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[19] Ab initio Discrete Molecular Dynamics Approach
to Protein Folding and Aggregation

By BRIGITA URBANC, JOSE M. BORREGUERO,
LUIS CRUZ, and H. EUGENE STANLEY
Abstract

Understanding the toxicity of amyloidogenic protein aggregates and
designing therapeutic approaches require the knowledge of their structure
at atomic resolution. Although solid‐state NMR, X‐ray diffraction, and other
experimental techniques are capable of discerning the protein fibrillar struc-
ture, determining the structures of early aggregates, called oligomers, is a
challenging experimental task. Computational studies by all‐atom molecular
dynamics, which provides a complete description of a protein in the solvent,
are typically limited to study folding of smaller protein or aggregation of a
small number of short protein fragments.

We review an efficient ab initio computer simulation approach to protein
folding and aggregation using discrete molecular dynamics (DMD) in combi-
nation with several coarse‐grained protein models and implicit solvent. This
approach involves different complexity levels in both the protein model and
the interparticle interactions. Starting from the simplest protein model with
minimal interactions, and gradually increasing its complexity, while guided
by in vitro findings, we can systematically select the key features of the
protein model and interactions that drive protein folding and aggregation.
Because the method used in this DMD approach does not require any
knowledge of the native or any other state of the protein, it can be applied
to study degenerative disorders associated with protein misfolding and
aberrant protein aggregation.

The choice of the coarse‐grained model depends on the complexity of the
protein and specific questions to be addressed, which are mostly suggested by
in vitro findings. Thus, we illustrate our approach on amyloid �‐protein (A�)
METHODS IN ENZYMOLOGY, VOL. 412 0076-6879/06 $35.00
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associated with Alzheimer’s disease (AD). Despite the simplifications
introduced in the DMD approach, the predicted A� conformations are in
agreement with existing experimental data. The in silico findings also provide
further insights into the structure and dynamics of A� folding and oligomer
formation that are amenable to in vitro testing.
Introduction

An increasing number of neuropathological disorders, such asAlzheimer’s,
Parkinson’s, Creutzfeldt‐Jakob, motor neuron diseases, and polyglutamine
disorders, are known to be associated with protein misfolding, followed by
deposition of toxic protein aggregates in tissue (Dobson, 2004; Koo et al.,
1999). Alzheimer’s disease (AD) is a progressive, neurodegenerative disor-
der, pathologically characterized by senile plaques and neurofibrillary
tangles (Selkoe, 2001). The primary component of senile plaques is amyloid
�‐protein (A�), which has been strongly linked to the etiology and patho-
genesis of AD. A� aggregates into small assemblies (oligomers), protofi-
brils, and fibrils rich in �‐sheet content. In the past decade, compelling
evidence has emerged indicating that soluble oligomeric assemblies and
protofibrillar intermediates that form before senile plaque deposition may
be determinant pathogenetic factors (Klein et al., 2004).

Determination of oligomer conformation at the atomic level and track-
ing pathways of assembly from monomers to oligomers requires efficient
computational approaches. With the dramatic increase of computer power
in recent decades, it has become possible to study the behavior of large
biological molecular systems by computer simulations (Ash et al., 2004; Feig
and Brooks, 2004; Fersht and Daggett, 2002; Karplus and McCammon,
2002). Traditional, all‐atom molecular dynamics (MD) with atomic‐detail
force fields in a physiological solution (which would be ideal for studyingA�
oligomerization) is not computationally accessible with current technology.
An aggregation process amenable to study by all‐atomMD should occur on
time scales of�10�7 sec and would require the use of advanced technologies
such as worldwide distributed computing (Snow et al., 2002; Zagrovic and
Pande, 2003; Zagrovic et al., 2002). However, in vivo and in vitro studies
suggest that the initial stages of oligomerization occur on time scale of hours
(Bitan et al., 2003a; Kayed et al., 2003).

The idea of applying a fast and efficient discrete molecular dynamics
method (DMD) (Rapaport, 1997) to study protein folding was proposed in
1996 (Zhou et al., 1996). Soon after, the method was combined with a one‐
bead proteinGōmodel to study folding of amodel three‐helix bundle protein
(Dokholyan et al., 1998, 2000; Zhou and Karplus, 1997, 1999; Zhou et al.,
1997). The interparticle interactions in theGōmodel are assigned on the basis
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of the knowledge of a native state of a protein (Taketomi et al., 1975). Thus,
Gō models are not ab initio, because they require the knowledge of a native
state of a protein. Despite this drawback, they are the simplest thermodynam-
ic models that yield a unique native state of a protein and describe folding
reminiscent of a first‐order phase transition (Dokholyan et al., 2003). Recent-
ly, a two‐beadGō model was applied by Peng et al. to study aggregation of an
ensemble of 28 A�40 peptides into a fibrillar structure (Peng et al., 2004).

In 2001, a four‐bead proteinmodel in combinationwith theDMDmethod
was first introduced by Smith and Hall (Smith and Hall, 2001a) inspired by
earlier studies (Takada et al., 1999). This model accounts for a rather accurate
backbone description and is able to describe a cooperative transition of a
polyalanine chain into an �‐helical conformation without any a priori knowl-
edge of the native state (Smith and Hall, 2001b). With the four‐bead model
with hydrogen bond interactions on a single 16‐residue polyalanine chain,
Ding et al. (2003) demonstrated a temperature‐induced conformational
change from the �‐helix to the �‐hairpin conformation. Because of these
properties, the four‐bead model with hydrogen bond interactions represents
a base on which the ab initio modeling can be realized. The ab initio DMD
computational approach introduces simplifications to the protein description,
interparticle interactions, and treatment of the solvent. These simplifications
make theDMDapproach at least six orders ofmagnitude faster than all‐atom
MDwith explicit solvent. To ensure biological relevance of the approach that
targets different aspects of A� folding, oligomer, and fibril formation, up‐to‐
date experimental findings need to be integrated into the development of the
proteinmodel and interactions, creating a much‐needed partnership between
computation and experiment as recognized by others [e.g., the review by
Ma and Nussinov (2004)].

This review is organized in two main sections. In the first section, we
describe the applications of the DMD approach to model A� folding and
aggregation. The goal of this section is to give an idea of the kind of
information we can obtain using the proposed DMD approach. In addition,
we present the main hypotheses on the structure and dynamics of folding
and assembly that emerged from these applications. The second section
introduces in detail the implementation of the DMD method, coarse‐
grained protein models, interparticle interactions, and limitations that
originate in simplifications associated with the approach.
Applications to A� Folding and Aggregation

We describe the applications of the DMD approach with the four‐bead
and the united‐atom model to A� folding and aggregation to demonstrate
the variety of information that can be obtained. We also review selected
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in vitro findings that shed light on diffe rent structura l aspe cts of A � folding
and aggrega tion and help guide the de velopment of the DMD app roach.
In Vitro Findings

The sequen ce DAEFRH DSG YEVHH QKL VFFAED VGSNKG AII-
GLMVG GVV IA de fines the primary structure of A � 42. A � 40 lacks the
last two amin o acids , I41 and A42. The secon dary struc ture of A� mono-
mer conform ations depen ds strongly on the enviro nment. In an apo lar
membrane ‐ like en vironment , A � 40 and A� 42 monom ers ad opt predomi-
nantly an �‐ he lical conform ation (Col es et al ., 1998; Cre scenzi et a l., 2002 ),
whereas in an aqu eous so lution A� prefer s a collap sed coil monom er
structure wi th a bend in the V24 ‐ K28 regi on ( Zhang et a l., 2000 ).

Rec ent limited proteol ysis exp eriment s on A � 40 and A � 42 have shown
that the regi on A21–A 30 is highl y resista nt to proteol ytic attack unde r
conditions favoring oligo merization, suggest ing the presenc e of a folde d
structure ( Lazo et al., 2005 ). Sim ilar resul ts were obs erved for the A �
fragment A � (21–30) in monom eric solution. Lazo et a l. pos tulated that this
decapept ide ad opts a structure that nuc leates the intramol ecula r foldin g of
the full ‐ lengt h A � monom er. The so lution dynami cs of A � (21–30) , as
determi ned by NMR studies, yielded two fam ilies of folded A � (21–30)
structure s both containing a turn ‐lik e motif center ed at G25–S2 6 ( Lazo
et al., 20 05 ). Thes e in vitro results raise que stions that can be address ed
in silico : (1) what is the drivi ng force of foldi ng, and (2) how does the folde d
structure a ffect the pathw ay of A � assembly ?

A � 40 and A� 42 both have high tendenci es to aggrega te into fibrils,
which makes studies of oligomer ic inte rmediat es difficult . To study A �
oligomer ization in v itro , the techniqu e photo ‐ induced cross ‐ linking of un-
modified protein s (PICUP) ha s been applied to coval ently stabi lize oligo-
mers (see Chapter 12 by Bitan, 2006 in Volume 413). Using PICUP coupled
with size‐exclusion chromatography, Bitan et al. (2003a) showed that A�40
and A�42 display distinct oligomer size distributions. Solutions of A�40
display a rapid equilibrium among monomers, dimer, trimers, and tetra-
mers, whereas A�42 preferentially forms pentamer/hexamer units (para-
nuclei), which further assemble into beaded superstructures similar to early
protofibrils (Bitan et al., 2003a). Further studies of primary structure ele-
ments controlling early oligomerization demonstrate that I41 is critical for
paranucleus formation in solutions of A�42 and that A42 is necessary for
further assembly of A�42 into larger oligomers (Bitan et al., 2003b). In
addition, oxidation of M35 blocks paranucleus formation in A�42 but does
not alter the A�40 oligomer size distribution (Bitan et al., 2003c). Mass
spectroscopy and ion mobility measurements of A�42, which was subjected
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to filtration to remov e larg e assem blies and im mediately elec trosprayed ,
indicate d the presenc e of dim ers, tetr amers, paranucl ei, and pa irs of
paranu clei in agreem ent with PICUP resul ts ( Bern stein et al ., 2005 ).

Solid ‐ state NMR studies yielded high ‐ resol ution informat ion on the
A � 40 fibrilla r structure , in which each indiv idual pepti de displays a bend ,
stabilized by a salt ‐ bridge between D23 and K28 ( Petkova et al., 200 2; see
Chapter 6 by Tycko, 2006 in Volume 413). The kinetics of A� 40 fibril
formation is typical ly preceded by a lag pha se that is not present in a recent ly
synthesized A�40‐lactam (D23/K28) that contains a lactam bridge between
D23 and K28 (Sciarretta et al., 2005). This experimental finding explains the
importance of the bend in the V24‐K28 region and the associated salt‐bridge
D23‐K28 in A�40 fibrillogenesis and suggests that A�40‐lactam (D23/K28)
bypasses an unfavorable folding step, leading to �1000‐fold greater rate of
fibril formation (Sciarretta et al., 2005). The role of the salt‐bridge D23‐K28
formation at different stages ofA� folding and assembly can be addressed in
the DMD approach by systematically varying the effective electrostatic
potential.
Four‐Bead Model with Hydrogen Bonding: Planar b‐sheet Assemblies
and the Role of Glycines

Urbanc et al. (2004a) applied a four‐bead protein model with backbone
hydrogen bond interactions to study A�40 versus A�42 dimer formation.
The A�42 sequence was simplified to a polyalanine chain with glycines at
positions 9, 25, 29, 33, 37, and 38. This model exhibited conformational
changes with increasing temperature. The monomer adopted an �‐helical
conformation at low temperatures, several types of �‐strand conformations
including �‐hairpin conformation at intermediate temperatures, and ran-
dom coil‐like conformation at high temperatures. A turn between G25 and
G29 was consistently observed at intermediate temperatures and was shown
to be induced by the presence of glycines, in particular G25. The importance
of glycines was recently confirmed by an all‐atomMD study of A�42 folding
in explicit aqueous solution, which demonstrated that glycines induced local
turns in the peptide and consequently caused the �‐helical to �‐strand
conformational change (Xu et al., 2005).

The turn between G25 and G29 occurred in the same protein region as
the bend in the model of A� fibrils by Petkova et al. (2002). The local
structure of a typical peptide within the fibril is quite different from the
four‐bead model prediction. Hydrogen bonds in the fibril are oriented
along the fibrillar axis and link neighboring peptides with no significant
intramolecular hydrogen bonding. In the simplified four‐bead model,
intramolecular hydrogen bonds first give rise to �‐hairpin monomer



FIG. 1. An A�42 octamer as found within the four‐bead model with hydrogen bond, but no

amino acid–specific interactions. The octamer is an extended planar �‐sheet with several

domains that are slightly rotated with respect to one another.
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conformations, which then further assemble into extended planar �‐sheets.
These planar �‐sheet aggregates are held together exclusively by intramo-
lecular and intermolecular hydrogen bonding (Fig. 1.). A critical observa-
tion was the lack of stacking among the �‐sheets, in contradiction with the
model of A� fibril formation (Petkova et al., 2002). This result suggests that
amino acid–specific interactions between pairs of side‐chains are responsi-
ble for a correct description of the stacked �‐sheet structure.

Four‐Bead Model with Amino Acid–Specific Hydropathic Interactions:
Ab40 versus Ab42 Oligomer Formation

Ding et al. (2003) studied the effect of hydrophobic side chain interac-
tions on the �‐helix and �‐hairpin monomer conformations in a 16‐residue
polyalanine. They found that above a certain strength of effective hydro-
phobic interactions (EHP/EHB > 0.20), the �‐hairpin monomer conforma-
tion disappears, and it is replaced by a globular monomer conformation
(Ding et al., 2003). Nguyen and Hall demonstrated that the presence of a
weak effective hydrophobic attraction (EHP/EHB < 1/6) between the side
chains of 16‐residue polyalanine peptides leads to formation of a stacked
�‐sheet structure, consistent with the basic structural features of the fibril
formation ( Nguye n an d Hal l, 2004a ,b, 2005 ; see Chapt er 20 by Hal l and
Wagoner, 2006 in this volum e).
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Urbanc et al. introduced a four‐bead A� model with hydrogen bond
interactions and effective hydrophobic and hydrophilic interactions that were
amino acid‐specific (Urbanc et al., 2004b). They showed that such a model
with strong amino acid–specific hydrophobic and hydrophilic interactions
(EHP/EHB ¼ 0.3) leads to the formation of globular oligomer structures
(Urbanc et al., 2004b). Urbanc et al. (2004b) demonstrated that this model is
able to capture significant oligomerization differences between A�40 and
A�42 that are consistent with in vitro results (Bitan et al., 2003a,b,c). The
effective hydrophobic attraction, as well as the effective hydrophilic repul-
sion, are critical features of themodel that yields a steady‐state distribution of
A� oligomers of different sizes. If only the hydrophobic attractionwas present
in the model, the steady state would be a single globular oligomer because of
the lack of forces opposing aggregation. In the presence of both hydrophobic
attraction and hydrophilic repulsion, globular oligomers of various sizes
coexist in a quasi‐steady state. A typical globular oligomer consists of a core
containing the hydrophobic parts of A� and a surface containing the hydro-
philic N‐terminal residues (Fig. 2). In agreement with experimental findings
(Bitan et al., 2003a), Urbanc et al. found thatA�42 had an increased tendency
to form pentamers, whereas dimers dominated in A�40. Detailed structural
analysis of these in silico results provided new structural insights and offered a
plausible explanation of the role of M35 in A�40 versus A�42 oligomeriza-
tion, indicating that oxidation ofM35 disruptsA�42 paranuclei formation but
does not affect A�40 oligomerization (Bitan et al., 2003c). Statistical analysis
of the tertiary structure of in silico pentamers showed important differences
between the two alloforms in terms of contact formation involvingC‐terminal
residues. In A�42, the intramolecular contacts between V39‐A42 on one side
and I31, I32, L34, M35, and V36 on the other side dominated, whereas in
A�40, the C‐terminal fragment V39‐A40 did not form any significant intra-
molecular contacts (Urbanc et al., 2004b). Thus, on the basis of this structural
information, Urbanc et al. suggested that disrupting the hydrophobic nature
of M35 by oxidation would cause a disruption of important hydrophobic
contacts between oxidized M35 and C‐terminal fragment in the A�42 penta-
mer. Because these contacts were not present in A�40 pentamers, oxidation
of M35 would not make much of a difference in A�40 oligomer formation.
United‐Atom Model: Ab(21–30) Folding Initiated by a Hydrophobic
Packing between V24 and K28

Borreguero et al. (2005) developed a united‐atom protein model in
which all atoms except hydrogens are explicitly present. They applied the
DMD approach with the united‐atom model to study folding and unfolding
transitions of A�(21–30) under different electrostatic interaction strengths



F IG. 2. Globular structure of A� 42 hexamer as found within the four‐bead peptide model

with amino acid–specific interactions caused by hydropathy. D1 is represented by four red

spheres to illustrate the hydrophilic N‐termini at the surface of the hexamer. I41 (four green

spheres) and A42 (four blue spheres), as part of the C‐ terminal region, are at the hydrophobic

core of the hexamer. Yellow ribbons represent a �‐strand, cyan tube a turn, and silver tube a

random coil‐like secondary structure. The image was generated within the VMD software

package (Humphrey et al., 1996), which includes the STRIDE algorithm for calculating the

secondary structure‐propensity per residue (Heinig and Frishman, 2004).
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(EIS) (Borr eguero et al ., 2005 ). Hydrop hobicity was shown to be the driving
force of folding in A � (21–30) , induci ng packing betwe en V24 an d the butyl
portion of K28 ( Fig. 3). In addition to hydropho bicity, interme diate EIS
(� 1.5 kcal/mo l) pr edominan tly be tween E22 and K28 con tributed to an
optimal stability of the folde d struc ture ( Borregu ero et al., 2005 ). At higher
EIS ( � 2.5 kcal/m ol)— typical ly occu rring in the inte rior of pr oteins—
A� (21–30) was found to be partial ly unfolde d be cause of a salt ‐ bridge
between D23 and K28. This observed preval ence of the D23 ‐ K28 inte raction
at highes t EIS is in agreemen t with mole cular mod els of protofibri ls form ed
by full ‐lengt h A � ( Petkova et al., 2002 ) and A� (16–35) (Ma an d Nussinov,
2002) that sho w stabi lization through D23‐ K28 salt ‐ bridge and no E22 ‐K28
interaction or V24 ‐K28 pack ing. The study of Borregu ero et al. exp osed the
binary na ture of salt ‐ bridge interact ions between K28 and E22/D23 an d
provide d a mecha nistic explana tion for the lin kage of ami no acid substi tu-
tions at E22 with AD and cerebr al amyloid angiopath y ( Borr eguero et al.,
2005 ). Recen tly, Cruz et al . studi ed A � (21–30) and its Dutch muta nt (E2 2Q)
by all ‐ atom MD in water, reduced ‐ den sity wate r, and in wat er with salt ions.
They confirm ed that in water A � (21–30) folding is drive n by hy dropho bic



FIG. 3. Folded A�(21–30) decapeptide conformation as found within the united‐atommodel

with amino acid–specific interactions caused by hydropathy and charge. All atoms except

hydrogens are drawn as small spheres: A21 andA30 (blue), E22 (pink),D23 (red),V24 (tan),G25

andG29 (white), S26 (yellow), N27 (orange), andK28 (cyan).V24 andK28 are presentedby large

opaque spheres to illustrate their packing, a critical event in the decapeptide folding. The image

was generated within the VMD software package (Humphrey et al., 1996).
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forces involving V24 and K28. In addition, Cruz et al. showed that the
A�(21–30) folded structure is very sensitive to changes in environment
and that in the Dutch mutant folding events are rare (Cruz et al., 2005).

Structural Hypotheses Derived from the DMD Studies

Next we summarize the main hypotheses regarding the structure and
dynamics of oligomer and fibril formation that are derived from the results
of the DMD studies using either the four‐bead model with amino acid‐
specific hydropathies (Urbanc et al., 2004b) or the united‐atom model with
atomic hydropathies and effective electrostatic interactions (Borreguero
et al., 2005). These hypotheses are amenable to both in silico and in vitro
testing.

1. Full‐length monomers of A�40 and A�42 fold from the C‐terminus
toward the N‐terminus. First intramolecular contacts during A� monomer
folding are formed between V36 and V39 and their neighbors (Urbanc
et al., 2004b).
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2. A�40 andA�42monomers fold in different ways. TheA�42monomer
folding is associatedwitha turnlike element centeredatG37–G38,which is not
present in theA�40monomer. TheA�40monomer has an additional parallel
�‐strand between A2‐F4 and the central hydrophobic cluster (L17‐A21), not
present in the A�42 monomer (Urbanc et al., 2004b). The prediction of the
turn atG37‐G38 inA�42 (but not inA�40) is consistent with in vitro results of
limited proteolysis, which shows that the region V39‐A42 in A�42 is protease
resistant, whereas the region V39‐A40 in A�40 is not (Lazo et al., 2005).

3. In A�40 oligomers, the most significant intermolecular contacts exist
between pairs of central hydrophobic clusters (L17‐V18‐F19‐F20‐A21),
whereas in A�42 oligomers, contacts between pairs of C‐terminal regions
(V39‐A42) are the most important (Urbanc et al., 2004b).

4. Despite similar globular structure with hydrophobic C‐terminal
residues in the core and hydrophilic N‐terminal residues at the surface,
the structure of A�40 and A�42 pentamers differs. The parallel �‐strand
structure at the N‐termini of A�40 (as described in 2) persists in all assembly
states and is completely absent from A�42 oligomers. Consequently, the
N‐termini of A�42 are spatially less restricted and can be found on average
further away from the core of the oligomer. This difference in the N‐termini
properties might contribute to a more exposed hydrophobic core of A�42
oligomers, rendering A�42 more prone to further aggregate (Urbanc et al.,
2004b).

5. Hydrophobic attraction between V24 and the butyl portion of K28
drives the folding of A�(21–30), whereas the salt‐bridge E22‐K28
contributes to the stability of the folded structure (Borreguero et al., 2005).

6. Because experiments show that the same region V24‐G25‐S26‐N27‐
K28 is protease resistant in the full‐length A� (Lazo et al., 2005), fibril
formation should be preceded by an event that disrupts the folded loopV24‐
G25‐S26‐N27‐K28. Because the E22‐K28 salt‐bridge contributes to the loop
stability, a substitution ofE22by anon‐negatively charged amino acid should
enhance the fibril formation through: (1) decrease of the loop stability, and
(2) increase of the rate of D23‐K28 salt‐bridge formation due to the absence
of competition between E22 and D23 (Borreguero et al., 2005).

Based on the above predictions, one can introduce selected amino acid
substitutions in A�40 and A�42 that would hypothetically disrupt or
change monomer and oligomer conformations. Should in vitro and other
experimental findings that target the structure of A� folded monomers and
oligomers determine that any of the above hypotheses is not valid, the
DMD approach can be refined in two ways: (a) by introducing more detail
into the protein model; and (b) by refining the interactions between the
side‐chain atoms and possibly introducing locally modified interactions.
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Methods

Discrete Molecular Dynamics Method

MD is a computer simulation method in which particles move according
to specific interparticle forces on the basis of classical dynamics. Newton’s
equations of motion must be numerically integrated at each time step for
all particles to update instantaneous velocities and positions. DMD is a
simplified version of MD and is applicable whenever the interparticle
potentials can be represented by one or more square wells (Rapaport,
1997). Within each well, the potential is constant, because the force
between the two particles is zero, and thus the particles move with constant
velocities until they reach a distance at which the potential is discontinu-
ous. At that moment, an elastic or inelastic collision occurs, and the two
particles change their velocities instantaneously while conserving the total
energy, momentum, and angular momentum. No numerical integration is
needed. The only events are two‐particle collisions, and the main challenge
is to keep track of collision times. Consequently, DMD simulations are
considerably faster than continuous MD simulations.

During a DMD simulation, the number of particles, volume, and tem-
perature are held constant. Periodic boundary conditions are implemented
to avoid interactions with the walls of the simulation box. The size of the
box is chosen to be larger than the stretched protein under study. We
implement temperature control in our model using the method proposed
by Berendsen et al. (1984). In this method, a heating rate coefficient, �, is
introduced. The temperature is rescaled at regular intervals �t: T(t þ �t)
¼ T(t) þ ��t [T1 � T(t)] where T(t) is the instantaneous temperature,
T(t þ �t) is the rescaled temperature, and T1 is the target temperature of
the heat bath; ��1 is a characteristic time, in which the temperature
equilibrates. The time interval �t corresponds to about N collisions,
where N is the number of particles. Temperature is defined by the total
kinetic energy of particles as follows 3

2 kBT ¼ 1
N

PN
i¼1

miv2i
2 ;where kB is the

Boltzmann constant, vi are the velocities of each of the N particles, and mi

their masses. Rescaling temperature requires rescaling all N velocities vi by
a factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tðt þ DtÞ=TðtÞp

;which is followed by recalculation of the collision
times. To avoid the time‐consuming task of recalculating collision times, we
introduce a rescaled time variable and rescaled potentials, keeping the
velocities and collision times intact. This transformation does not alter
the trajectory in any way. We keep track of the original simulation time
by keeping track of the rescaling factors, so that results are expressed
in original units. A more detailed description has been given elsewhere
(Borreguero, 2004).
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Four‐Bead Model Implementation

We use the four‐bead protein model introduced by Ding et al. (2003).
In the four‐bead model, the backbone is represented by three beads,
corresponding to the amide (N), the �‐carbon (C�), and the carbonyl (C)
groups. Each side‐chain (except G, which lacks the side‐chain group) is
represented by one side‐chain bead (C�). Each bead (atom) is character-
ized by its mass and hard‐core radius. In the simplest version of the model,
all atoms have equal mass and their hard‐core radii are set to their van der
Waals radii (Creighton, 1993). Each side‐chain atom is characterized by a
type, which determines its interactions with other atoms. Any two atoms
can only be at a distance d > dmin, where dmin is the sum of their hard‐core
radii. Thus, the potential is set to an ‘‘infinitely’’ large value for d < dmin.
Pairs of atoms can be linked by a covalent bond or an angular constraint
to account for the protein geometry as shown in Fig. 4A. If two atoms
are linked in this way, there is a distance dmax such that for d > dmax the
potential is infinite to prevent the two atoms from breaking the bond. The
lengths of bonds and angular constraints are determined phenomenologi-
cally by calculating their distributions using known folded protein struc-
tures of �7700 proteins from the Protein Data Bank (PDB) (http://www.
rcsb.org/pdb). The values of the lengths of covalent bonds and angular
constraints, which are allowed to vary around their average values by 2%,
were reported elsewhere (Ding et al., 2003).

Backbone Hydrogen Bond. In proteins, the most ubiquitous hydrogen
bond interaction involves the carbonyl oxygen and the amide hydrogen of
two amino acids. In the four‐bead model, because the carbonyl oxygen and
the amide hydrogen are not explicitly present, an effective backbone
FIG. 4. (A) Covalent bonds (solid lines) and constraints (dashed lines) that define the four‐
bead peptidemodel. (B)Hydrogen bond betweenCj andNi (dotted line) and the corresponding

auxiliary bonds (dashed lines) that define the geometry of hydrogen bonding in the four‐bead
model. (C) Interparticle potential U(r) for the four auxiliary bonds shown in (B).

http://www.rcsb.org/pdb
http://www.rcsb.org/pdb
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hydrogen bond is introduced between the nitrogen atom Ni of the i–th
amino acid and the carbon atom Cj of the j–th amino acid (Ding et al., 2003)
(Fig. 4B–C). On formation of the hydrogen bond, atoms Ni and Cj in the
model change types to prevent their involvement in additional hydrogen
bond formation. When amino acids i and j belong to the same protein, we
allow them to form a hydrogen bond only if they are at least three amino
acids apart, |i – j| � 4. This constraint is a consequence of angular restric-
tions of the hydrogen bond that requires that the CO and NH bonds are
approximately collinear. These same angular restrictions are enforced by
introducing four auxiliary bonds involving the left and the right neighbor-
ing beads of Ni and Cj (Fig. 4B). The hydrogen bond between Ni and Cj

forms only if all six beads are at energetically favorable distances. Each
of the four auxiliary interactions is modeled by a double‐step potential
(Fig. 4C), and the particular values of the hydrogen bond parameters
are chosen phenomenologically to best match the distribution of the
corresponding distance in real proteins (Ding et al., 2003). The additional
auxiliary interactions take place only in the presence of the hydrogen bond
interaction. During the hydrogen bond formation or deletion, the other
interactions involving the Ni and Cj beads remain intact. When a new
hydrogen bond is formed, the new hard‐core collision distance between
Ni and Cj is assigned to be 4.0 Å, such that at the lowest energy state of a
hydrogen bond, the optimal distances of the four auxiliary pairs allow for
approximately linear alignment of the CO and the NH bonds.

Amino Acid–Specific Interactions Caused by Hydropathy. Because the
solvent is not explicitly present in our DMD approach, effective interactions
between the side‐chain atoms are introduced to mimic the solvent effects.
We introduce hydrophobic attraction and hydrophilic repulsion between
pairs of side‐chains, depending on the hydropathic nature of individual side‐
chains. In our model, the potential energy decreases when two hydrophobic
residues interact, thus minimizing their solvent accessible surface area
(SASA). Conversely, the potential energy increases when two hydro-
philic residues interact.This potential thus favors noninteracting hydrophilic
residues, which maximizes their SASA.

There are different ways of implementing amino acid–specific hydropathic
interactions. We chose the empirical amino acid hydropathy scale derived by
Kyte and Doolittle (1982) as previously described (Urbanc et al., 2004b). We
consider the following amino acids: I, V, L, F, C, M, and A hydrophobic; N, Q,
and H non‐charged hydrophilic; and D, E, K, and R charged hydrophilic. The
remaining amino acids with absolute values of hydropathies below threshold
values are considered neutral, so that two neutral side‐chain atoms only
interact through their hard‐core interaction. The hydropathic interactions
are of two types: (1) an attractive interaction between two hydrophobic side‐
chains; and (2) a repulsive interaction between two noncharged hydrophilic
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or a charged hydrophilic and a noncharged hydrophilic side‐chain. Interac-
tions are implemented using a square‐well potential between the pairs of
side‐chain beads C�,i and C�,j, so that they interact if the distance between
their centers is less than the interaction range distance 7.5 Å (Fig. 5A,B).
The potential energy of the effective attractive hydrophobic interaction
EHP is proportional to the mean of the relative hydrophobic strengths,
I (�1.0), V (�0.93), L (�0.84), F (�0.62), M (�0.42), and A (�0.40), where
the negative sign reflects the attractive nature of the interaction. The poten-
tial energy of the effective repulsive hydrophilic interaction is proportional
to the mean of the relative hydrophilic strengths, R (1.0), K (0.87), E (0.78),
D (0.78), N (0.78), Q (0.78), andH (0.71), where the positive sign reflects the
repulsive nature of the interaction. H, with a pKa value �6.0, is considered
a noncharged hydrophilic amino acid because at physiological conditions
(pH ¼ 7.4) only about 4% of H is charged.
FIG. 5. (A) Effective hydrophobic interaction with the potential energy –EHP between two

hydrophobic side‐chain atoms as implemented in the four‐bead model. (B) Effective

hydrophilic interaction with the potential energy EHP between two hydrophilic side‐chain
atoms as implemented in the four‐bead model. The range of the hydrophobic and hydrophilic

interactions is set to rR ¼ 7.5 Å. (C) Effective electrostatic interaction with the electrostatic

potential energy –ECH between two oppositely charged atoms as implemented in the four‐
bead model. (D) Effective electrostatic interaction with the electrostatic potential energy ECH

between two atoms of the same charge as implemented in the four‐bead model. The range of

the interaction is rR ¼ 7.5 Å and the soft range is rSR ¼ 6 Å. The hard‐core repulsion distance

is denoted by rHC.
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Amino Acid–Specific Interactions Caused by Charge. The effective
electrostatic interaction between two charged side‐chain atoms is imple-
mented using a double attractive/repulsive square well potential with
the interaction range rR ¼ 7.5 Å and a ‘‘soft’’ interaction range rSR ¼ 6 Å
(Fig. 5C,D). The energy of the effective electrostatic interaction, ECH, is
tunable and is typically set in the range ECH/EHB 2 [0, 1], with different
ECH values corresponding to different solvent conditions.
United‐Atom Model Implementation

In the united‐atom model, all protein atoms except hydrogens are
explicity represented. The backbone of the protein is represented by four
atoms, corresponding to the amide group (N), the � carbon (C�), the prime
carbon (C), and the oxygen (O). On formation of the backbone hydrogen
bond, N and O change their types. A special atom type is introduced for the
amide group (N) of P to describe its characteristic covalent bond to the P
C� side‐chain atom. We assign a different type for each side‐chain atom of
the 19 amino acids. For each atom, we assign an individual atomic mass,
a phenomenologically estimated radius (Tsai et al., 1999) and a nominal
charge of (þ1) to the amino groups of K and R, and a (�1) charge to the
carboxy groups of D and E.

To achieve the correct description of the flexibility of the protein, we
assign three types of bonding between protein atoms to account for the
backbone and side‐chain geometries: (1) covalent bonding; (2) angular
constraints; and (3) rotameric constraints (Fig. 6). The rotameric constraints
were first introduced in the context of the six‐bead model (Ding et al., 2005)
and later expanded to account for the united‐atom model (Borreguero,
2004). These lengths and their variances are derived from the library of
potentials using a statistical analysis of a specific database of protein struc-
tures (PDB40), which is a subset of the Structural Classification of Pro-
teins (SCOP) database (http://scop.berkeley.edu) of protein structures
(Chandonia et al., 2004). The exact values were given by Borreguero
(2004). Typically, the covalent bonds are allowed to vary by �4%, angular
constraints by �6%, and the rotameric constraints by 4–28%.

We implement covalent and angular constrains as square‐well potentials
with two ‘‘infinite’’ walls representing the limits of typical interatomic dis-
tances for the particular bond or constraint under consideration (Fig. 8A)
As an example, we describe a rotameric constraint by implementing the �1

rotamer angle (e.g., for Val). �1 is the angle between the two planes
generated by atomsN–C�–C� and C�–C�–C�2, respectively (Fig. 7A). Thus,
�1 is determined by the positions of the four atoms N–C�–C�–C�2. Other
four‐atom sets are equally valid, namely N–C�–C�–C�1, C–C�–C�–C�1,

http://scop.berkeley.edu


FIG. 6. Bond types between two atoms. (A) Covalent bond. (B) Angular constraint to

model the central hybridized molecular orbital. (C) Rotameric constraint 1–4 to reproduce

the statistically observed preference of atom 4 to orient itself with respect to the position of

atom 1.

FIG. 7. (A) Schematic diagram of the �1 rotamer of valine. Dashed lines represent

distances between atoms involved in rotameric‐constraint interactions. Any two of these

interactions uniquely determine �1. (B) Schematic diagram of the backbone hydrogen bond.

The dashed line represents the N—O bond, and the dotted lines represent auxiliary

constraints maintaining the correct N—O orientation.
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orC–C�–C�–C�2. �1 determines the distance between the first and last atom
for each set (i.e., NCg2 (Fig. 8B–C), NCg1 ;CCg1 ; and CCg2 ;). Conversely,
any two of these four distances are sufficient to uniquely determine �1.
The distance distributions for each of the four constraints defines a respec-
tive potential energy function (Fig. 8D).



FIG. 8. (A) Potential energy associated with the bond between N and C groups in the

protein backbone. The most probable distance (dashed line) and a typical range of distances

(arrow) derived from the PDB40 structural database. (B) The distance rNC�2
as a function

of the rotamer �1. (C) Histogram of distances rNC�2
as derived from the PDB40 dataset.

(D) Associated rotameric potential between N and C�2. We estimate the width and depth of

the two potential wells as the width and the area of the two respective probability peaks.

We normalize the potential units in this plot with respect to the deepest well.
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Soft‐Core Interactions. Two atoms can approach to distances smaller
than the sum of their van der Waals radii. However, these distances are not
energetically favorable, and the two atoms have to overcome an energy
barrier (Tsai et al., 1999). From the occurrence probability of these events
at room temperature, we estimate the energy barrier to be threefold the
thermal energy. We set the lower limit of the soft‐core region to be 85%
of the sum of their respective van der Waals radii (Fig. 9A). Distances
smaller than this lower limit, which correspond to less than 1% of the
observed distances in protein structures, are not allowed.

Backbone Hydrogen Bond. We adopt the hydrogen bonding first im-
plemented into the four‐bead model (between the amide N and carbonyl C
groups) (Ding et al., 2003) and further developed to account for the explicit
backbone O group (Ding et al., 2005). The hydrogen bond between N and
O atoms is implemented into the model as a ‘‘reaction’’‐type interaction.
On formation of the backbone hydrogen bond, N and O change their types
into new ‘‘bonded’’ types to prevent additional hydrogen bonding to the
third atom. The geometry of the backbone hydrogen bond is modeled by a
four‐body interaction. In addition to the N–O bond, three additional con-
straints between neighboring N and O atoms (Fig. 7B) reproduce the
orientation of the hydrogen bond. Details of this backbone hydrogen bond
model were described elsewhere (Borreguero, 2004; Ding et al., 2005).

Amino Acid–Specific Interactions Caused by Hydropathy. As in the
four‐bead model, we introduce an implicit treatment of the solvent with
an attractive/repulsive potential energy between pairs of side‐chain atoms



FIG. 9. Three types of potentials, ULJ, UHP, and UCH, in dependence on the interparticle

distance r. (A) Lenard‐Jones potential ULJ. � is the sum of the Van der Waals radii of the two

interacting atoms, and ELJ ¼ 3�BT is a finite repulsive potential energy of two atoms at

distances smaller than �. (B) Effective hydrophobic potential UHP with y ¼ 0.2 between two

noncharged atoms with the potential energy EHP. The dotted‐dashed line represents the

effective repulsion between a charged and a noncharged atom. (C) Effective electrostatic

potential UCH with x ¼ 1.3. The first potential well at distances � < r < 1.4� corresponds to

the potential energy ECH. The second potential well at distances 1.4� < r < 2.3� corresponds

to the potential energy 0.3ECH.
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(Fig. 9B). We define an atomic hydropathy scale on the basis of an experi-
mental estimation of the gain/loss of the free energy on transferring a
particular amino acid from an aqueous solution to a gas phase (Wesson
and Eisenberg, 1992). Knowing the gain/loss of the free energy for each
amino acid, we then estimate the atomic solvation energies (Zhang et al.,
1997). When the distance between two atoms becomes smaller than 120%
of the sum of their Van der Waals radii, we consider the interfacial volume
as solvent excluded, and the two atoms interact with a potential energy
equal to the sum of their hydropathy values. For a particular atom of type t,
we define hydropathy values HPt ¼ ��tSASAt/nt, where �t is the atomic
solvation parameter (free energy gain/loss per unit of solvent‐exposed area
of the atom type t), SASAt is the solvent accessible surface area (Wesson
and Eisenberg, 1992), and nt is an estimated number of the neighboring
nonbonded atoms (usually 1 � nt � 3).

Amino Acid–Specific Interactions Caused by Charge. We implement an
effective electrostatic interaction between two charged atoms using a dou-
ble attractive/repulsive square well potential (Fig. 9C). The cutoff between
two charged atoms is set to a value 2.33‐fold larger than the sum of their
Van der Waals radii (�7 Å). A tunable potential energy of the charged
interaction within the range 0–2.5 kcal/mol allows us to perform simula-
tions in a wide range of solvent conditions. This energy range is within and
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above the experimentally measured values for the free energy gain on salt‐
bridge formation on the surface of proteins, 0.24–1.26 kcal/mol (Horovitz
and Fersht, 1992; Searle et al., 1999). A more detailed description was given
elsewhere (Borreguero et al., 2005).
Limitations of the DMD Approach

As described previously, the peptide model parameters (the peptide
bonds and constraints) and the parameters of the hydrogen bonding are
defined phenomenologically using the known crystalline structure of pro-
teins from the Protein Data Bank. Such a phenomenological approach to
modeling (Ding et al., 2002) has been discussed extensively by Zhang et al.
(2004). The phenomenologically derived force‐field was shown to be essen-
tial for successful folding of the Trp‐cage protein (Ding et al., 2005). As the
PDB expands, however, these parameters could change. Different protein
databases (�‐protein database, �‐protein database, �/�‐protein database,
etc.) could yield different parameters as well. It has been shown that
knowledge‐based potentials yield different results when trained on either
NMR or X‐ray resolved structures (Godzik et al., 1995). We considered the
filtered protein structural database PDB40, which contains representatives
of all known protein folds. The filter ensures that no two proteins have
more than 40% sequence identity, preventing any bias in the statistical
analysis toward overrepresented homologous sequences. For our purposes,
the peptide model parameters obtained from this database are ‘‘fixed’’ and
represent the definition of the model peptide.

In our approach, the hydrogen bond interaction is not amino acid‐
specific. The hydrogen‐bond potential energy, EHB, is the energy unit. This
choice does not imply that we treat the hydrogen bond interaction as a
fixed interaction independent of the environment. In fact, the free energy
cost of breaking a hydrogen bond strongly depends on the local environ-
ment (Honig and Yang, 1995). This cost may be small in aqueous solutions
but is typically large in organic solvents. In aqueous solution, the effective
hydrogen bond is strong at the hydrophobic core and weak at the surface of
a protein or a protein assembly. These local variations of the hydrogen
bonding caused by variations in the dielectric constant within a solvent are
neglected in our approach. However, our simulation approach allows for
different environments by assigning different nonvariable dielectric con-
stants to different solvent conditions and correspondingly renormalizing
interactions in the model to the reference energy given by the hydrogen
bond energy, EHB.

Amino acid–specific interactions caused by hydropathy and charge also
depend on the particular environment under study. The strength of the
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effective hydropathic interactions depends on the solvent and other global
variables, such as temperature, molar concentration, and pH. Our model
accounts for these global variables by varying the amino acid–specific hy-
dropathies and charge, temperature, number of peptides, and the volume of
the simulation box. In an explicit solvent, however, the hydrophobic/hydro-
philic effect and electrostatic interactions depend strongly on the local
variations of SASA and the dielectric constant. As in the case of the hydro-
gen bond, in water the hydrophobic/hydrophilic effect is strongest at the
surface of the protein or protein assembly. The opposite is true for the
electrostatic interactions. The free energy change associated with breaking
a salt‐bridge within the hydrophobic core of a protein is much higher than at
its surface, where polar water molecules shield the charged atoms and thus
effectively weaken the electrostatic interactions between the side‐chains.

The DMD approach described in this review neglects local variations in
the dielectric constant and in the SASA of each side‐chain. The effective
hydrophobic/hydrophilic interactions in coarse‐grained models are based
on hydropathy scales. A number of different hydropathy scales exist, some
of them phenomenological (for example, Kyte and Doolittle [1982]); others
are based on the in vitro gain/loss of the free energy when a particular atom
is transferred from an aqueous solvent to a gas phase (for example, Wesson
and Eisenberg [1992]). A question that needs to be addressed in the future
is how robust the results of the DMD approach are with respect to different
hydropathy scales.

The effective electrostatic interaction is modeled by a two‐step square‐
well potential.Weneglect the long‐range nature of theCoulombic interaction
between two charged particles (and/or two dipoles). Implementing a true
long‐range electrostatic interaction would require a considerable computa-
tional effort with a potential approximated by a multistep square‐well of an
‘‘infinite’’ range. The interaction range problem is addressed in all‐atomMD
either by using Ewald sums in combination with periodic boundary condi-
tions, multipole expansions, or a field‐reaction method (Rapaport, 1997).
However, even these sophisticated algorithms neglect the electrostatic forces
above a certain cutoff distance. In the DMD approach, the solvent is implicit.
When implementing the effective interaction between charged atoms, one
needs to consider effects of the aqueous solution. The charged groups of a
peptide, surrounded by water molecules, are effectively shielded because of
the polar nature of watermolecules. Because of this shielding, we can approx-
imate the effective electrostatic potential by a two‐step square‐well potential
with a finite distance range as a first‐order approximation. In addition, one can
assign an effective charge to a given side‐chain. As the charge of a particular
side‐chain depends on pH, we can model different pH environments by
reassigning the charge of a particular amino acid. For example, H, which is
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considered neutral at pH ¼ 7, would be considered positively charged at low
pH. Again, our approach neglects the fact that in the core of a peptide
assembly the electrostatic interactions are stronger than at the surface of the
assembly.

In principle, it is possible to model local variations of interparticle
interactions that depend on SASA of individual side‐chain atoms in the
DMD approach by keeping track of the neighborhood of each atom. All
interparticle interactions except the hard‐core and soft‐core interactions
would need to be rescaled at regular simulation time intervals to account
for atom‐to‐atom variability of SASA. However, this would require
computational effort and could significantly slow down the simulations.
Conclusion

In this chapter, we described in detail the DMDmethod, coarse‐grained
protein models, and interparticle interactions that were developed to study
A� folding and aggregation. We also addressed weaknesses of the DMD
approach that originate in simplifications of the peptide description, inter-
particle interactions, and the absence of explicit solvent. The strengths of
the DMD approach are: (1) its ab initio nature that does not require any
experimental parameters specific to A� as input parameters; (2) its effi-
ciency that allows for study of not only folding but also of oligomerization
and fibril formation of full‐length A�; and (3) its biological relevance that
can be achieved through structural in vitro $ in silico feedback‐guided
development of the model and interactions. Because of these advantages,
this approach is also applicable to studies of proteins associated with other
neurodegenerative diseases.

Soluble oligomers are a common feature of amyloid assembly, but their
significance in the pathway of fibril assembly is not clear (Glabe, 2004).
Are oligomers obligatory intermediates on a single pathway from mis-
folded monomers to fibrils or are oligomers reversible off‐pathway inter-
mediates that only buffer the concentration of misfolded monomers?
Another fundamental question is how the assembly state of A� correlates
with its function and toxicity (Klein et al., 2004). The DMD approach
can provide detailed structural information on different assembly states
and explain the pathways of A� oligomer and fibril formation. Assuming
that the assembly structure is directly correlated to toxicity, in silico find-
ings could yield mechanistic hypotheses about why certain assemblies are
more toxic than others and thus provide directions for further in vitro
testing and identifying drug targets that would disrupt formation of these
assemblies.
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Abstract

Assembly of normally soluble proteins into amyloid fibrils is a cause or
associated symptom of numerous human disorders. Although some progress
toward understanding the molecular‐level details of fibril structure has been
made through in vitro experiments, the insoluble nature of fibrils make them
difficult to study experimentally. We describe two computational approaches
used to investigate fibril formation and structure: intermediate‐resolution
discontinuous molecular dynamics simulations and atomistic molecular dy-
namics simulations. Each method has its strengths and weaknesses, but taken
together the two approaches provide a useful molecular‐level picture of fibril
structure and formation.

Introduction

The hallmark ofmany neurodegenerative diseases, includingAlzheimer’s
disease, is the accumulation and deposition of protein plaques in specific
tissues within various organs in the body (Koo, 2002). These plaques are
composed of ordered protein aggregates known as amyloid fibrils that form
when normally soluble disease‐specific proteins undergo a conformational
change that leads to their aberrant assembly. Many of the 24 known so‐called

METHODS IN ENZYMOLOGY, VOL. 412 0076-6879/06 $35.00
Copyright 2006, Elsevier Inc. All rights reserved. DOI: 10.1016/S0076-6879(06)12020-0


	Ab initio Discrete Molecular Dynamics Approach to Protein Folding and Aggregation
	Introduction
	Applications to Abeta Folding and Aggregation
	In Vitro Findings
	Four-Bead Model with Hydrogen Bonding: Planar beta-sheet Assemblies and the Role of Glycines
	Four-Bead Model with Amino Acid-Specific Hydropathic Interactions: Abeta40 versus Abeta42 Oligomer Formation
	United-Atom Model: Abeta(21-30) Folding Initiated by a Hydrophobic Packing between V24 and K28
	Structural Hypotheses Derived from the DMD Studies

	Methods
	Discrete Molecular Dynamics Method
	Four-Bead Model Implementation
	Backbone Hydrogen Bond
	Amino Acid-Specific Interactions Caused by Hydropathy
	Amino Acid-Specific Interactions Caused by Charge

	United-Atom Model Implementation
	Soft-Core Interactions
	Backbone Hydrogen Bond
	Amino Acid-Specific Interactions Caused by Hydropathy
	Amino Acid-Specific Interactions Caused by Charge

	Limitations of the DMD Approach

	Conclusion
	Acknowledgments
	References


