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We study the robustness of complex networks to multiple waves of simultaneoussid targeted attacks in
which the highest degree nodes are removed andsii d random attackssor failuresd in which fractionspt andpr,
respectively, of the nodes are removed until the network collapses. We find that the network design which
optimizes network robustness has a bimodal degree distribution, with a fractionr of the nodes having degree
k2=skkl−1+rd / r and the remainder of the nodes having degreek1=1, wherekkl is the average degree of all the
nodes. We find that the optimal value ofr is of the order ofpt /pr for pt /pr !1.
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Recently, there has been much interest in the resilience of
real-world networks to random attacks or to attacks targeted
on the highest degree nodesf1–8g. Many real-world net-
works are robust to random attacks but vulnerable to targeted
attacks. It is important to understand how to design networks
which are optimally robust against both types of attacks,
with examples being terrorist attacks on physical networks
and attacks by hackers on computer networks. Studies to
datef7,8g have considered only the case in which there was
only one type of attack on a given network—that is, the
network was subject to either a random attack or to a tar-
geted attack but not subject to different types of attack simul-
taneously.

A more realistic scenario is one in which a network is
subjected to simultaneous targeted and random attacks. This
scenario can be modeled as a sequence of “waves” of tar-
geted and random attacks which remove fractionspt and pr
of the original nodes, respectively. The ratiopt /pr is kept
constant while the individual fractionspt and pr approach
zero. After some timesafterm waves of random and targeted
attacksd the network will become disconnected; at this point
a fractionfc=mspt+prd of the nodes has been removed. This
fc characterizes the network robustness. The largerfc, the
more robust the network is. We propose in this Brief Report
a mathematical approach to study such simultaneous attacks
and find the optimal network design one which maximizes
fc. In our optimization analysis, we compare the robustness
of networks which have the same “cost” of construction and
maintenance, where we define cost to be proportional to the
average degreekkl of all the nodes in the network.

We study mainly two types of random networks.
sid Scale-free networks. Many real world computer, social,

biological, and other types of networks have been found to
be scale free; i.e., they exhibit degree distributions of the
form Pskd,k−l f9–17g. For large scale-free networks with
exponentl less than 3, for random attacks essentially all
nodes must be removed for the network to become discon-
nectedf3,4g. On the other hand, because the scale-free dis-

tribution has a long power-law tailsi.e., hubs with large de-
greed, the scale-free networks are very vulnerable with
respect to targeted attackf5g.

sii d Networks with bimodal degree distributions.For resil-
ience to single random or single targeted attacks, certain bi-
modal distributions are superior to any other networkf7,8g.
Here we ask if these networks are also most resilient to mul-
tiple waves of both random and targeted attacks.

We present the following argument that suggests that the
degree distribution which optimizesfc is a bimodal distribu-
tion in which a fractionr of the nodes has degree

k2 =
kkl − 1 + r

r
s1d

and the remainder has degreek1=1, and we show thatr is of
the order ofpt /pr. To optimize against random removal, we
maximize the quantityk;kk2l / kkl, since for random re-
moval the threshold isf3g

fc
rand= 1 −

1

k − 1
. s2d

Since we keepkkl fixed, k is just the variance of the degree
distribution and is maximized for a bimodal distribution in
which the lower-degree nodes have the smallest possible de-
greek1=1 and the higher-degree nodes have the highest pos-
sible degree consistent with keepingkkl fixed, k2=skkl−1
+rd / r. Thus,k2 is maximized whenr assumes its smallest
possible value,r =1/N. On the other hand, if all of the high-
degree nodes are removed by targeted attacks, the network
will be very vulnerable to random attack. So we want to
delay as long as possible the situation in which all of the
high-degree nodes are removed by targeted attacks—which
argues for not choosingr as small as possible but choosingr
such that some high-connectivity nodes remain as long as
there are some low-connectivity nodes. Such a condition is
achieved whenr is of the order ofpt /pr.

The method we employ for determining the threshold
makes use of the following: the general condition for a ran-
dom network to be globally connected isf3,5,6g*Electronic address: toshi@argento.bu.edu
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k =
kk2l
kkl

ù 2. s3d

Random removal of a fractionpr of nodes from a network
with degree distributionP0skd results in a new degree distri-
bution f3g

Pskd = o
k0=k

K

P0skdSk0

k
Ds1 − prdkpr

k0−k, s4d

whereK is the upper cutoff of the degree distribution. Tar-
geted removal of a fractionpt of the highest-degree nodes

reduces the value of upper cutoffK to K̃, which is implicitly
determined by the equation

pt = o
k=K̃

K

P0skd. s5d

The removal of high degree nodes causes another effect.
Since the links that lead to removed nodes are eliminated, the
degree distribution also changes. This effect is equivalent to
the random removal of a fraction ofp̃ nodes where

p̃ =
ok=K̃

K
kP0skd

kkl0
. s6d

The averagekkl0 is taken over the degree distribution before
the removal of nodesf5g. Equations4d with pr replaced byp̃
can then be used to calculate the effect of the link removal.
Starting with a certain initial degree distribution, we recur-
sively calculatePskd, alternating between random and tar-
geted attack using Eqs.s4d–s6d, and calculatek after each
wave of attacks. Whenk,2 global connectivity is lost and
fc=mspr +ptd where m is the number of waves of attacks
performed.

We begin our study by first establishing numerically that,
for small values ofpt, pr, andpt /pr, the thresholdfc depends
only on pt /pr. In Fig. 1sad, we plot the thresholdfc of a
network with a bimodal degree distribution withkkl=3 for
various values ofpr andr as a function of the ratiopt /pr. The
collapse of the plots with the samer but differentpr shows
that the values of threshold are essentially independent of the
value ofpr itself but depend only on the ratiopt /pr.

1

In Fig. 1sbd we plot fc against the scaled variable
r / spt /prd. We see that the plots for different values ofr col-
lapse, indicating that only the scaled variabler / spt /prd is
relevant.2

Next we study the dependence offc on k2. As seen in Fig.
2, as expected the maximum values offc for various values
of pt /pr are obtained whenk2 is maximum fi.e., whenk1
=1; see Eq.s1d.g.

We are now in a position to determine the value ofr
which optimizesfc, ropt. In Fig. 3, we plotfc as a function of
the scaled parameterr / spt /prd with k2 set to the maximum

1A similar dependence on onlypt /pr is also found in other net-
work types including scale free.

2Similar results are obtained for other values ofkkl.

FIG. 1. sad The thresholdfc of three bimodal networks with
kkl=3, with sid r =2310−3 and k2=200, sii d r =5310−3 and k2

=90, andsiii d r =10−2 andk2=50. The results are plotted as a func-
tion of the ratiopt /pr for three fixed values ofpr. These plots show
that the values of the threshold are dependent only on the ratiopt /pr

and independent of the value ofpr itself. sbd Scaled plot of the data
in sad. The data show that the plots collapse in the region where
r / spt /prd&1.

FIG. 2. The thresholdfc versusk2 for a bimodal network with
kkl=3 andr =10−2 for three values ofpt /pr. The value ofpr is fixed
at 0.02. For each value ofpt /pr, the thresholds take their maximum
values at the maximumk2 sobtained whenk1=1d.
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value possible for each value ofr. We note that there is a
transition at a well-defined value ofr / spt /prd at which fc

increases rapidly to a shallow maximumfc
opt at ropt/ spt /prd

<1.7. This value ofropt/ spt /prd is valid for pt /pr !1. In
order to determineropt/ spt /prd over a wider range, we make
extensive numerical calculations for 10−3,pt /pr ,0.1. For
each value ofpt /pr, we calculate the valueropt/ spt /prd where
fc takes its maximum value and find

ropt

pt/pr
< 1.7 − 5.6S pt

pr
D + OS pt

pr
D2

s7d

within the range of our calculation. For larger values of
pt /pr, ropt=1 and from Eq.s1d all nodes have degreekkl. In
Fig. 4, we plot the values of the optimal thresholdfc

opt by a
thick solid curve.

In Fig. 4 we also plot the values of the thresholdfc for the
same bimodal network but we fixr independent ofpt /pr. We
see that these configurations are not significantly less robust
than the optimal configuration. Thus, even if we do not know
the ratiopt /pr exactly, we can design networks which will be
relatively robust. For example, the bimodal network withr
=0.03 is relatively robust forpt /pr &0.1 and the bimodal
network with r =0.09 is robust forpt /pr &1. Also plotted in
Fig. 4 is the optimal scale-free network withkkl=3. We see
that the optimal bimodal network is more robust than the
optimal scale-free network and we can even pick a configu-
ration with fixedr se.g.,r =0.03d which is more robust than
the optimal scale-free network in most ranges ofpt /pr.

In Fig. 5 we show a typical optimal realization of a bimo-
dal network. The network ofN=100 nodes consists ofrN
nodes with k=k2 s“hubs”d which are highly connected
among themselves; the nodes of single degree are each con-
nected to one of these hubs. We note that while the hubs are
highly connected among themselves, they do not form a
complete graph—every hub is not connected to every other
hub. For largerN, the fraction of hubs to which a given hub
connects decreases but the robustness of the network is un-
changed.

In summary, we have provided a qualitative argument and
numerical results which indicate that the most robust net-
work to multiple waves of targeted and random attacks has a

bimodal degree distribution with a fractionr of the nodes
having degreek2=skkl−1+rd / r and the remainder of the
nodes having degree 1. The optimal value ofr is approxi-
mately 1.7spt /prd for pt /pr !1. For larger values ofpt /pr,
the optimal value ofr is 1 and all nodes have degreekkl.
Even if pt /pr is not known exactly, a value ofr can be
chosen which maximizes the network robustness over a wide
range of values ofpt /pr, as seen in Fig. 4. Of course, there
are other quantities which one may want to optimize in ad-

FIG. 3. The thresholdfc versus the scaled parameterr / spt /prd
for a bimodal network withkkl=3 andk2 maximumsi.e., k1=1d.

FIG. 4. The thresholdfc versuspt /pr. The topmoststhickestd
curve is for a bimodal network withkkl=3 with k1=1 and withr
optimized by Eq.s7d for each value ofpt /pr. The values of the
threshold for the same bimodal network withk1=1 when we fixr
independent ofpt /pr are plotted in thin curves. The values ofr are
r =0.001, 0.002, 0.005, 0.01, 0.03, 0.05, 0.07, 0.09, 0.11, 0.13, and
0.15, from left to right. The curve marked with crossed circless%d
is a plot of the threshold values for a scale-free network withkkl
=3, N=104, and with exponent values in the range 2.3 to 2.5 chosen
for eachpt /pr to optimize the threshold. Note that the thresholds for
bimodal networks with 0.03& r &0.09 are always more robust than
the optimized scale-free network.

FIG. 5. Realization of bimodal network withN=100 nodes,
kkl=2.1, andr =0.1, so there arerN=10 “hub” nodes of degree 12,
as found from Eq.s1d.
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dition to network robustnessse.g., shortest paths, flow, etc.d.
This work provides the conceptual structure in which these
optimizations can be performed.

We note that while the optimal distribution found here and
that found in Ref.f8g are both bimodal, the values of the
parameters characterizing these distributions are different. As
found in Ref.f8g the network with optimal resilience to ei-
ther random or targeted attack hasr =1/N andk2, r−2/3. Fi-
nally, we note that it is possible to prove analytically that for
the case in which a single targeted attack followed by a

single random attack results in the network becoming dis-
connected, the optimal distribution is also bimodal withk1
=1, k2=skkl−1+rd / r andr of the order ofpt /pr,

3 supporting
the results found here for multiple waves of attacks.
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