
PHYSICAL REVIEW E 85, 046109 (2012)

Robustness of onionlike correlated networks against targeted attacks
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Recently, it was found by Schneider et al. [Proc. Natl. Acad. Sci. USA 108, 3838 (2011)], using simulations,
that scale-free networks with “onion structure” are very robust against targeted high degree attacks. The onion
structure is a network where nodes with almost the same degree are connected. Motivated by this work, we
propose and analyze, based on analytical considerations, an onionlike candidate for a nearly optimal structure
against simultaneous random and targeted high degree node attacks. The nearly optimal structure can be viewed
as a set of hierarchically interconnected random regular graphs, the degrees and populations of whose nodes
are specified by the degree distribution. This network structure exhibits an extremely assortative degree-degree
correlation and has a close relationship to the “onion structure.” After deriving a set of exact expressions that
enable us to calculate the critical percolation threshold and the giant component of a correlated network for an
arbitrary type of node removal, we apply the theory to the cases of random scale-free networks that are highly
vulnerable against targeted high degree node removal. Our results show that this vulnerability can be significantly
reduced by implementing this onionlike type of degree-degree correlation without much undermining the almost
complete robustness against random node removal. We also investigate in detail the robustness enhancement due
to assortative degree-degree correlation by introducing a joint degree-degree probability matrix that interpolates
between an uncorrelated network structure and the onionlike structure proposed here by tuning a single control
parameter. The optimal values of the control parameter that maximize the robustness against simultaneous random
and targeted attacks are also determined. Our analytical calculations are supported by numerical simulations.
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I. INTRODUCTION

Many complex systems in real world can be modeled by
complex networks [1–11]. Generally speaking, the cooperative
performance of complex systems fundamentally relies on the
global connectivity of their components. These complicated
systems are, however, usually placed in an ever-changing
external environment where the components or the connec-
tions could be constantly added, eliminated, or changed. Such
changes may potentially affect the global connectivity of
the network under consideration to the extent in which the
global connectivity could be completely lost and the system
represented by the network will lose its functionality. The
analysis of the response of the global connectivity caused by
the alteration of the network, or targeted attacks, has been
therefore one of the main issues of the complex network
analysis.

Most of the existing theoretical studies on the robustness
of complex networks depend only on the degree distribution
[5–31]. However, as noted by Newman, networks in real world
exhibit rather strong tendency, or correlation, in the connection
between nodes of different degrees [32]. He introduced the
terms, assortative and disassortative correlations, to describe
the tendency of nodes in a network to make connections
between the same degree and between different degrees,
respectively, and calculated how the giant component collapse
for specific kinds of correlated networks against random node
removal. Newman applied the generating function formalism
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and showed the enhancement of the resiliency of networks
with assortative degree-degree correlation.

In addition to Newman’s pioneering work, there are few
theoretical works on robustness analysis including degree-
degree correlations [33–36]. Among these, Goltsev et al.
focused on the evaluation of critical exponents of correlated
complex networks in the vicinity of node percolation transition
for the case of random node removal [34]. Here we extend
their formalism and proceed to the robustness analysis of a
correlated complex network against arbitrary types of node
removal.

Recently, Schneider et al. developed an interesting numer-
ical approach for enhancing network robustness against high-
degree node removal [37,38]. They start from an uncorrelated
random network with a given degree distribution. Next,
they randomly choose two pairs of links and exchange the
destinations of the two links between them keeping the overall
degree distribution unchanged. If this exchange improves the
robustness of the network against targeted node removal,
the exchange is accepted. By repeating this procedure, the
robustness of the network is enhanced step by step. They
applied this method to several types of networks with broad
degree distributions and found that the final robust networks
have a common “onionlike” topology consisting of a core of
highly connected nodes hierarchically surrounded by rings
of nodes with decreasing degree [37,38]. In each ring most of
the nodes are of the same degree. A numerical method that
improves the convergence to the onion structure is reported by
Wu and Holme recently [39].

Motivated by the onionlike topology, we study here
analytically the robustness of a family of such systems.
In our approach we obtain analytical expressions for the
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critical threshold and for the giant components, where the
degree-degree correlation is fully incorporated. Due to the
analytical approach, a statistical treatment over a large number
of realizations as done in computer simulations is not needed
to obtain definite results. Nevertheless both analytical and
simulation approaches are necessary and complementary, in
particular, for testing the analytical approach. Interestingly, the
optimal structure we find here against simultaneous random
and targeted high degree node removals is very similar to
the “onionlike” structure found by Schneider et al. [37].
The optimal structure obtained consists of hierarchically and
weakly interconnected random regular graphs.

The paper is organized as follows. In Sec. II we derive
a set of analytical equations for the critical node threshold
and the giant component fraction for an arbitrary type of
node removal where the degree-degree correlation is fully
incorporated. We begin our analysis in Sec. III by presenting
a simple theoretical argument to derive the optimal network
structure against targeted high degree node removal. In Sec. IV,
we describe the properties of a set of separated random regular
graphs as the first step to understand the structure of the optimal
network described in the previous section. Support of our
analytical results by numerical simulations is also presented.
In Sec. V we analyze the properties of interconnected random
regular graphs of different degrees k by introducing a joint
degree probability matrix that can describe the transition
between a set of separated random regular graphs and a
completely uncorrelated single random network by tuning
a single control parameter under the condition of having a
fixed degree distribution. The optimal values of the control
parameter that maximize the robustness against simultaneous
random and targeted high-degree node attacks is determined.
In Sec. VI we summarize the results.

II. THEORY

We start from the joint degree-degree probability matrix,
P (k,k′), which is the probability that a randomly chosen link
emanates from a k-degree node and ends at a k′-degree node. In
this article, we consider only the cases of undirected networks,
where the symmetry P (k,k′) = P (k′,k) holds. The sum of
P (k,k′) over k′ is the probability that a randomly chosen link
starts from a k-degree node. It is related to the probability
density of the degree distribution P (k), through the relation∑

k′ P (k,k′) = kP (k)/〈k〉, where 〈k〉 is the average degree. By
definition,

∑
k P (k) = 1. Note that the sum

∑
k′ P (k,k′) has to

be fixed if we fix the degree distribution P (k). The conditional
probability P (k′|k) that a randomly chosen link emanating
from a k-degree node leads to a k′-degree node is defined by
P (k′|k) ≡ P (k,k′)/

∑
k′ P (k,k′) = P (k,k′)/(kP (k)/〈k〉).

When the nodes of a network are removed according to the
degree of nodes, the remaining fraction of k-degree nodes is
reduced by a factor bk (0 ! bk ! 1) from the original fraction
P (k). The total remaining fraction of nodes, p, is calculated
by p =

∑
k bkP (k).

The giant component in a complex network is the largest
cluster of connected nodes. Its relative size in the network, S,
remains finite as the total number of nodes N becomes infinite.
Nonzero values of S indicate a macroscopic connectivity of
the network under consideration.

To calculate the critical value of the remaining fraction of
nodes pc, above which the giant component S begins to take
a nonzero value, we extend the generating function method
[16,34] by incorporating the degree-degree correlation under
an arbitrary way of node removal. Let xk be the probability that
a randomly chosen link from a k-degree node does not lead
to the giant component. Under the condition that the network
only consists of trees, which is justified in the limit of N → ∞,
the probabilities xk (k = m,m + 1, . . . ,K), for nonzero values
of bk , and the node fraction of the giant component S are
determined by the following set of equations:

xk = 1 −
∑

k′

bk′P (k′|k) +
∑

k′

bk′P (k′|k)(xk′)k
′−1, (1)

S = p −
∑

k

bkP (k)(xk)k =
∑

k

bkP (k)(1 − (xk)k). (2)

Obviously, xk = 1 for removing all k-degree nodes (bk = 0).
Note that these equations contain the remaining fraction of
k-degree nodes bk . Equations (1) and (2) are a necessary
extension of existing works in order to investigate all types
of node removal. The degree-degree correlation is included in
the conditional probability P (k′|k).

Below the critical remaining fraction of nodes, all xk’s are
equal to one and it follows from Eq. (2) that S = 0 (no giant
component). At criticality where the giant component emerges,
at least one of xk’s takes a value slightly smaller than one. In
the vicinity of the critical point, we assume xk = 1 − yk and
expand Eq. (1) in terms of infinitesimally positive quantities
yk . The equation obtained by this expansion becomes

yk =
∑

k′

Bkk′yk′ + O
(
y2

k

)
, (3)

where the “branching matrix” Bkk′ is defined by Bkk′ ≡
bk′P (k′|k)(k′ − 1). The eigenvalues of the branching matrix
are all non-negative and can be ordered according to their
values. The critical point can be obtained by the point at which
the largest eigenvalue of Bkk′ becomes unity [34].

As we will show in Sec. IV, we can also calculate the
critical exponent β defined by S ∼ |p − pc|β in the vicinity
of the critical point.

III. THE OPTIMAL STRUCTURE

Let us begin by reviewing the robustness of random regular
graphs, which are networks that consist of only nodes with
the same degree k. Such networks serve as components in the
structure studied in this paper.

Since all nodes in a random regular graph have the
same degree k, there is no difference between random and
targeted attacks. It is well known from percolation theory
that a random regular graph with degree k " 2 contains a
single giant component when the remaining node fraction
after random removal of nodes exceeds the critical threshold
pc = 1/(k − 1). It should be pointed out that the critical node
threshold for the random regular graph for k = 2 is one. This
means that the giant component for a random regular graph
with k = 2 is always critical and collapses as soon as few nodes
are removed. Because of this criticality, the giant component
fraction S of a k = 2 random regular graph is not unity but
close to 0.8 [40].
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The robustness of a given network depends on the method
of node removal. For example, scale-free networks are almost
completely robust against random node removal while they
are extremely vulnerable against targeted removal of high-
degree nodes [13,14,16,17]. The results for the robustness are,
however, derived for random networks and thus are based only
on the degree distribution. It is interesting, therefore, to clarify
to what extent we are able to improve the robustness of a
complex network against a targeted attack by introducing the
degree-degree correlation while keeping the network degree
distribution unchanged.

With this in mind, we focus on the improvement of the
robustness of complex networks against targeted high-degree
node attack. We limit our analysis to networks where the
number of k-degree nodes decreases with increasing k. In
a targeted high-degree attack, all nodes that have higher
degrees than a certain value are eliminated. Removing a node
also eliminates all the edges attached to it. Since the edges
are connected with the remaining lower degree nodes, the
elimination of those edges undermines the global connectivity
of the remaining lower degree node component. In order to
minimize such undermining effects as much as possible, the
number of edges that connect removed higher degree nodes
and the remaining lower degree nodes should be minimized as
much as possible. Hence the following requirement should be
fulfilled.

Requirement. The k-degree nodes should not be connected
to nodes with degree k′ lower than k (k′ < k).

This requirement yields that most of the edges should
connect nodes of the same degree. Thus the optimal structure
built up from a set of random regular (RR) graphs naturally
emerges. To form an entirely connected single network, these
RR graphs must be connected with one another. The most
robust network against a targeted attack with a given degree
distribution can, therefore, be constructed by the following
procedure.

(1) Prepare a suitable number of nodes for each degree
according to the given degree distribution. We assume that
the number of nodes for each degree is so large that all edges
can find nodes to be attached in both end points.

(2) Let the smallest degree be m and begin to construct
the network from the m-degree component, which is the last
remaining component for targeted high-degree node removal.
If the requirement is completely fulfilled, no edges of the
m-degree component are eliminated by targeted removal of
nodes with degree larger than but not equal to m. The last
remaining m-degree component forms, therefore, an RR graph
of degree m.

(3) Next, attach the nodes with degree m + 1. According
to the requirement, the attached (m + 1)-degree nodes cannot
be connected to the (smaller) m-degree component. Thus all
(m + 1)-degree nodes should be connected with one another
and form an RR graph of degree (m + 1).
Up to this point, the network consists of two separated RR
graphs with degree m and m + 1. However, to make a single
connected network we have to connect these two components.
To fulfill the requirement as much as possible under the
condition of the fixed degree distribution, we break two edges,
one of which is in the RR graph of degree m and the other of
which is in the RR graph of degree m + 1, and rewire these

two edges. Note that this rewiring does not change the degree
distribution.

(4) Attaching the nodes with the next larger degree, m + 2
can be performed in the same way. First, following the
requirement, these nodes should be connected with one
another. Hence, an RR graph with degree m + 2 emerges. Next,
to make a single connected network under the conditions of
the requirement and the fixed degree distribution, two edges
in the RR graph of degree m + 1 and the RR graph of degree
m + 2 are broken and rewired.
By repeating this process up to the nodes with the largest
degree K , we reach the structure in which RR graphs with
degrees hierarchically up from m to K are minimally intercon-
nected. This structure has a close resemblance with the robust
“onionlike” structure found using numerical simulations by
Schneider et al. [37,38].

In the following sections, we investigate the properties
of this structure, which we also refer to as the “onionlike”
structure.

IV. ANALYSIS OF SEPARATED RANDOM
REGULAR GRAPHS

Let us begin with the case of a correlated network specified
by a delta functionlike joint degree probability matrix,

P (k,k′) = kP (k)
〈k〉

δkk′ . (4)

This joint degree probability matrix leads to the conditional
probability that is a complete delta function: P (k′|k) = δkk′ . In
this network, only nodes with the same degree are connected.
The whole network is therefore a set of random regular (RR)
graphs of all degrees of nodes from m to K where each
degree fraction is specified by the degree distribution P (k). In
Fig. 1, we show an example of a set of RR graphs specified by
Eq. (4).

Since the onion structure proposed in the previous section
consists of minimally connected RR graphs, we expect that
the properties of this structure should be almost identical to a
set of separated RR graphs described by Eq. (4). This is one of
the reasons we begin our analysis with a set of separated RR
graphs.

Strictly speaking, there is no global giant component in
this network structure, since all RR graphs are separated. We
assume that the sum of the giant components of each RR
graph to be the “virtual” giant component in this case. This
definition of the “virtual” giant component naturally reflects
the “real” giant component when we add a minimal number of
connections, or “bridges,” between these RR graphs.

The branching matrix Bkk′ for this set of RR graphs is
diagonal with the diagonal elements, Bkk = bk(k − 1), which
are identical to the eigenvalues of the branching matrix [see
Eq. (3)]. Thus each RR graph with degree k contained in this
network becomes critical when the remaining fraction of this
mode bk takes the critical value,

b∗
k = 1

k − 1
(k " 2). (5)

When nodes are removed starting from the highest to lower
degrees, the bk’s of the removed degrees become zero. The
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FIG. 1. (Color online) An example of a set of separated random
regular graphs from k = 2 to k = 5. The total node number N = 524
and the node number for each random regular graph is determined by
the power-law degree distribution, P (k) ∝ k−λ with λ = 2.6. Notice
that the graph for k = 2 is composed of separated rings, which can
be fragmented by removing a tiny amount (zero fraction) of nodes.
This means that the giant component of the random regular graph
for k = 2 is always at the edge of criticality, as indeed predicted by
Eq. (5).

last remaining fraction of nodes is that of the minimum degree
m, and the disappearance of the giant component for this
minimum degree indicates the collapse of the finally remaining
“virtual” giant component. This occurs at

bm = b∗
m = 1

m − 1
, bk = 0 (k > m). (6)

Thus the node removal threshold for targeted attack on high-
degree nodes of this extremely assortative network becomes

pc = b∗
mP (m) = P (m)

m − 1
. (7)

At the emergence of the giant component, when p # pc,
the node fraction of the giant component S is characterized
by the critical exponent, β, as S ∼ |p − pc|β . Using the exact
equations (1) and (2), we can also evaluate the value of β as
follows.

We note again that the case, m = 2, is a little tricky. In the
first place, as we can see from Eq. (7), the giant component
of the regular graph of the smallest degree does not emerge
until all the nodes with degree two are filled (b2 = 1). In other
words, the giant component suddenly disappears as soon as
any single node of the smallest degree two is removed. Thus
the percolation transition in this case is discontinuous and a
finite value of S suddenly appears at pc = P (2). Second, the
giant component for k = 2 is always critical and only about

80% of the nodes of this smallest degree participate in the
giant component [40]. The rest of the nodes of k = 2 form
tiny rings, which do not contribute to the giant component.

For m " 3, the transition is continuous at pc = P (m)/(m −
1). In this case, we can also evaluate the critical exponent β as
follows. For p # pc, nontrivial solutions for Eq. (1), which is

xk = 1 − bk(1 − (xk)k−1) (8)

in this case, emerge. Let us assume xm = 1 − ε, where ε # 0,
in the equation for the lowest degree m, and expand Eq. (8) up
to the second order of ε. This gives

ε = 2
m − 2

{
1 − 1

bm (m − 1)

}
+ O(ε2). (9)

Since only the subgraph of the lowest degree m exists at the
criticality, the remaining node fraction is p = bmP (m); there-
fore p − pc = (bm − b∗

m)P (m). Notice that b∗
m = 1/(m − 1).

Thus we can rewrite Eq. (9) as

ε = 2
b∗

mP (m)(m − 2)
|p − pc| + O(|p − pc|2). (10)

Together with Eq. (2), which is

S = bmP (m)(1 − (xm)m) (11)

in this extremely assortative case, we obtain

S = 2m

m − 2
|p − pc| + O(|p − pc|2). (12)

This means β = 1. It is interesting that in the limit m → ∞,

S ≈ 2|p − pc| (m → ∞) (13)

in the vicinity of the transition.
To verify the above theoretical arguments, we compare

the size of the “virtual” giant component obtained from
theory with the “real” giant component of the onion structure
proposed in the previous section obtained by numerical
simulation. We focus on the cases of networks with a power-
law degree distribution (scale-free networks), where the degree
distribution is represented by P (k) ∝ k−λ.

The results are shown in Fig. 2 for scale-free networks with
λ = 2.6. For the total number of nodes N in these simulations,
we take N ≈ 900 for K = 5 and N ≈ 12 000 for K = 10 with
m = 2 and N ≈ 900 for K = 5 and N ≈ 20 000 for K = 20
with m = 3. The agreement is excellent and thus supporting
the analytical results based on Eqs. (1) and (2). Note, as seen
in Fig. 2, that the value of the maximum degree K does not
play an important role for the improvement of the robustness
against a targeted attack. This can be understood since the
highest degree nodes represent a low fraction of the network
nodes and are selectively removed in the targeted attack.1

We also show in these figures the values of the giant
component fraction of the uncorrelated (random) network with
the same degree distribution as a function of the remaining

1In order to verify the insensitivity of the robustness to the maximum
degree K , all the numerical calculations of the analytical expressions
in this article were also performed for K = 500 with the same values
for other parameters. The reason for taking small values of K is to
save time in the simulations for producing correlated networks.
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FIG. 2. (Color online) Plots of the values of the “virtual” giant
component S as a function of the remaining fraction of nodes p,
obtained theoretically for extremely assortative scale-free networks
specified by Eq. (4) for various values of the maximum degree
K . The degree distribution is fixed to the power-law k−λ with an
exponent λ = 2.6: (a) The giant component S for m = 2 and (b) S

for m = 3. The values of S for networks with the onion structure
obtained by both theory and numerical simulations as well as the
giant component fraction of the corresponding uncorrelated random
scale-free network for K = 5 are shown. In (a), the values of S for
completely separated RR graphs (with no “bridges”) obtained by
simulation are also added for K = 10 for comparison. Notice that the
difference between the results for the onion structure and those of the
separated RR graphs are small for m = 2 and K = 10. For m = 3,
this difference is indistinguishable.

nodes. It is clear that the strong assortativity, obtained using
the construction principle described in Sec. III, considerably
improves the robustness of the scale-free network against
targeted high-degree node removal.

V. A MODEL FOR INTERCONNECTED RANDOM
REGULAR GRAPHS

A. The joint degree matrix

To investigate the effect of connections between random
regular (RR) graphs and to study the robustness of onionlike
structures analytically, we propose the following model where
the joint degree-degree probability matrix is defined by

P (k,k′) ∝ kP (k)
〈k〉

k′P (k′)
〈k〉

exp
[
− (k − k′)2

σ 2

]
, (14)

which is normalized by the conditions
∑

k′ P (k,k′) = kP (k)/
〈k〉 and

∑
kk′ P (k,k′) = 1. This matrix, Eq. (14), contains a

control parameter σ . In the limit, σ → 0, the joint degree-
degree matrix is that of separated RR graphs, Eq. (4), and in
the limit, σ → ∞, it approaches that of a completely random
single uncorrelated network. Note that for any value of σ , the
degree distribution P (k) is fixed and given by the sum rule,∑

k′ P (k,k′) = kP (k)/〈k〉.
As mentioned earlier, an RR graph with k = 2 generally

consists of many separated rings. Therefore, it is expected
that until the control parameter for connection between RR
graphs σ obtains a suitably large value, the largest connected
component, which belongs to the k = 2 component, is not
firmly connected to the larger degree (k > m) components.
In Fig. 3, we show the fraction of the largest connected

FIG. 3. (Color online) The fraction of the largest connected
component of scale-free networks with the exponent λ = 2.6,
minimum degree m = 2, and maximum degrees K = 10, 100 as
a function of the parameter σ , that controls the assortativity of
the degree-degree correlation. Above σ ≈ 0.35, the separated k = 2
components become connected to the larger degree components and
the largest connected component spans the entire network.

component of a scale-free network specified by Eq. (14) with
the exponent λ = 2.6, minimum degree m = 2, and maximum
degrees K = 10 and 100 as a function of σ , which is obtained
by numerical calculations using the analytical expressions,
Eqs. (1) and (2). From this figure, we can see that for m = 2
we need σ # 0.35 for the largest connected component to span
the entire network. For m " 3, we find (not shown) that the
largest connected component always spans the entire network
for any non-negative value of σ .

B. The critical percolation threshold

The critical percolation threshold pc is the minimum value
of the remaining node fraction required for a unique giant
component to be of the order of the entire network under
a given way of node removal. The threshold pc is a useful
measure of the structural robustness of the network. A smaller
value of pc means that the network is more robust, since one
needs to remove more nodes in order to destroy the giant
component.

We calculate pc using the theoretical framework described
in Sec. II. For a given way of node removal, the critical point
for the vanishing giant component is specified by the point at
which the largest eigenvalue of the branching matrix Bkk′ =
bk′P (k′|k)(k′ − 1) becomes unity [see Eq. (3)].

In Fig. 4, we plot the threshold pc as a function of σ for
several scale-free networks. For all calculations, the values of
pc deviate from those of the uncorrelated networks (seen at
larger σ ) and become smaller (more robust) as σ decreases
and the strong assortative degree-degree correlation sets in.
Finally the values of pc converge to P (2) + P (3)/2 for the
networks with m = 2 and to P (3)/2 with m = 3 in the range
σ $ 1, where m is the minimum degree.

The limiting values of pc for small values of σ can be
understood as follows. In the limit σ → 0, the network tends to
a set of separated random regular (RR) graphs for each degree.
In this case there is no single giant component but a set of giant
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components of each RR graph. For the case when the minimum
degree is m = 2, the RR graph of the smallest degree (k = 2)
is composed of “rings” and therefore always critical, which
means the global connectivity of this component of k = 2
collapse as soon as even a single node from this component
is removed. We can see this also from the fact that the critical
node threshold for the random regular graph of k = 2 is
pc = 1/(k − 1) = 1. The giant component vanishes as soon
as a node in the last remaining component (k = 2) containing
the fraction P (2) of nodes is removed. Thus, pc = P (2) for
σ = 0. Above some positive finite value of σ , however, the
separated RR graphs become interconnected (hierarchically).
In this case, σ > 0, the smallest degree component (k = 2)
of the whole network is connected to the k = 3 component.
This connection breaks up the giant component in the RR
graph for k = 2, since the k = 2 component is always critical.
The final giant component collapse thus comes when the

FIG. 4. (Color online) Plots of the critical node threshold against
a targeted high-degree node attack as a function of the parameter
σ that controls the assortativity of the degree-degree correlation [see
Eq. (14)] for several scale-free networks. (a) Scale-free networks with
the exponent λ = 2.6 and minimum degree m = 2. The (blue) solid
curve is for a network with maximum degree K = 10 and the (red)
dotted curve is for K = 100. (b) Scale-free networks with m = 2
and K = 100. The (blue) solid curve is for λ = 2.2 and the (red)
dotted curve is for λ = 2.6. (c) Scale-free networks with λ = 2.6 and
m = 3. The (blue) solid curve is for K = 10 and the (red) dotted curve
is for the network with K = 100. (d) Scale-free networks with m = 3
and K = 100. The (blue) solid curve is for λ = 2.2 and the (red)
dotted curve is for λ = 2.6. For small values of σ , where the network
structure approaches to be composed of weakly interconnected RR
graphs, all critical node thresholds approach to P (2) + P (3)/2 for
m = 2 and to P (3) for m = 3. For all these cases, the giant component
spans the entire network at the beginning of the node removal. Note
that a smaller value of pc generally means a more robust network
structure.

global connectivity of the k = 3 component is lost. The
threshold for the k = 3 component is 1/(k − 1) = 1/2. Thus,
the critical node threshold at the collapse is expected to be
pc = P (2) + P (3)/2 for σ > 0 [see Figs. 4(a) and 4(b)]. Since
for σ = 0, pc = P (2), there is a discontinuity of pc for m = 2
at σ = 0. Note that in Figs. 4(a) and 4(b) for m = 2, we only
show the giant components for σ # 0.35 where the largest
connected component spans the entire network.

For m " 3, the last remaining giant component is that of the
smallest degree network which is not critical for any nonzero
value of σ . The critical node threshold at the collapse of
the giant component is, therefore, pc = P (m)/(m − 1) [see
Eq. (7), Figs. 4(c) and 4(d)]. We have also checked the
continuity of the threshold as a function of σ by numerically
calculating pc for σ # 0.01.

It is clear that when we only consider the robustness
against targeted high-degree node attack the limit σ → 0
always gives the most robust structure, which is the minimally
interconnected RR graphs.

C. Giant component collapse

In Fig. 5, we show the way the giant component collapses
for various values of σ for scale-free networks with an
exponent, λ = 2.6. Figures 5(a) and 5(b) correspond to a
network with m = 2 and Figs. 5(c) and 5(d) correspond to a
network with m = 3. Note that for m = 2 the giant component
corresponds to a network composed of nodes mainly with
the minimum degree, m = 2. It is therefore at the edge of
criticality for extremely assortative correlation (σ → 0). This
is the reason for the sudden collapse of the giant component
in the vicinity of infinitesimal removal of node by random
attack, which is represented by the solid curve for σ = 0.4 in
Fig. 5(b).

From Figs. 5(a) and 5(c) which represent the cases of
targeted attack, we can see that the strong assortative degree-
degree correlation that leads to the structure of weakly inter-
connected random regular graphs yields much smaller values
of pc, which is P (2) + P (3)/2 for m = 2 and P (3)/2 for
m = 3, compared to the corresponding uncorrelated networks.
We also see from Figs. 5(a) and 5(c) that, for p > pc, S ≈ p
when σ $ 1 until the sharp decrease in S near pc sets in. This
means that in this case the removal of high-degree nodes does
not affect the connectivity of the remaining giant component
and that the networks for σ $ 1 have almost the maximum
robustness against a targeted attack.

From Figs. 5(b) and 5(d), we can see that the giant
component decreases faster in the early stages of the random
node removal, while the values of the critical node threshold
are slightly lower from those of random networks due to the
assortative degree-degree correlation.

The decrease of σ has, therefore, opposite effects in terms
of the giant component collapse with respect to targeted and
random attacks. For a targeted attack, the collapse of the giant
component is maximally suppressed (S ≈ p) for small values
of σ $ 1, while for a random attack the collapse sets in earlier
compared to the cases of uncorrelated (random) networks.
This fact means that there must be an optimal value of σ that
considers both targeted and random attacks. The structure of
the network at this σ suppresses the giant component collapse

046109-6



ROBUSTNESS OF ONIONLIKE CORRELATED NETWORKS . . . PHYSICAL REVIEW E 85, 046109 (2012)

FIG. 5. (Color online) Plots of the giant component fraction S as
a function of the fraction of the remaining nodes p for several values
of σ . The plots for the scale-free networks with λ = 2.6, m = 2, and
K = 10 are (a) for targeted attack and (b) for random attack. The plots
for the scale-free networks with λ = 2.6, m = 3, and K = 10 are (c)
for targeted attack and (d) for random attack. For comparison, we also
plot in (a) and (c) the curves of the giant component for uncorrelated
networks and the curves for random regular (RR) networks where all
degrees are the same as the average degree 〈k〉 of the corresponding
scale-free networks. The lines S = p in (a) and (c) are guides for eyes
and represent an optimal network.

as much as possible for a targeted attack as well as maintaining
a significant size of the giant component for a random attack.

D. Robustness optimization

To identify the optimal structure for both targeted and
random attacks we propose the following approach. In Fig. 6,
we show schematic profiles of the giant component fraction
as a function of p for two possible scenarios motivated
by the curves appearing in Figs. 5(a) and 5(b). The case
represented by Fig. 6(a) has a larger value of the critical
node threshold pc than that of Fig. 6(b). On the other hand
a large fraction of the giant component collapse after removal
of a small fraction of nodes for the case (b) in contrast
to (a). From the viewpoint of the macroscopic connectivity,
the value of the area under the curve S(p) represented
by R is a better measure of the robustness, as proposed
by Schneider et al. [37,38], compared to the critical node
threshold pc, and we apply this measure in the following.
Note that this measure R has the absolute upper bound
of 0.5.

FIG. 6. Schematic profiles of the giant component as a function
of the remaining node fraction, p, for the two typical cases. The case
(a) has a larger value of the critical node threshold pc than (b), but
the giant component collapse for (a) occurs much slower than for
the case (b). From the viewpoint of the global connectivity, the value
of the area below S(p) represented by R is a better measure of the
robustness than the critical threshold pc.

Since we are considering the total robustness against both
targeted and random attacks, we define the total robust-
ness measure Rtot as the sum of the robustness measure
for targeted attack and that for random attack. Defining
the total measure as the sum of the robustness measures
against both types of attacks is also found in earlier lit-
erature [24–26]. Note that the maximum value of Rtot
equals to unity for networks with optimal robustness in
which pc = 0 and S = p for both targeted and random
attacks.

Figure 7 shows Rtot as a function of σ for two scale-free
networks. The plot in Fig. 7(a) is for a scale-free network
with λ = 2.6, m = 2, and K = 10. The measure, Rtot, reaches
the maximum value of approximately 0.54 at σopt ≈ 1.33.
Figure 7(b) is for a scale-free network with λ = 2.6, m = 3,
and K = 10. The measure, Rtot, reaches the maximum value
of approximately 0.8715 at σopt ≈ 0.646. Noticing that the
limit σ → 0 leads to the separated random regular (RR)
networks and that σ is the measure of the maximum degree
difference of connected nodes [see Eq. (14)], the fact that
σopt ≈ 1 for both cases of m = 2 and m = 3 indicates that
the optimal network structure is the one where most of the

046109-7



TANIZAWA, HAVLIN, AND STANLEY PHYSICAL REVIEW E 85, 046109 (2012)

FIG. 7. The values of the total robustness measure Rtot as a
function of σ for two scale-free networks. Plot (a) is for a scale-free
network with λ = 2.6, m = 2, and K = 10 and plot (b) is for a scale-
free network with λ = 2.6, m = 3, and K = 10. The numerically
obtained optimal values of σ that maximize Rtot are σ = 1.33 for
m = 2 and σ = 0.646 for m = 3.

k-degree nodes are connected with each other and only a
small fraction of remaining k-degree nodes are connected
with (k − 1)- or (k + 1)-degree nodes. We find here again the
onionlike structure. The reason that σopt for m = 2 is larger
than the one for m = 3 is due to the criticality of the smallest
degree component of k = 2.

In Fig. 8, we plot the giant components for targeted
and random attacks as a function of p for the optimally
correlated scale-free networks with λ = 2.6 and K = 10 for
the cases m = 2 (σ = 1.33) and m = 3 (σ = 0.646). In all
plots, the theoretical values of the giant component fraction
are represented by full curves. The critical node thresholds for
a targeted attack are P (2) + P (3)/2 for m = 2 and P (3)/2 for
m = 3, respectively. For comparison, we also plot the curves
for the corresponding uncorrelated scale-free network with
the same parameters and for the RR network of the same
degree as the average degree of the corresponding scale-free
networks. These results show that the robustness of scale-
free networks against a targeted attack can be significantly
improved up to nearly maximal by taking the structure
of weakly interconnected RR graphs (onionlike structures)
without much undermining their robustness against random
failure.

For testing our theoretical considerations, we also simu-
late actual networks according to the joint degree matrix,
Eq. (14), with the optimal values of σ , which are 1.33
for m = 2 and 0.646 for m = 3. The circles in Fig. 8 are
obtained by direct node removal from the simulated optimal
networks. For each realization, the number of nodes for m = 2
is 6993 and for m = 3 is 2795. The agreement between
the simulation results and the theoretical calculations is
excellent.

VI. SUMMARY

As a strong candidate for the optimal structure against
both types of attacks, random and targeted, with a given
degree distribution, the structure consisting of hierarchically
interconnected random regular graphs is proposed and thor-
oughly investigated based on exact analytical expressions. This
network structure has a close relationship with the “onionlike

FIG. 8. (Color online) Plots of the optimal giant component S as
a function of p for scale-free networks with λ = 2.6 and K = 10.
For plots (a) targeted attack and (b) random attack, m = 2 and the
optimal value is σ = 1.33. For plots (c) targeted attack and (d)
random attack, m = 3 and the optimal value is σ = 0.646. In all
plots, the theoretical values for the giant component are represented
by full curves. The critical node thresholds for a targeted attack are
P (2) + P (3)/2 for m = 2 and P (3)/2 for m = 3. We also plot, for
comparison, the curves for the corresponding uncorrelated scale-free
network with the same values of parameters (dashed curves) and
for the RR network with the same degree as the average degree
of the corresponding scale-free network (dotted curves). The (blue)
circles are obtained from simulation of a single realization for each of
the optimal networks generated from the joint degree-degree matrix,
Eq. (14), for the optimal value of σ = 1.33 with N = 6993 and
m = 2 and for the optimal value of σ = 0.646 with N = 2795 and
m = 3.

structure” found by Schneider et al. [37,38] using numerical
simulations and exhibits an extremely assortative degree-
degree correlation, in which a node of certain degree has a
strong tendency to be linked with nodes of the same degree.
We derive a set of exact expressions that enable us to calculate
the critical node threshold and the giant component fraction for
arbitrary types of node removal, in which the degree-degree
correlation is fully incorporated. To test the robustness of
this structure, we apply the theory to the case of scale-free
networks that have a well-known vulnerability against a
targeted attack. The results show that the vulnerability of a
scale-free network can be significantly reduced by taking the
network structure proposed here without much undermining its
almost complete robustness against a random attack. We also
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investigate the detail of the robustness enhancement of scale-
free networks due to assortative degree-degree correlation
by introducing a joint degree-degree probability matrix that
interpolates between an uncorrelated network structure and
the structure with strong assortativity by tuning a single
control parameter. The optimal values of the control parameter
that maximize the robustness against simultaneous random
and targeted attacks are also determined and those optimal
values support the maximal robustness of the “onionlike struc-
ture.” Our analytical calculations are supported by numerical
simulations.
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[33] M. A. Serrano, M. Boguñá, and R. Pastor-Satorras, Phys. Rev.

E 74, 055101 (2006).
[34] A. V. Goltsev, S. N. Dorogovtsev, and J. F. F. Mendes, Phys.

Rev. E 78, 051105 (2008).
[35] Y. Shiraki and Y. Kabashima, Phys. Rev. E 82, 036101 (2010).
[36] M. Ostilli, A. Ferreira, and J. Mendes, Phys. Rev. E 83, 061149

(2011).
[37] C. M. Schneider, A. A. Moreira, J. S. Andrade Jr, S. Havlin, and

H. J. Herrmann, Proc. Natl. Acad. Sci. 108, 3838 (2011).
[38] H. J. Herrmann, C. M. Schneider, A. A. Moreira, J. S. Andrade

Jr, and S. Havlin, J. Stat. Mech.: Theory Exp. (2011) P01027.
[39] Z.-X. Wu and P. Holme, Phys. Rev. E 84, 026106 (2011).
[40] B. Bollobás, Trans. Am. Math. Soc. 286, 257 (1984).

046109-9


