Renormalization-group calculation of the critical-point exponent η for a critical point of arbitrary order

G. F. Tuthill, J. F. Nicoll, and H. E. Stanley

Physics Department, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

(Received 24 December 1974)

The critical-point exponent η for a critical point of order \mathcal{O} in dimensions less than $d_c \equiv 2\mathcal{O}/(\mathcal{O} - 1)$, is calculated to leading nonvanishing order in the parameter $\epsilon^2 \equiv d_0 - d$. The result is given for n-component isotropically interacting magnetic systems. For Ising systems, $n = 1$, the result is $\eta_0 = \epsilon^2(\mathcal{O} - 1)^2/(2\mathcal{O})^3$. As \mathcal{O} increases, the coefficient of ϵ^2 rapidly becomes very small, varying as $2^{-\mathcal{O}}$ for large. In the limit of large n, η_0 for odd order points approaches a constant and, for even order points, is proportional to $1/n$.

The classification and study of critical points of “higher order” has been of recent interest. The order of a critical point is defined by some authors to be the number of phases simultaneously critical at the critical point. Thus, an ordinary critical point is an $\mathcal{O} = 2$ point; tricritical points are $\mathcal{O} = 3$ points. Although there are many kinds of higher-order points, much of the work has concentrated on systems that in the mean-field approximation could be represented by a Landau-Ginzberg form for the Hamiltonian density,

$$ H(\mathbf{s}) = -\int d^d x \left(\frac{1}{2} |\nabla \phi(x)|^2 + \sum_{\mathbf{k} \neq 0} \frac{\mu_k}{(2\mathcal{O}!)^2} \langle \mathbf{s} \cdot \mathbf{s} \rangle \right), \tag{1} $$

where we have specialized to the “magnetic” case of an isotropically interacting n-component spin $\mathbf{s}(\mathbf{x})$.

The renormalization-group approach to such systems was introduced by Wilson at $\mathcal{O} = 2$. Corrections to mean-field behavior are calculated in a perturbation expansion in $\epsilon^2 \equiv 4 - d$. The tricritical case, $\mathcal{O} = 3$, has been studied by Riedel and Wegner at $d = 3$. Chang, Tuthill, and Stanley and Stephen and McCauley calculated exponents below three dimensions in an expansion in $\epsilon^2 \equiv 3 - d$. Reference 5 also gave explicit exponents to first order in $\epsilon^2 \equiv 3 - d$ for the $\mathcal{O} = 4$ case. The critical-point exponents for the general \mathcal{O} case were given in Nicoll, Chang, and Stanley at first order in $\epsilon^2 = 2\mathcal{O}/(\mathcal{O} - 1) - d$. The critical-point exponent η was shown in Ref. 7 to be at most $O(\epsilon^2)$. In this work, we complete the calculation of all critical-point exponents to leading order by calculating η to $O(\epsilon^2)$.

The ϵ^2 calculations of Ref. 7 were based on the differential renormalization-group generator of Wegner and Houghton. The calculation of η by this method is difficult and, therefore, through most of this work we will adopt a field-theoretic approach utilizing Feynman diagrams. However, we will extract the dependence of η on the number of spin components n by combining graph counting with the solutions of Ref. 7.

Following the method used to locate fixed points, we assume μ_k to be $O(\epsilon^2)$ for $k = \mathcal{O}$. It is then possible to carry out a self-consistent perturbation expansion in the parameters $\mu_4, \mu_6, \ldots, \mu_{2\mathcal{O}}$ while applying a mass counterterm that so that the bare propagator is $(p^2 + \mu)^{\mathcal{O}}$, with r^{-1} the zero-order ing-field susceptibility. The exponent η_0 is defined by a proportionality relation for the Fourier transform G of the spin-spin correlation function for small wave number,

$$ G^{-1}(p) \sim p^{2-m} \sim p^2 (1 - \eta_0 \log \cdots), \tag{2} $$

at the order-\mathcal{O} point ($r = 0$). We will now show that to $O(\epsilon^2)$, the calculation of η_0 involves only two Feynman graphs to be evaluated in dimension d_c.

In the perturbation expansion for G^{-1} we may write

$$ G^{-1}(p) \sim 1 + \Sigma(p, r), \tag{3} $$

where Σ represents the sum of all remaining graphs (with counterterm) displayed schematically in Fig. 1. The mass counterterm $\mu_k - r$ cancels all p-independent terms in (3) (in particular, all single-vertex diagrams). The series may be further simplified by formally eliminating closed loops that include only one vertex and introducing r-dependent generalized vertices $\Gamma_{2k} (r)$, defined by

$$ \Gamma_{2k}(r) = \mu_k + \sum_{L \neq 0} \frac{1}{12} [F(r)]^L. \tag{4} $$

Here, as in Ref. 6, $F(r)$ represents the loop integral $\int d^d p G(p, r)/(2\pi)^d$. With this change in notation and to $O(\epsilon^2)$, the set of graphs in Σ is reduced to those shown in Fig. 2.

Next, we note that $\Gamma_{2k}(r = 0) = 0$ for all $k \neq 0$. This follows from Wilson's scaling theorem for $2k$-point vertex functions

$$ \Gamma_{2k}(p = 0) \sim r^{2-(k-1)d/(2-m)}. \tag{5} $$

For $d \leq d_c$, Eq. (5) requires that Γ_{2k} vanish at $r = 0$ for all $k < 0$. Since the first-order perturba-
The perturbation series to $O(\epsilon^2)$ for the function $\Sigma(\bar{p}, r)$, defined by Eq. (3). Each diagram carries net momentum \bar{p}.

\[\Sigma(\bar{p}, r) = \frac{\epsilon^2}{u_{2k}} + \ldots \]

FIG. 1 Perturbation series to $O(\epsilon^2)$ for the function $\Sigma(\bar{p}, r)$, defined by Eq. (3). Each diagram carries net momentum \bar{p}.

The combinatorial factor for this diagram may be evaluated by considering first the Ising case, in which it is simply $1/(2\Theta - 1)!$. To determine the n dependence, it suffices to note that a factor of $n + 2N - 2$ is associated with the connection of two legs of a single $2N$-leg vertex. Thus, the n dependence of the u_{2k} diagram is given by $f_1(n)/(2\Theta - 1)!$, where

\[f_1(n) = \prod_{k=1}^{n-1}(n+2k)/(2k+1). \]

With this factor and denoting the u_{2k} integral by I_k, the correspondence between (2) and (3) gives

\[p^2(1 - \eta_\Theta \ln p) = \epsilon^2 \frac{u_{2k} f_1(n)}{(2\Theta - 1)!} \times [I_k(p, r = 0)](\Theta - 1)/2) [\epsilon_\Theta \ln r \cdots]. \]

Since u_{2k} is $O(\epsilon^2)$, η_Θ is clearly $O(\epsilon^2)$.

The fixed point value of u_{2k} remains to be determined; it is chosen so that the vertex functions satisfy scaling laws. For $k \neq 0$ in (5) this gives

\[\Gamma_{2k} \sim \frac{n(n-1)/2 - 1 + \epsilon_\Theta [(\Theta - 1)/2] \ln r \cdots. \]

The constant of proportionality must also be expanded as a series in ϵ_Θ, so that

\[\Gamma_{2k} = A + \epsilon_\Theta [A(\Theta - 1)/2] \ln r + B, \]

with A and B constants.

In first order, Γ_{2k} is u_{2k}, so that $A = u_{2k}$. Second-order terms all involve two-vertex diagrams u_{2k}, $u_{2k'}$ (with $l, l' \leq \Theta$) and graphs with internal lines numbering $l \leq \Theta$ (cf. Fig. 3). The r dependence of u_{2k} is given by the integral $F(r) - F(0)$, since by the remarks above $u_{2k}(0) = 0$ for $l < \Theta$:

\[F(r) - F(0) = \int \frac{d^d k}{(2\pi)^d} \left(\frac{1}{k^2 + r} - \frac{1}{k^2} \right) \]

\[= -\frac{\Omega_d}{(2\pi)^d} \int_0^\infty \frac{k^{d-3}}{k^2 + r} dk, \]

where $\Omega_d = 2(\pi)^{d/2}/\Gamma(\frac{d}{2})$ is the area of the unit sphere in dimension d. Changing variables, we have

\[F(r) - F(0) = -\frac{\Omega_d}{(2\pi)^d} \int_0^\infty \frac{dx x^{d-3}}{1 + x^2} \]

The integral converges for $2 < d < 4$ so that all r dependence is in the prefactor; no $\ln r$ factors are present.

Next, we examine the r dependence of the graph of Fig. 3. By power counting, this integral diverges like $r^{(d-3)/2}$ for small r. For $i < \Theta$, the integral converges at large k without a momentum cutoff, and a change of variables similar to that in (11) shows that the diagram gives a prefactor of $r^{(d-3)/2}$ multiplied by a convergent integral. Only for $i = \Theta$ will $\ln r$ terms arise; the integral for this case is denoted as $I_2(r)$.

To compare with the scaling form (9), we note that the perturbation expansion gives

\[\Gamma_{2k} = u_{2k} - \frac{(2\Theta) I_2(r)}{(2\Theta - 1)!} u_{2k} \cdots. \]

The resulting value for u_{2k} to first order is

\[u_{2k} = -\frac{(\Theta - 1)(\Theta)^2 \epsilon_\Theta}{(2\Theta - 1)!} \frac{I_2(r)}{I_2(r)_{\text{large}}} + \cdots. \]

Combining (13) with (7), the expression for the exponent η_Θ for $n = 1$; n dependence will be discussed below) to leading order is

\[\eta_\Theta = \epsilon_\Theta \frac{(\Theta - 1)^2 (\Theta)^2 I_2(r)_{\text{large}}}{(2\Theta - 1)! \Gamma(\theta) I_2(r)_{\text{large}}}. \]

All that remains is the calculation of the two integrals.
\[I_1 = \int d^d x e^{i \Phi_R} \left(\frac{d^d x}{(2\pi)^d} \right)^{2\nu - 1} \]
\[I_2 = \int d^d x e^{i \Phi_R} \left(\frac{d^d x}{(2\pi)^d} \right)^{\nu} \]
where \(d \) and \(\Phi \) are, of course, related by \(d = d_0 = 20/(e - 1) \). Both integrals are divergent as written; \(I_1 \) diverges quadratically and \(I_2 \) diverges logarithmically. To extract the finite terms desired, we cut off the \(R \) integrations by integrating over \(|R| > \Lambda^{-1} \).

From Bateman\(^{10}\) we note that
\[\int d^d x e^{i \Phi_R} = \int_0^\infty dx x^{d-1} \frac{\Omega d}{(2\pi)^d} J_d(xq) \left(\frac{1}{x} \right)^{\nu}, \]
where \(\nu = \frac{1}{2} (d - 2) \). Therefore, applying (17) to (15) we have
\[I_1 = \left(\frac{\Omega d}{(2\pi)^d} \right)^{\nu} \int_0^\infty dx x^{d-1} J_d(Rp) \left(\frac{1}{x} \right)^{\nu} \]
\[\times \left[\int_0^{\Lambda^{-1}} dk J_d(kR) \right]^{2\nu - 1}. \]
(18)

The inner integral can be evaluated exactly; after a change of variable (18) becomes
\[I_1 = \left(\frac{\Omega d}{(2\pi)^d} \right)^{2\nu - 1} \frac{\Omega d}{(2\pi)^d} R^2 \]
\[\times \int_0^\infty dx x^{d-1} J_d(x) \left(\frac{1}{x} \right)^{\nu}. \]
(19)

The integral over the interval \([1, \infty)\) gives a finite contribution to the \(p^2 \) term. The integral over the interval \([\rho/\Lambda, 1]\) can be evaluated by expanding the Bessel function in its Taylor series. We find that
\[I_1 = \left(\frac{\Omega d}{(2\pi)^d} \right)^{2\nu - 1} \frac{\Omega d}{(2\pi)^d} R^2 \]
\[\times \int_0^\infty dx x^{d-1} J_d(x) \left(\frac{1}{x} \right)^{\nu} \]
\[\times \frac{\Omega d}{4 \Gamma(\frac{1}{2} d)} \]
\[\times \frac{\rho^2}{\Gamma(\frac{1}{2} (d + 1))} \ln^2 R^2 + O(\Lambda^2). \]
(20)

With these combinatorial factors, the result for general \(n \) and general \(\theta \) is
\[\eta_\theta = \frac{4}{\Omega d} \left(\frac{1}{(2\pi)^d} \right)^{\nu} f_\theta(n) \]
\[\times \frac{\rho^2}{\Gamma(\frac{1}{2} d)} \frac{\rho^2}{\Gamma(\frac{1}{2} (d + 1))} \ln^2 R^2 + O(\Lambda^2). \]
(26)

It is easy to check that (26) reduces to the previously calculated results for \(\theta = 2 \) and \(\theta = 3 \),
\[\eta_\theta = \frac{\rho^2}{2(n + 2)^2}, \]
\[\eta_\theta = \frac{\rho^2}{2(n + 3)^2}. \]
(27)

We note that as \(\theta \) increases the coefficient of \(\rho^2 \) rapidly becomes very small, \(\approx 2^{-6\theta} \) for \(\theta \) large. In the limit of large \(n \), \(\eta_\theta \) for odd order points approaches a constant and, for even order points, is proportional to \(1/n \).

For all \(\theta > 3 \) we have \(d_\theta \approx 3 \), and the mean-field result, \(\eta_\theta = 0 \), therefore applies in three-dimension-
al systems. However, these results and those of
Refs. 5–7 may apply to higher-order critical points
in two-dimensional systems. In any event, the
previously obtained results for ordinary critical
points are placed in a broader theoretical context
by the extension to general \(\varnothing \).

We wish to thank Prof. T. S. Chang for many
useful discussions.

*This work forms a portion of Ph. D. theses of G. F. T.
and J. F. N. to be submitted to the Physics Dept. of
M.I.T. Work supported by the National Science
Foundation, Office of Naval Research, and the Air
Force Office of Scientific Research.

1T. S. Chang, A. Hankey, and H. E. Stanley, Phys.
Rev. B 2, 4263 (1973); B 3, 346 (1973); F. Harbus,
3, 2273 (1973); A. Hankey, T. S. Chang, and H. E.

2B. Widom, J. Phys. Chem. 77, 2196 (1973); R. B.
Griffiths and B. Widom, Phys. Rev. A 3, 2173 (1973);

3There exist other types of critical points of higher order
for systems with symmetrically competing ordered
parameters. Such critical points are usually not
describable by a Landau-Ginzburg expansion of a single
order parameter. See, e.g., examples given in Ref.
1 and Y. Imry, report (unpublished); D. R. Nelson, J.
M. Kosterlitz, and M. E. Fisher, Phys Rev. Lett. 33,
813 (1974); and A. D. Bruce and A. Aharony, Phys.

4E. K. Riedel and F. J. Wegner, Phys. Rev. Lett. 29,
349 (1972); F. J. Wegner and E. K. Riedel, Phys.

6Two of the three critical-point exponents calculated in
Ref. 5 were independently obtained, using field-theo-
retic methods, for the special case \(\varnothing = 3 \) by M. J.
(1973)].

Rev. Lett. 33, 540 (1974). The \(\epsilon_0 \) in the present work
is identical to that of Ref. 5, but differs from that of
Ref. 7 by a factor \(\varnothing - 1 \). That is, \((\epsilon_0)_{\varnothing = 3} = (\epsilon_0)_{\varnothing = 2} (\varnothing - 1) \).

8K. G. Wilson, Phys. Rev. B 4, 3174 (1971); K. G.
(1972); K. G. Wilson and J. Kogut, Phys. Rep. 12,
75 (1974), and references therein.

(1973).

10H. Bateman, in *Higher Transcendental Functions*,
edited by A. Erdelyi (McGraw-Hill, New York, 1953),

11J. F. Nicoll, T. S. Chang, and H. E. Stanley (report
of work prior to publication). This work calculates
critical-point exponents for arbitrary \(\sigma \) as well as arbi-
trary \(\varnothing \). Here \(\sigma \) is defined through the interaction
\(1/\sigma^{\delta_\sigma} \) and Ref. 7 corresponds to calculations for \(\sigma \approx 2 \).