of
the model with the feedback defined by Eq. ~5!, we replace
the difference N t112N t in Eq. ~1! by dN t /dt , and the dif-
ference Pdis(t11)2Pdis(t) by dPdis(t)/dt , and then assume
that, as t˜` , N t5N f1x and Pdis5Pagg1y . For small x and
y, we can linearize Eqs. ~1! and ~5! and find

x5DN cos vt , ~6!

where DN is an amplitude that depends on the initial condi-
tions and v5AWN f /(2V). As we can see, the feedback de-
fined by Eq. ~5! yields an oscillatory behavior of the system
which is difficult to justify in biological growth ~see Fig. 1!.

We therefore adopt another type of feedback, one that
changes the disaggregation probability in proportion to the
change in the total number of particles,

Pdis~ t11 !5Pdis~ t !1w
N t2N t21

V
, ~7!

where w measures the strength of the feedback.
To compare the two different types of feedback, in Fig. 1

we plot the dependence of N t /V on time. The feedback de-
fined by Eq. ~7! drives the system smoothly into one
uniquely defined steady state without any oscillations. We
therefore consider from here on only the feedback given by
Eq. ~7!, which is also simpler since it does not require the
final coverage N f /V to be specified.

We can solve the recursive equations ~1! and ~7! by as-
suming that w is small and by taking the continuum limit.
First, we replace the difference Pdis(t11)2Pdis(t) by
dPdis(t)/dt and the difference N t2N t21 by dN t /dt (dt
'Dt[1). In this way, we obtain a differential equation for
N t in the presence of the feedback,

dN t

dt
5aN t2bN t

2 , ~8!

FIG. 1. The fraction of occupied sites N t /V as a function of
time t as a result of a simulation on a 2D lattice of size 2563256
with an initial fraction N0 /V50.001 of randomly placed particles.
The aggregation probability Pagg50.25, and initially there is no
disaggregation @Pdis(t50)50# . In the absence of feedback the
fraction of particles N t /V increases exponentially with time
~opaque circles!. In the presence of the feedback (W52) defined by
Eq. ~5!, the system oscillates around a predetermined fraction of
particles N f /V ~filled squares!, while in the presence of the feed-
back (w52) defined by Eq. ~7! the approach to a steady state is
smooth ~open triangles! and well described by an approximate ana-
lytic solution given by Eq. ~9! ~thick solid line!. The thin solid lines
are guides to the eye.
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with the constants 2a[Pagg2Pdis(0)1wN0 /V and 2b
[w/V . The initial value of the disaggregation probability is
denoted by Pdis(0) and the initial number of occupied sites
by N0. Denoting the asymptotic solution ~as t˜` and
dN t /dt50) by N`5a/b , the time dependence of N t is given
by

N t5
N`

11@~N`2N0!/N0#exp~2at !
. ~9!

If N0!N` and N t!N` , for a short time the number of par-
ticles grows exponentially, as in the absence of feedback. At
longer times, the feedback inhibits further growth and the
growth process reaches a dynamic equilibrium with the av-
erage number of particles N` conserved over time. The
simulations shown in Fig. 1 are in good agreement with Eq.
~9!. As shown in Fig. 1, the approximate solution ~thick solid
line! approaches the exact asymptotic value and is close to
the solution found by simulations ~open triangles! at all
times.

As for the average number of particles N t as t˜` , there
is no difference between the model in the absence of the
feedback at Pdis5Pagg and the model with the feedback de-
fined by Eq. ~7!. However, there is an essential difference
regarding the fluctuations of the number of particles around
its ‘‘mean-field’’ asymptotic value, N` , as presented in the
Appendix. While without feedback the standard deviation of
the probability distribution of the number of particles in-
creases with time, in the presence of the feedback defined by
Eq. ~7! the distribution of the number of particles around the
mean value N` can be approximated by a Gaussian distribu-
tion with a time-independent width. Moreover, the width can
be varied by changing the feedback parameter w.

C. Surface diffusion

For a typical biological tissue there is always ‘‘surface
tension’’ which suppresses random spatial fluctuations along
the edges of the aggregate @4#. Algorithms for boundary
smoothing are well known also in the field of the surface
growth as noise-reduction methods @26#.

We implement the surface diffusion in the following way:
After each step of aggregation and disaggregation ~one step
in our terminology means that every particle in the lattice is
exposed to the rules of the model!, each particle has a prob-
ability of moving one step in a randomly chosen direction if
and only if after the move the particle ends up with more
nearest neighbors. In this way particles that are totally sur-
rounded by other particles do not move, whereas the isolated
particles tend to ‘‘find a better environment,’’ i.e., an envi-
ronment with more occupied nearest neighbors. The strength
of the surface diffusion J can be varied by the number of
times that all the occupied sites in the lattice make such a
step.

The influence of the surface diffusion on the morphology
of a growing colony of aggregates is presented in Figs. 2~a!
~no surface diffusion! and 2~b! ~with surface diffusion, J
520).

III. STATISTICAL PROPERTIES OF THE MODEL

There is an inherent difference between aggregation and
disaggregation processes, even though the two processes are
at equilibrium due to the feedback. There is an overall larger
probability for larger aggregates to grow in time or, con-
versely, a smaller probability for isolated particles to survive
too far away from a larger aggregate. This causes clustering
of aggregates into larger formations which are dynamically
stable as simulation time t˜` @27#. Thus, no matter what
the initial configuration is, either randomly distributed par-
ticles or a solid disk of particles, the system always evolves
into a dynamical steady state which is one clustered colony,
composed of many connected objects, aggregates, as shown
in Figs. 2~a! and 2~b!.

We want to examine statistical properties of the model,
such as the fractal dimension of aggregates and colonies, the
rate of colony growth and the size distribution of aggregates
within a colony. The theory of branching processes is appro-
priate to predict a ‘‘mean-field’’ behavior of the aggregation-
disaggregation behavior, but it is not able to account for any

FIG. 2. Two-dimensional ~2D! lattice of size 5123512. The
initial configuration consists of randomly placed particles that cover
roughly 10% of the total lattice area @N0 /V50.01, Pagg50.10, and
Pdis(t50)50.10, and w52]. ~a! A typical colony after 140 000
time steps in the absence of the surface diffusion. ~b! A typical
colony after 140 000 time steps in the presence of the surface dif-
fusion with a strength J520 ~the diffusion process dominates over
the aggregation-disaggregation process!.
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geometrical properties of growing aggregates, neither mor-
phology, nor the rate of growth, nor their size distribution.

A. Morphology of colonies and aggregates

Figure 2 shows individual colonies grown in the model:
One colony is grown in the absence of the surface diffusion
and the other in the presence of the surface diffusion. We can
see that the surface diffusion changes the morphology of the
colonies and aggregates by smoothing the surfaces of clus-
ters.

The time development of the radius of gyration ^R2&1/2 is
plotted in Fig. 3~a! for short times, i.e., before the colony
reaches the steady-state size. From the graph @solid and
dashed lines in Fig. 3~a!# we can extract the exponent of the
growth of the radius ^R2&1/2: ^R2&1/2 grows as tn, where n
50.5060.05, corresponding to a normal diffusion rate. The
results show that the presence of the surface diffusion has no
influence on the exponent n . The scaling of the number of
particles N in a colony with the radius of gyration Rg is
presented in an inset of the Fig. 3~a!. The scaling is close to

N;Rg
2 , meaning that the whole colony scales as a nonfractal

two-dimensional object.
On the other hand, the geometrically connected objects

~aggregates! that form a colony have fractal properties. The
radius of gyration of an aggregate, rg , scales with the size of
the aggregate S (S is equal to the number of particles that
form the aggregate! as rg}S1/D f , where D f is a fractal di-
mension. In the absence of the surface diffusion (J50),
D f51.9260.06, independent of the aggregation-
disaggregation rate. As shown in Fig. 3~b!, at a small
aggregation-disaggregation rate (Pagg5^Pdis&50.10), D f
51.7360.02 for the model with surface diffusion, indepen-
dently of the strength of the surface diffusion J. For a large
aggregation-disaggregation rate (Pagg5^Pdis&50.90), D f
depends on the strength of the surface diffusion J; at J51,
we find D f51.8860.05, and at J5100 our results yield
D f51.8160.05. Thus by an appropriate choice of the
aggregation-disaggregation rate and the strength of the sur-
face diffusion, the aggregates in our model can have any
fractal dimension between D f51.73 and 1.92.

B. Distribution of aggregate sizes

Figures 4~a! and 4~b! show the steady-state size distribu-
tions of aggregates for various surface diffusion strengths J
and for two different aggregation-disaggregation probabili-
ties; ~a! corresponds to low and ~b! to high probabilities.
There are two limiting cases. At low aggregation-
disaggregation probabilities and high surface diffusion @Fig.
4~a!#, the distribution can be well approximated by a log-
normal form. At high aggregation-disaggregation probabili-
ties and in the absence of surface diffusion, the size distribu-
tion suggests a power-law behavior with the exponent
'21.7960.05. As one can notice, the effect of the surface
diffusion on the power-law behavior of the distribution is not
significant in this limiting case. However, at small aggregate
sizes the power-law distribution is somewhat flattened out,
meaning that there are fewer small aggregates in the system.

In percolation @28# the size distribution of percolating
clusters is a power-law distribution, as well as in our limiting
case of high aggregation-disaggregation probabilities and no
surface diffusion. We define the size distribution exponent t ,

D~S !;S2t. ~10!

According to the theory @1#, there is a relationship between
the fractal dimension D f and t ,

t511

d

D f
, ~11!

where d is the lattice dimension, in our case d52. The pre-
diction for t from the scaling relation given by Eq. ~10! is
thus t52.04 ~here we take into account our result for the
fractal dimension D f51.92). This value is, however, slightly
different from the one from our simulation, t51.79. This
can be due to finite size effects: It is known that the simula-
tions consistently yield a too small value for t ~very close to
t51.79) unless the lattice size is very large ~linear size close
to 100 000!, in which case the theoretical value for t52.04
@28# can be achieved.

FIG. 3. ~a! The effect of surface diffusion on the time depen-
dence of the colony growth: the radius of gyration ^R2&1/2 of a
colony. The initial configuration is a solid disk with a radius R
550 pixels on a 2D lattice of size 204832048 @Pagg5Pdis(t50)
50.90, and w52]. The dotted lines have slopes of 0.5060.05. The
curves are averaged over ten runs. The inset of the figure shows the
scaling of the number of particles N within a colony with its radius
of gyration Rg . ~b! The effect of the surface diffusion on the fractal
dimension D f of aggregates ~connected clusters that form a colony!

in dependence on the simulation time. The solid line is a linear fit to
D f(t) in the absence of diffusion (J50), while the dashed line is a
linear fit to D f(t) for J51, 10, and 100 @the lattice size is 512
3512, Pagg5Pdis(t50)50.10, and w52].
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IV. CONCLUSION

In contrast to models that account for the growth far from
equilibrium @2#, in this paper we study a two-dimensional
aggregation-disaggregation model held at equilibrium by a
dynamic feedback mechanism. We show that by an appro-
priate choice of the feedback the fluctuations of the number
of particles in the steady state are finite and can be made
smaller by increasing the feedback parameter w.

Our model of biological growth @4# also takes into ac-
count the surface diffusion. We find that the radius of gyra-
tion of a growing colony increases with time as ^R2&1/2}At ,
which is reminiscent of a normal diffusion process. We show
that although colonies are nonfractal objects, the connected
objects, i.e., aggregates, that form the colony are fractals
with the fractal dimension D f51.92 ~very close to the fractal
dimension of percolation clusters @5#! in the absence of the
surface diffusion. Our results show that the presence of sur-
face diffusion enhances the fractal properties of aggregates
by creating branches and pores, thus decreasing the fractal
dimension down to D f51.73 at a small aggregation-
disaggregation rate. Although the value of D f in this case is
very close to the fractal dimension of DLA clusters @1,2#, the
structure of a typical aggregate as seen in Fig. 2~b! is very

different from that of DLA. Quantitative analysis of the dis-
tribution of aggregate sizes shows that, depending on param-
eters of the model, the steady-state size distribution of aggre-
gates changes from a power-law distribution ~high
aggregation-disaggregation probabilities and no surface dif-
fusion! to a log-normal distribution ~the surface diffusion
dominates over the aggregation-disaggregation process!.
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APPENDIX: PROBABILITY DISTRIBUTION
OF THE NUMBER OF PARTICLES

Here we derive the steady-state probability distribution of
the number of particles in the presence of the feedback de-
fined by Eq. ~7!. As opposed to an average ~‘‘mean-field’’!
number of particles at a time step t, N t , we consider a new
statistical variable for the number of particles at the time t,
N(t), a continuous function of t, which is allowed to fluctu-
ate from its mean-field value N t .

We consider the system at the critical point, Pdis5Pagg .
Every particle in the system has a probability Pagg/2 of cre-
ating a new particle, the same probability of being annihi-
lated, and the probability 12Pagg of remaining unchanged.
Thus for each particle i in the system at every time step there
are three possible outcomes that affect the total number of
particles N(t):

DNi5H
11 with probability Pagg/2

21 with probability Pagg/2

0 with probability 12Pagg.

~A1!

The square of the width of the distribution of DNi , given
by Eq. ~A1!, s i

2 , is then equal to s i
2
5Pagg . For the total

number of particles N the square of the width of the distri-
bution s2 is then s2

5PaggN ~since DN5( i51
N DNi).

Starting from the mean-field equation given by Eq. ~8!,
we can write a master equation for N(t),

dN

dt
5aN2bN 2

1hs , ~A2!

where h is a random variable which is distributed according
to Gaussian distributions P(h)51/A2p exp(h2/2) and s

5APaggN.
The Fokker-Planck equation for the probability distribu-

tion of the number of particles, P(N,t), which corresponds
to Eq. ~A2!, is then

]P

]t
5

1

2

]2

]N 2
@s2P#2

]

]N
@P~aN2bN 2!# . ~A3!

We only focus on a steady-state solution (]P/]t[0) of
Eq. ~A3! around the mean value ^N&5N`5a/b . By defining
a new variable x[N2N`5N2a/b and by approximating
s2 by its mean-field value s2'PaggN` , Eq. ~A3! transforms
into

FIG. 4. Size distribution D(S) of clusters for various amounts of
the surface diffusion J. The initial configuration is randomly placed
particles that cover 10% of a lattice of size 204832048. The size
distributions are averaged over ten runs, and logarithmically binned.
Both graphs are depicted on a double logarithmic scale. ~a! The
aggregation-disaggregation probabilities are small, Pagg5Pdis(t
50)50.10 (w52). The solid line that fits SD(S) for J520 is a fit
to a log-normal form. ~b! The aggregation-disaggregation probabili-
ties are large, Pagg5Pdis(t50)50.90 (w52). The solid line that
fits SD(S) in the absence of the surface diffusion, J50, is a fit to a
power law with a slope 20.7960.05.
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d2P

dx2
1gx

dP

dx
1gP50, ~A4!

where g52b/Pagg . The solution of Eq. ~A4! is

P~N!5A expF2

~N2N`!2

Pagg /b G , ~A5!

where A can be determined by normalization. Under the ap-
proximations made, the distribution given by Eq. ~A5! is
Gaussian with the standard deviation sP ,

sP[APaggV

w
, ~A6!

where we took into account that b5w/2V . This result shows
that the stronger the feedback parameter w, the smaller will
be the fluctuations of the number of particles N around the
average mean-field value N` .

On the other hand, in the absence of the feedback, a5b
50, the Fokker-Planck equation given by Eq. ~A3! does not
have a stable steady-state solution. However, by solving the
time-dependent Fokker-Planck equation, we obtain the result
which is consistent with the one given by the generating
function in Eq. ~4!, except for the diverging part correspond-
ing to N50 that cannot be covered by such a continuous
differential approach.
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