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Phase transformation in antibody solutions is of growing interest in both academia and the phar-
maceutical industry. Recent experimental studies have shown that, as in near-spherical proteins,
antibodies can undergo a liquid-liquid phase separation under conditions metastable with respect
to crystallization. However, the phase diagram of the Y-shaped antibodies exhibits unique features
that di↵er substantially from those of spherical proteins. Specifically, antibody solutions have an
exceptionally low critical volume fraction (CVF) and a broader and more asymmetric liquid-liquid
coexistence curve than those of spherical proteins. Using molecular dynamics simulation on a series
of trimetric Y-shaped coarse-grained models, we investigate the phase behavior of antibody solutions
and compare the results with the experimental phase diagram of human immunoglobulin G (IgG),
one of the most common Y-shape typical of antibody molecules. With the fitted size of spheres, our
simulation reproduces both the low CVF and the asymmetric shape of the experimental coexistence
curve of IgG antibodies. The broadness of the coexistence curve can be attributed to the anisotropic
nature of the inter-protein interaction. In addition, the repulsion between the inner parts of the spher-
ical domains of IgG dramatically expands the coexistence region in the scaled phase diagram, while
the hinge length has only a minor e↵ect on the CVF and the overall shape of the coexistence curve.
We thus propose a seven-site model with empirical parameters characterizing the exclusion volume
and the hinge length of the IgG molecules, which provides a base for simulation studies of the phase
behavior of IgG antibodies. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4966972]

I. INTRODUCTION

Immunoglobulin G (IgG), a type of antibody that is
a major component of humoral immunity,1 is a complex
protein composed of four peptide chains—two identical heavy
chains and two identical light chains—arranged in a Y-shaped
antibody molecule. IgG is the main antibody type found
in circulation and it protects the body from infection by
binding together many di↵erent pathogens, such as viruses,
bacteria, and fungi.2–4 They are also used as drugs to treat
diseases, such as autoimmune diseases and cancers.5 IgG
comprises approximately 75% of the serum antibodies in
the human body. Most human IgG antibodies are highly
soluble. The reason for this is natural selection. If IgG were
not highly soluble, it would aggregate in the human body
which causes pathological problems. Some IgGs molecules
can self-associate to form condensed phases, such as crystals,
protein-rich liquid droplets, amorphous aggregates, and gels.
Condensation of IgG molecules does occur in vivo in the
medical condition called cryoglobulinemia. Various types
of undesirable condensations of IgG molecules have been
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limei.xu@pku.edu.cn.

observed in antibody drug formulation solutions. It is thus
important to understand the phase behavior of IgG solutions
underlying these protein condensation phenomena.

Recently the phase diagram of IgG solutions was
extensively investigated.6–8 The experimental phase diagrams
of IgG molecules in general share similar features as
those of other globular proteins, i.e., they exhibit a
metastable liquid-liquid phase separation (LLPS) with a
critical point and a parabola-like shape of the LLPS boundary
(coexistence curve).6,7 However, due to the nonspherical
molecular geometry, the phase diagram of Y-shaped antibodies
also exhibits features that di↵er substantially from those
of spherical proteins. For example, antibodies have an
exceptionally low critical volume fraction (CVF), and their
LLPS coexistence curves are broader and more asymmetric
than those of spherical proteins. In particular, the CVF of
IgG is about 6.3%,6 much smaller than those of spherical
particles varying from 13% to 23% as the spatial range of the
inter-particle interaction varies from infinity to zero.9

There are a number of coarse-grained models, such as
the adhesive hard sphere model and the simplified four-
site model,8,10–13 that successfully predict the LLPS in
protein solutions. However, these models8,10–13 are unable
to reproduce the smaller CVF and the more asymmetric and
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FIG. 1. IgG protein and coarse-grained
models. (a) Protein Data Bank (DOI:
10.2210/pdb1hzh/pdb) representation
of the IgG molecule with a Fc domain
and two Fab domains. PDB 1hzh is
rendered by VMD. (b) The 3-site
model consisting of one type 1 particle
representing the Fc domain and two
type 2 particles representing the Fab
domains. Dashed lines (d1,d2,d3)
between the centers of the domains
indicate e↵ective bonds which replace
the hinges. The centers of the domains
are marked by blue dots. The bold blue
circles indicate hard cores of diameter
� of the domains and the thin blue
circles indicate the interaction ranges
of attractive forces. (c) The 6-site
model with hinges. Point 3 is located
at the surface of the Fc domain. Points
4 are located at the surfaces of the
Fab domains. Dashed lines (d1,d2,d3)
between points 4 and 4 and points 3
and 4 on the surfaces of the domains
indicate e↵ective bonds which replace
the hinges. (d) 7-site mode: Point 5
indicates the branching point of the
hinge. Large green circles around
points 3 and 4 indicate possible ranges
of repulsion in the patchy model.
Dashed red lines are e↵ective bonds
which replace the hinges.

broader shape of the coexistence curve with respect to those of
near-spherical proteins. The primary goal of the work reported
here is to obtain a simple model [see Fig. 1] of the Y-shaped
trimetric IgG molecules for computational and theoretical
studies of the phase behavior of antibody solutions that can
address the above issues.

Our approach to tackle this problem is based on multi-
scale modeling. An IgG molecule consists of three globular
domains connected in a characteristic Y-shape by short
polypeptide chains called hinges. At small scales, we model
the hinges by all-atom simulations and obtain the distribution
of their end-to-end distances. In contrast, at large scales, we
model the globular domains as hard spheres with short-range
attractions linked to each other by linear bonds obeying
e↵ective potentials derived from the distribution of the end-
to-end distances of the hinges. The large scale simulations
also vary in their accuracy from a simple 3-site model with
mean-field attraction to more detailed 6-site and 7-site models,
including a 7-site model with directional attraction.14 This
array of coarse-grained models allows us to develop a model
that combines the ability to accurately reproduce the IgG
phase diagram with computational e�ciency. In all coarse-
grained simulations we apply the discrete molecular dynamics
(DMD)15,16 algorithm, which is well known for its e�ciency
in simulating colloids with short-range attraction.

In Section II we describe the details of our models
and simulation methods. In Section III A we present phase
diagrams of 3-site models for several bond lengths and ranges
of attractive forces. In Section III B we present a systematic
study of the dependence of the phase diagram on the bond

length in a 3-site model with the mean-field approximation
of the attractive forces and show how the finite range of
attraction a↵ects the phase diagrams. In Section III C we
present the results of the all-atom simulation of the hinges
and use them to define the properties of the bonds in 6-site
and 7-site coarse grained models. In Section III D we present
the results from the 7-site model with directional attraction
between the globular domains. A brief summary is included
in Section IV. Our primary conclusion is that the Y-shape
geometry of the IgG model alone is insu�cient to explain
the reduction of the CVF and the widening of the LLSP
boundary with respect to the simple globular proteins, but
the anisotropy of attractive forces between the domains is
crucial to reproduce these unusual features of the IgG phase
diagram.

II. METHODS

A. Models

An IgG molecule consists of three globular domains: one
domain called fragment crystallizable (Fc) and two identical
antigen-binding (Fab) domains as shown in Fig. 1(a). The
diameters of these globular domains � are approximately
equal to each other and are estimated to be ⇡4.8 nm using the
average density of globular proteins.6,8,9 In our coarse-grained
DMD simulations, we model the domains as hard spheres of
diameter � surrounded by attractive square well potentials
with diameter Ra and energy �✏ . The three domains are
held together by two identical polypeptide chains (hinges),
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FIG. 2. The initial conformation of the IgG hinges consisting of the two identical polypeptide chains, each consisting of 12 amino acids: GLU ARG LYS CYS
CYS VAL GLU CYS PRO PRO CYS PRO (from left to right). Carbon, hydrogen, nitrogen, oxygen, and sulfur atoms are shown in blue, white, green, red, and
yellow, respectively. The four disulfide bonds formed between the sulfur atoms of the corresponding cysteines are represented by yellow lines. The maximal
elongation of the chains from left to right is 4.6 nm.

which are linked to each other by four disulfide bonds located
near their C-termini.6 Each IgG hinge consists of 12 amino
acids. The amino acids of the polypeptide are shown in
Fig. 2 in sequence from N-terminus to C-terminus: GLU
ARG LYS CYS CYS VAL GLU CYS PRO PRO CYS PRO.
The two hinges are connected by disulfide bonds between the
corresponding CYS amino acids of the two chains. The N-
termini of the hinges are not linked and thus may be separated
by a significant distance, since the first disulfide bond between
the pair of cysteines is located four amino acids downstream.
The C-terminus is attached to the Fc domain, while the
N-termini are attached to the Fab domains, thus giving the
IgG its characteristic Y-shape in which the branching point
coincides with the above-mentioned pair of cysteines. The
exact conformation of the hinges is not known but it is
believed that in solution they form random coils.8 Hence the
hinges can be represented by three e↵ective bonds with a
specific length distribution. The simplest way of representing
the hinges is to connect the centers of the globular domains by
three linear bonds with a given length distribution, d1,d2,d3
as shown in Fig. 1(b). We call this a 3-site model. It is clear
that this model is not an accurate representation of the IgG
molecule because in reality the hinges are connected not to the
centers but to the surfaces of the domains. We will thus use
the 3-site model to study the crude e↵ect of the bond lengths
and the attractive potential range on the CVF and LLPS
to test the hypothesis that the trimeric structure of the IgG
molecule is responsible for the decrease of the CVF and the
widening of the LLPS region when compared to monomers,
with the same range of attractive forces. Thus, in the 3-site
model we use the simplest form of the bonds to connect the
spheres. These bonds are modeled by infinite square wells
with a minimal distance dmin = � and maximal distance dmax,
which together with Ra are the only parameters of the 3-site
model.

The hinges can be described more accurately using three
bonds connecting the auxiliary points on the surfaces of the
domains that form a triangle [Fig. 1(c)] or a star [Fig. 1(d)].
These two configurations form the basis for a 6-site model
and a 7-site model, respectively. In these models, we use
the e↵ective bond potential based on the distribution of the
end-to-end distances of the all-atom simulation of the hinges.
The distances d1, d2, and d3, defined in Fig. 3(a), are computed

di↵erently in the triangular representation of the hinges, which
we use in the 6-site model, and the star representation of the
hinges [Fig. 3(b)], which we use in the 7-site model. We
test the hypothesis that these more accurate models cannot
su�ciently change the phase diagram from that of the 3-site
model.

We also explore variants of the 3-site, 6-site, and 7-site
models without attraction between two monomers. These
simplified models take into account only the entropic e↵ects
of the hinges and hard spheres. We construct mean-field phase
diagrams of these models by adding a van der Waals correction
proportional to the square of the number density to the entropic
equation of state obtained through simulation. These mean-
field phase diagrams can be regarded as a limiting case of
the infinitely wide attractive square wells with Ra ! 1 and
✏ ! 0. We refer to these models as mean-field 3-site, 6-site,
and 7-site models, respectively.

Finally we bring directionality (patchiness) to the inter-
action between the domains belonging to di↵erent molecules,
introducing repulsive step potential wells surrounding the
auxiliary points on the surfaces of the domains [Fig. 1(d)]. We
call this the most advanced coarse grained representation of
the IgG with directional attraction of the patchy 7-site model.

FIG. 3. Sketch of three distances defined between ends in the hinge. (a)
Triangular representation of the hinges employed in the six-site model
[Fig. 1(c)]: d1 is the distance between the two N-termini. d2 and d3 are
the distances between N-termini and the midpoint of the C-termini of the
ending prolines. (b) Star representation of the hinges employed in the seven-
site model [Fig. 1(d)]: d1 and d2 are the distances between N-termini and
the middle point of the last disulfide bond, respectively. d3 is the distance
between the midpoint of the disulfide bond and the midpoint of the C-termini
of the ending prolines.
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In the following we specify the details of all the models we
study.

1. 3-site model

Each IgG molecule is represented by three spheres of two
distinct types, type 1 representing the Fc domain and type 2
representing the Fab domains [Fig. 1(b)]. For simplicity we
assume that particles of type 1 and 2 are identical, which are
characterized by the hard core diameter � and the attractive
square well diameter Ra of depth ✏ . The particle centers are
connected by three bonds: d1 connecting particles of type 2, d2
and d3 connecting particles of type 1 and type 2. We assume
that all bonds are identical and are modeled by the square well
with infinitely high walls � < di < dmax.

2. 6-site model

The domains are modeled the same way as in the 3-site
model. We also introduce three auxiliary particles: one particle
of type 3 and two particles of type 4 indicating the hinge
attaching points to the domains of type 1 and 2, respectively.
The particle of type 3 corresponds to the midpoint between the
C-termini of the hinges. The particles of type 4 correspond to
the N-termini of the hinges as shown in Fig. 1. The auxiliary
particles are attached to the centers of the corresponding
domains by rigid bonds that are modeled by infinite square
wells 0.49� < d < 0.51�. Bond d1 links auxiliary particles
of type 4, and bonds d2 and d3 link the auxiliary particles
of type 3 and 4. The bonds are modeled by the e↵ective
step potentials based on the distribution of hinge distances
obtained in all-atom simulations in a triangular representation
defined in Fig. 3(a). The auxiliary particles do not interact
with other particles other than those to which they are linked
by bonds.

3. 7-site model

The domains of type 1 and 2 and the auxiliary particles
of type 3 and 4 are modeled the same way as in the 6-site
model [Fig. 1(d)]. In addition to the six existing particles
of the 6-site model, we introduce one auxiliary particle of
type 5 which represents the branching point of the hinges,
i.e., the center of the disulfide bond between the last pair
of cysteines before the N-termini of the hinges as shown in
Fig. 3(b). A particle of type 5 is linked by two bonds d1
and d2 to particles of type 4 and by bond d3 to particle of
type 3. The bonds are modeled by the e↵ective step potentials
based on the distribution of distances obtained in all-atom
simulations of the hinges in a star representation shown in
Fig. 3(b). Thus bond d1 between particles of type 5 and 3 is
the double stranded part of the hinges from their C-termini to
the branching point, while bonds d2 and d3 between particles
of type 5 and type 4 simulate single stranded parts of the
hinges connecting the branching point and N-termini. The
auxiliary particles do not interact with other particles except
those to which they are linked by bonds. In the patchy 7-site
model, the auxiliary particles of type 3 and 4 are surrounded
by a repulsive shoulder of diameter Ra and height ✏ . This
means that if the distance between any particle of type 3

or 4 and any other particle of type 1, 2, 3, or 4 is less
than Ra the system gains a potential energy +✏ for any such
pair.

B. Simulation details for coarse-grained models

For all coarse-grained models, DMD simulations are
performed for a system of Nm molecules at constant volume
V with periodic boundary conditions and constant temperature
T (NVT-ensemble). The temperature T is kept constant by the
Berendsen thermostat.18 We express the results of the DMD
simulations in dimensionless quantities normalized by the
corresponding units. The distance in DMD simulations is
measured in units of �, the volume, V , is measured in units of
�3, the temperature, T , is measured in units of ✏/kB, where kB

is the Boltzmann constant, the pressure, P, is measured in units
of ✏/�3, and the time is measured in units of �

p
m/✏ , where

m is the mass of the particle. We assume that all particles have
the same mass m. This assumption does not a↵ect the phase
diagrams, but equal masses minimize the equilibration time.
The volume fraction, ⌘, a dimensionless quantity representing
the protein volume fraction, is defined as

⌘ ⌘ ⇡

6
�3⇢ =

3⇡Nm�3

6V
=

⇡Nm�3

2V
, (1)

where ⇢ is the number density of the monomers, � is
the diameter of the monomer model, Nm is the number of
molecules, and V is the volume of the system.

C. Calculation of coexistence lines

For the 3-site and 7-site models with monomer
attraction, the liquid-gas and crystal-gas coexistence curves
are determined as the loci of the state points at which two-
phases are at equilibrium for a given temperature. The gas
and the liquid phases of the model correspond to the low-
concentration and high-concentration solutions of the IgG
proteins, respectively. We first obtain the position of the critical
point (⌘c, Tc, and Pc) using NVT simulations with Nm = 500
and Nm = 1000 in a cubic box of volume V corresponding
to various volume fractions between 0.01 < ⌘ < 0.25 and
several values of T for 106 time units. For each simulation,
we compute pressure P(⌘,T) and construct the isotherms.
We then find the critical temperature Tc as the temperature
separating the monotonically decreasing isotherms P(V ) for
T > Tc from the isotherms exhibiting the van der Waals loops
for T < TC. The van der Waals loops are observed in the MD
simulations due to periodic boundary conditions as explained
in Ref. 19. The values of ⌘c and Pc are obtained from the
inflection point of the critical isotherm. The error-bars of
the critical parameters are estimated by comparing results of
simulations with di↵erent numbers of particles. In particular,
we estimate the relative error bar of Tc is 0.2%, while the
relative error bar of ⌘c is 5%.

For temperatures relatively close to the critical point
0.95Tc  T  Tc, we obtain the coexistence values of volume
fractions in liquid phase ⌘l and in gaseous phase ⌘g by the
Maxwell construction on the isotherms. The gas and the liquid
phases of the model correspond to the low-concentration and
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high-concentration solutions of the IgG proteins, respectively.
The error bars of these values can be determined by fitting
the isotherms obtained from several independent runs with
polynomials of di↵erent power. The relative errors of both ⌘l
and ⌘g are estimated as 5%.

For temperatures far below the critical point T < 0.98Tc,
the correlation length of fluctuations becomes much smaller
than the system size. We then determine ⌘l and ⌘g by
simulating a system with a flat interface between the two
phases at constant volume and constant temperature. The
system consists of Nm = 3000 molecules in an elongated
rectangular box of volume V = LxLyLz = Nm⇡�3/(2⌘c), cor-
responding to critical volume fraction with Lx = Ly = Lz/3,
respectively. Periodic boundary conditions are applied in
each direction. After initial equilibration time, the system
spontaneously phase segregates along the x y plane to liquid
and gaseous phases with parallel interfaces in between and
each phase occupying approximately half of the system. We
then divide the system into ns = 30 slabs of equal width
�z = Lz/ns orthogonal to the z-axis and count the number of
molecules in each slab, which gives us a density profile along
the z-axis. We determine the gas/liquid phase consisting of
such slabs that in any of them and in any of nb neighboring
slabs on both sides the density is less/greater than the critical
density. Exclusion of nb = 5 slabs is done in order to eliminate
the e↵ects of phase boundary. For each snapshot of the system
taken each 1000 time units, we define ⌘g and ⌘l as the
volume fractions of the gaseous and liquid phases and the
components Pxx, Py y, and Pzz of the stress tensor. We
then average the volume fractions over approximately 200
independent snapshots and define the 95% confidence error
bars by the standard statistical techniques. This method of
determining the equilibrium volume fractions is in excellent
agreement with the Maxwell construction method in the range
of the temperatures 0.95Tc < T < 0.98Tc, where both methods
are applicable. The di↵erence between the volume fractions
determined for the systems of di↵erent sizes is much smaller
than the error bars. The equilibrium volume fractions of
the crystal-gas coexistence curves are defined by the same
procedure for the systems in the elongated box in which
the liquid spontaneously crystallizes and a flat interface
forms between the crystal and gas phases. In addition, we
determine the equilibrium vapor pressure, Pe(T) = Pzz, and
the liquid-gas surface tension by the KirkwoodBu↵method:20

� = (2Pzz � Pxx � Py y)Lz/4.

D. Mean-field phase diagrams

Obtaining accurate phase diagrams of the 3-site model
[Fig. 1(b)] with the finite range of attraction is a time
consuming process. To quickly estimate how the CVF depends
on dmax, we employ the mean-field model of the attractive
forces and assume that the monomers are attracting each
other with an infinitely wide square-well of infinitesimally
small depth. Analogous to the behavior of hard spheres,21 we
see that the pressure for the 3-site, 6-site, and 7-site models
without attraction is

P = PHS(T,⌘) =
kBT ⇢

n
Z(⌘), (2)

where Z is the compressibility factor and n (= 3) is the
number of monomers in one molecule. For these models with
the mean-field attraction between monomers, the pressure is
given by

P(⌘,T) = PHS(T,⌘) � a⇢2/n, (3)

where a is the attraction parameter in the van der Waals
correction. Using a Maxwell construction, the equilibrium
pressure Pe(T) of the gas-liquid coexistence obeys

⌅ Vg

Vl

P(T,⌘(V ))dV = Pe(T)(Vg � Vl), (4)

where ⌘(V ) = ⇡Nm�3

2V , Vl =
⇡Nm�3

2⌘l(T ) , and Vg =
⇡Nm�3

2⌘g (T ) are
the equilibrium specific volumes of the liquid and gas,
respectively. Vg and Vl satisfy the equation of state

P(⌘g ,T) = P(⌘l,T) = Pe. (5)

The critical point (Tc,⌘c,Pc) is determined by ⌘l(Tc) = ⌘g(Tc)
= ⌘c, and Pc = Pe(Tc). For monomers, Z(⌘) can be well
approximated by the Carnahan-Starling formula21

Z(⌘) = 1 + ⌘ + ⌘2 � ⌘3

(1 � ⌘)3 . (6)

We perform DMD simulations for various systems of
molecules without attraction and fit Z(⌘) by a polynomial

Z(⌘)(1 � ⌘)3 = 1 +
kX

i=1

zi⌘ i (7)

for 0.025  ⌘ = 0.2 with k = 4 or k = 5. As a consistency
check, we obtain z1 = z2 = 1, z3 = �0.584 22, and z4
= �1.0127 for monomers with k = 4, which is in very
good agreement with the Carnahan-Starling approximation.
Accordingly, we obtain the critical values for monomers,
Tc = 0.1799a/kB�3, ⌘c = 0.1302, and Pc = 0.016 04a/�6.

E. All-atom simulations of the hinges

The initial structure of the IgG hinges is obtained from
the Protein Data Bank (PDB). The all-atom simulations are
performed using the MD software package GROMACS.22

The non-bonded interactions for the all-atom simulations are
described by OPLS/AA force field.23 This force field has
been optimized and widely tested for organic molecules, and
it has been broadly applied to peptides.23 The Particle-Mesh
Ewald sum (PME) for electrostatics has a real-space cut-o↵
of 1.2 nm. The interpolation order of PME is six and the
relative strength of the electrostatic interaction at cut-o↵ is
1.0 ⇥ 10�5. The velocity Verlet algorithm is used to integrate
the equation of motion. For all atom simulations, the IgG
hinges with the initial structure placed in an empty box and
then water molecules (SPC model) are added. Minimization is
performed for protein with explicit water. The NVT ensemble
is used in the all-atom simulations of hinges in vacuum and the
NPT ensemble is used for simulation of the hinges in water
(SPC model). We do not apply the long-range corrections
for pressure and energy in our simulations. In GROMACS,
temperature and pressure are controlled by a Nose-Hoover
algorithm.24,25 The integration time step is 2.0 fs, and the time
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TABLE I. The critical parameters of Tc, ⌘c, and Pc for the 3-site model.

dmax= 0 dmax= 1.0 dmax= 1.64 dmax= 2.0

Ra = 1.06 Tc = 0.3916 Tc = 0.4384 Tc = 0.4258 Tc = 0.439
Pc = 0.0519 Pc = 0.0159 Pc = 0.0129 Pc = 0.0128
⇢c = 0.52 ⇢c = 0.48 ⇢c = 0.40 ⇢c = 0.37
⌘c = 0.274 ⌘c = 0.249 ⌘c = 0.210 ⌘c = 0.194

Ra = 1.1 Tc = 0.4792 Tc = 0.5515 Tc = 0.5305 Tc = 0.5483
Pc = 0.0592 Pc = 0.0195 Pc = 0.0156 Pc = 0.0159
⇢c = 0.48 ⇢c = 0.44 ⇢c = 0.36 ⇢c = 0.34
⌘c = 0.251 ⌘c = 0.234 ⌘c = 0.189 ⌘c = 0.174

Ra = 1.25 Tc = 0.7612 Tc = 0.9540 Tc = 0.8875 Tc = 0.9115
Pc = 0.0782 Pc = 0.0289 Pc = 0.0224 Pc = 0.0221
⇢c = 0.41 ⇢c = 0.38 ⇢c = 0.30 ⇢c = 0.29
⌘c = 0.213 ⌘c = 0.197 ⌘c = 0.160 ⌘c = 0.152

constant for coupling of temperature and pressure is 1 ps.
Periodic boundary conditions are employed for simulations
of a protein with explicit water, while non-periodic boundary
conditions are used for simulations of a protein in vacuum.
Conformations of the hinges are recorded every 1 ps and
50 ps for simulations in vacuum and water, respectively. For
each temperature and pressure, the simulations last for at
least 100 ns, which is su�cient to obtain a reliable distance
distribution of the hinge geometry in vacuum. However, in
water, much longer simulation times are needed to explore all
partially folded conformations of the hinges. The results of
the GROMACS simulations are expressed in SI units.

F. Four-bead DMD model of the hinges

As a fast consistency check of the GROMACS
simulations, we also perform the DMD simulations of
the hinges using the four-bead model,16 which reproduces
backbone conformations with a realistic distribution of the
Ramachandran angles and excluded volume, assuming that all
amino acids are identical. The disulfide bonds are modeled
by narrow square well potentials between the C� atoms of
the amino acids corresponding to cysteines from the di↵erent

chains. We perform simulation on the 4-bead model for
107 time units and measure the distances d1, d2, and d3 at
T = 0.1✏HB/kB, where ✏HB is the energy of the e↵ective
hydrogen bond forming between C and N atoms in the four-
bead model. At this temperature, the system never forms
more than 8 hydrogen bonds and is able to explore all its
conformational space during the simulation time. Since the
distance in the four-bead model is measured in Angstroms
and the energy of the hydrogen bond is 8 kJ/mol, thus the
simulation time corresponds to approximately 10�6 s.

III. RESULTS

A. The e�ects of hinge length and attractive range
on the phase diagram

We use the 3-site model to investigate the e↵ect of
bond length dmax and attractive range Ra on the phase
diagram of IgG. We perform simulations for 12 points in
the parameter space with Ra = 1.06, 1.10, and 1.25 and
dmax = 0, 1.00, 1.64, and 2.00, where dmax = 0 corresponds
to simulations of free monomers (see Table I). Figure 4(a)
shows the phase diagrams of this model for Ra = 1.1 and

FIG. 4. (a) The phase diagram of 3-site model with radius of attraction Ra = 1.1 and two di↵erent bond distances, dmax= 1.64 (black circle) and 2 (red square).
The equilibrium coexistent lines of gas-liquid and gas-solid are shown in this figure. For dmax= 1.64 or 2, the middle curve is the gas-liquid equilibrium
coexistent line, and the maximum point is the critical point (Tc,⌘c) of gas-liquid phase transition. The left curve and the right curve are gas phase and
solid phase (hcp crystal), respectively. We find that the equilibrium coexistent lines for both gas-liquid and gas solid are both shifted to higher temperatures
from dmax= 1.64 to dmax= 2.0. (b) Scaled phase diagram of the 3-site models with dmax= 1.0 (small squares), dmax= 1.64 (medium triangles), dmax= 2.0
(large triangles) and monomers (circles) with Ra = 1.1 (solid symbols), Ra = 1.25 (empty symbols), and mean-field attraction (lines). One can see systematic
broadening of the coexistence regions when Ra decreases. The scaled coexistence region for the 7-site patchy model (stars) is also shown, the broadest among
all the model studied in this paper. The error-bars in all cases are less than the symbol size.
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two di↵erent hinge lengths: dmax = 1.64 and dmax = 2.0 in
terms of (T, ⌘). The critical volume fraction ⌘c decreases
with dmax, and the critical temperature Tc increases with dmax,
i.e., when dmax = 1.64, ⌘c = 0.189, and Tc = 0.5305, and
when dmax = 2.00, ⌘c = 0.174, and Tc = 0.5483. The shape of
the coexistence curve for the three-site model is asymmetric,
which is consistent with the experimental phase diagram of
IgG antibody proteins.7

Previous experimental studies by Wang et al.6 found
that the critical temperature Tc of the IgG solution increases
with the net inter-protein interactions. Our study confirms
that the increase of the range of attraction between particles,
Ra, leads to the dramatic increase of the critical temperature.
The e↵ect of dmax on the critical temperature is weak and
non-monotonic. The critical temperature of the 3-site model
with dmax is greater than that for monomers with the same Ra,
than it slightly decreases from 1 to 1.64 and increases again
from 1.64 to 2.

We also find that for gas-liquid coexistence, the
dependence of equilibrium pressure on temperature follows
the Arrhenius law and the surface tension of the liquid
decreases almost linearly with temperature. The critical point
of the gas-liquid transition can also be determined as the
temperature where surface tension � = 0.

We find that all 3-site models with a short range of
attraction spontaneously crystallize at su�ciently low T into
a hexagonal close-packed crystal. Figure 4(a) also shows
the gas-solid coexistence line, which is above the metastable
gas-liquid coexistence curve in the phase diagram for each
dmax, indicating that the liquid-liquid phase separation is
metastable against crystallization. The volume fractions of the
crystal and gas phase for a given temperature decrease with
dmax. In addition, the increase in dmax causes the LLPS region
to submerge more deeply into the LLPS region below the
gas-solid coexistence line.

The increase of attraction radius, Ra, and the increase
of the maximal hinge length, dmax, both reduce the CVF
[Fig. 5(a)]. Note that this statement includes monomers,
which can be regarded as 3-site model with dmax = 0.
Moreover, CVF as a function of Ra and dmax can be well

approximated as

⌘c = f (Ra) + g(dmax), (8)

where f (Ra) and g(dmax) are monotonically decreasing
functions.

In contrast, Ra and dmax have opposite e↵ect on the
width of the gas-liquid coexisting region in the scaled phase
diagrams [Fig. 4(b)]. The increase of Ra always decreases
the width of the scaled coexistence region, while the increase
of dmax, in general, increases the width of the coexistence
region. Moreover, the scaled coexisted region for the 3-site
model is always broader than the scaled coexistence region for
monomers with the same Ra. The most significant widening of
the coexistence region with dmax is observed for wide Ra, while
for narrow Ra = 1.1, the e↵ect becomes non-monotonic: the
width slightly decreases when dmax is between 1.0 and 1.64,
but significantly increases from 1.64 to 2.0. Thus the three
site model qualitatively reproduces experimental findings that
the coexistence region for the IgG is wider than that of the
globular proteins.

In conclusion, our simulations of the 3-site model show
that the trimeric structure of the IgG may contribute to the
experimentally observed decrease of the CVF comparatively
to the globular proteins. However, quantitatively, the e↵ect
is not su�ciently strong to produce the twofold reduction
of the CVF in the IgG. For example, for Ra = 1.1 which
is a realistic attractive range for proteins, monomers have
⌘c = 0.251, while ⌘c in the 3-site model with dmax = 1.0
is 0.234, which gives only a 1.1 reduction in CVF. Even
for dmax = 2.0, for which ⌘c = 0.174, the CVF reduction is
only 1.4.

B. Comparison with the mean-field model

The scaled coexistence region of the 3-site mean field
model is significantly narrower than that for the 3-site model
with finite range of attraction, and has a parabolic top
corresponding to the mean field critical exponent � = 0.5
[Fig. 4(b)]. The coexistence regions for models with finite
range of attraction have much flatter tops suggesting smaller

FIG. 5. (a) Critical volume fraction ⌘c as function of dmax for the mean-field model for a 3-site model of a trimer (dmin=�) in comparison to the monomer
model for which we assume dmax= dmin= 0 (black circle). We also show ⌘c for several dmax and finite ranges of attraction Ra = 1.25 (red square), Ra = 1.1
(blue triangle), and Ra = 1.06 (green triangle). Filled symbols indicate ⌘c for the mean-field approximation for 6 and 7 site models, for which distances d1, d2,
and d3 are governed by the e↵ective potential obtained from the distribution of the end-to-end distances of the all-atom simulations of the hinges in vacuum
at T = 3000 K and the DMD simulations of the four bead model. From the values of ⌘c, we can define the e↵ective value of dmax (vertical dashed lines) and
finally we can obtain approximate values of ⌘c for the models with finite range attraction by interpolation. (b) Critical temperature Tc as a function of dmax for
the mean-field approximation of the 3-site model.
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�, which for the Ising universality class is approximately
0.326 45.17 The increase of dmax in the 3-site mean-field
model also causes widening of the scaled coexistence region,
but to a smaller extent than in the model with finite range of
attraction.

Figure 5 shows the results for various 3-site, 6-site, and 7-
site models. The main finding is that the CVF for the mean field
3-site model as a function of dmax reduces to ⌘c = 0.0762 for
dmax = 2, slowly increases, and then stabilizes at ⌘c = 0.0814
for dmax! 1. The maximum reduction in the CVF compared
to the mean field model of monomers is 1.7 times. Comparing
the mean-field results with the results for the 3-site model with
finite range attraction suggests an almost parallel shift upwards
of the CVF for the finite range of attraction with respect to the
mean-field calculation predictions. Thus, for the narrow range
of attraction that is relevant for protein globules, the maximal
reduction of the CVF of the 3-site model compared to the
monomer is less significant. For example, when Ra = 1.06, the
maximal reduction of the CVF with respect to the monomer
is only 1.34. We hypothesize that the same shift in the CVF
would be observed in the 6- and 7-site models when we

replace the mean-field attraction by the same finite attractive
range.

C. E�ects of IgG hinge elasticity on the CVF

As can be seen from simulations of the 3-site model, the
maximal CVF reduction is achieved in the 3-site model for
dmax = 2. It is unlikely that the elasticity of the hinges can
produce a larger CVF reduction. To test this hypothesis, we
include the elasticity of the hinges to the 6-site and 7-site
models [see Figs. 1(c) and 1(d)]. To compute the elasticity of
the hinges, we perform all-atom GROMACS simulations of
the hinges in vacuum and in water and measure the histogram
Pi(di) of the end-to-end distances d1, d2, and d3 of the hinges
in triangular and star representations as shown in Figs. 3(a)
and 3(b), respectively. We also perform DMD simulations of
the four-bead model of the hinges. For all the models we use
a 0.1 nm bin to construct the histograms.

The most accurate predictions of the e↵ects of the hinge
elasticity on the CVF would be produced by the all-atom
simulations of the hinges in water at ambient conditions,

FIG. 6. The distribution of three distances, d1, d2, and d3 for the triangle and star representations of the hinges in Fig. 3 obtained by all atom simulations in
vacuum for three temperatures: T = 2000 K, 2500 K, and 3000 K for both the triangle ((a)-(c)) representation and the star representation ((d)-(f)). We can see
that the distributions are slightly broadening with temperature. For each temperature, we run simulations for at least 100 ns and save conformations every 1 ps.
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provided that the histograms obtained in such simulations are
statistically representative of all possible hinge conformations.
Since the hinges are symmetrical, the distances d1 and d2 in
the star-representation of the hinges and distances d2 and
d3 in the triangular representation must have, in the limit
of infinitely long runs, identical histograms. The di↵erences
between these histograms indicate the statistical errors in the
distributions. Another test of the statistical significance of the
histograms is the comparison among di↵erent runs obtained
using di↵erent initial velocities of the atoms. We note that the
simulations of the hinges in water at ambient conditions for
100 ns always produce totally di↵erent distributions of the
symmetrical end-to-end distances and di↵er dramatically in
di↵erent runs. This indicates spontaneous folding of hinges
in various folded conformations, separated by very high free
energy barriers which cannot be overcome within reasonable
computational times (see the supplementary material). The
same is true for the simulations of hinges in vacuum for
T < 2000 K. Only for T � 2000 K the all atom simulations in
vacuum produce statistically representative histograms.

Figure 6 shows the histograms P(di) of the distribution of
the distances d1, d2, and d3 for the all-atom triangle and star
representation of the hinges in the vacuum (Fig. 3). Above
2000 K, the histograms for star representation are unimodal as
one would expect for random coil conformations. Moreover,
the distance d3 corresponding to a long double-stranded
part of the hinges has a significantly wider distribution
than the distances d1 and d2, which correspond to shorter
single strands of the hinges. In contrast, the distributions of
the distances in the triangular representation obtained from
the same simulations are bimodal. The bimodal histograms
indicate the presence of two types of configurations of the
hinges: one with hinge ends being attracted to each other
and the other with ends of hinges independently distributed
in space. The histograms of the hinges in water at ambient
conditions show multiple erratic peaks in both triangle and
star representations in the range between 0.5 and 2.5 nm
with a tendency to be more compact than the simulations
in vacuum at high temperature. As a consistency check of
the GROMACS simulations, we also perform simulations
of hinges using the DMD 4-bead model. The peaks of the
distribution in the triangular representation are located at
d2 = d3 = 2.8 nm and d1 = 0.8 nm in contrast to the all-atom
simulations in vacuum at T = 3000 K in which the highest
peaks are located at d2 = d3 = 1.5 nm. In general, this model

results in more stretched conformations of the hinges than
all-atom simulations and thus can serve to establish the upper
bound of the e↵ect of the hinge length on the CVF.

Using the values of Pi(di) in each bin, we define stepwise
e↵ective potentials,

Ui(xi) = �kBT ln(Pi(xi�)/x2
i ), (9)

where xi = di/� and � is the diameter of the actual IgG
monomer globules, which is estimated to be � = 4.8 nm from
the average density of the globular proteins. These stepwise
potentials with the step width �xi = �/48 corresponding to
the bins of the histograms can be directly used in the DMD
simulations of the 6-site and 7-site models to specify the
elasticity of the auxiliary bonds.

We run the DMD simulations for 6-site and 7-site models
with hard spheres of diameter � without attraction connected
by the auxiliary bonds obeying the e↵ective potential Ui(xi)
for di↵erent volume fractions in the 0.025 to 0.2 range at
T = 1 and fit the pressure as a function of volume fraction by
Eq. (7) [Fig. 7(b)]. Using Maxwell construction for this fit,
we find the mean-field phase diagrams for all these models.

As an example, Figure 7(a) shows the e↵ective potential
defined by Eq. (9) for the 6-site model derived from the
histograms of the distances in the triangular representation
of the DMD 4-bead model of the hinges. Figure 7(b) shows
the fit of P(⌘) obtained in the 6-site model simulations at
T = 1 with the bond potential displayed in Fig. 7(a) and
without monomer attraction. Finally, Figure 7(c) shows the
mean-field coexistence T(⌘) line based on this fit. Accordingly,
we find ⌘c = 0.862 for the 6-site model based on the 4-bead
DMD simulations of the hinges. Calculations using 6- and
7-site models for the e↵ective bond potentials derived for
triangular and star representation of the all-atom simulations
in vacuum are qualitatively the same. Using Pi(di) obtained
for all-atom simulations in vacuum at T = 3000 K, we find
that ⌘c = 0.0873 for the 7-site model, and ⌘c = 0.0896 for
the 6-site model. These values are slightly larger than ⌘c
for the DMD 4-bead model of the hinges, since the latter
model results in more expanded conformations than all-atom
simulations in vacuum.

Comparing the mean-field values of ⌘c obtained for the
6- and 7-site models with the bond potential derived from
the simulation of hinges and the graph of ⌘c(dmax) of the
3-site model mean-field simulations with di↵erent values of
dmax [Fig. 5(a)], we can estimate the e↵ective dmax of the

FIG. 7. (a) E↵ective bond potential obtained from the distribution of the distance d1, d2, and d3 for the triangular representation [Fig. 3(b)] in the 4-bead DMD
model of the hinges. (b) Fit of the function [Z (⌘)(1�⌘)3�1]/⌘] obtained for the 6-site model shown in Fig. 1(c) without attraction simulated for the bond
potential shown in panel (a) with � = 4.8 nm. (c) Coexistence curve obtained by the Maxwell construction using the fit in panel (b) and Eq. (3). The analogous
graphs for the e↵ective potential and coexistence curve obtained for the all-atom simulations for the 6 and 7-site models are very similar.
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3-site model corresponding to the 6- and 7-site models that
we study in this section. As a result, we find that for the
6-site model based on the all-atom simulations in vacuum
dmax = 1.227�, while for the 7-site model based on the all-
atom simulations of the hinges in vacuum dmax = 1.305�. For
the 6-site model based on the 4-bead DMD simulations of the
hinges dmax = 1.345�, which provides the upper bound for
the e↵ective dmax. Thus, we can conclude that the e↵ective
dmax is quite insensitive to the details of the hinge simulations,
but cannot be greater than dmax = 1.345�.

We assume that ⌘c for the model with finite range
attraction Ra can be found by the vertical shift of ⌘c obtained
for the corresponding mean-field model. In practice, we find
these values of ⌘c by interpolating the graphs ⌘c(dmax) for a
given Ra using the e↵ective dmax found for these 6- and 7- site
models as shown in Fig. 5(a). As one can see, the maximum
CVF reduction of the 6-site and 7-site models based on the
hinge simulations in vacuum for Ra = 1.06 is only 1.17 with
respect to the monomer model. For the all-atom simulations
of the hinges in water, the distances d1, d2, and d3 are shorter
than those in vacuum. Thus we expect the e↵ective dmax for
the hinges in water to be even smaller, but it still must be larger
than �. Thus the CVF reduction cannot be smaller than that of
the closely packed 3-site model with dmax = �. Accordingly,
for Ra = 1.06 the CVF reduction compared to monomers must
be greater than 1.13. To conclude, for all hinge models studied
we expect the CVF reduction compared to the monomer to be
in the 1.13 to 1.17 range for Ra = 1.06. Even when Ra = 1.25
the CVF reduction cannot be greater than 1.26.

We thus conclude that the trimeric structure of the IgG
alone cannot explain the reduction of the CVF by a factor of
2 compared to that of the monomers observed in experiments.
One possible explanation could be that the e↵ective radius of
the IgG globules is larger than the one estimated for the average
protein density. It could be due to the non-spherical shape of
the actual domains or due to the existence of the empty spaces
inside the domains. Assuming that � > �0 = 4.8 nm, the
scaled end-to-end distances xi of the hinges will be reduced
by a factor �0/�, but the e↵ective dmax cannot be smaller than
�, hence the e↵ective reduction of the CVF will still be at
least 1.1. However, the actual reduction of the CVF should
be at least 1.1(�/�0)3. Thus, by choosing � = 21/3�0 = 6 nm
one can achieve the experimental reduction of the volume
fraction of a factor of 2.2.

D. E�ects of the patchiness of the attractive potential

Another explanation for the reduction of the CVF of IgG
compared to a typical globular protein can be the patches of
the attractive potential.14,26 For example, it is natural to assume
that the inner parts of the globules close to the points of the
hinge attachment are not attractive. To verify whether this is
a su�cient condition for significantly reducing the CVF, we
design a 7-site patchy model of IgG [see Fig. 1(d)]. Based on
the end-to-end distances of the hinges obtained from all-atom
simulations using GROMACS, the bonds between particles
of type 5 and 3 in the seven-site model fluctuate between
0.0625� and 0.563�, and the bonds between particles of
type 5 and 4 fluctuate between 0.0417� and 0.333�. These
ranges are approximately equal to the fluctuation ranges of the
end-to-end distances of the atomistic hinge models. Finally
we add the repulsive shoulders of radius Ra = 1.1� and height
✏ to the auxiliary particles of type 3 and 4. These repulsive
soft cores of the auxiliary particles prevent the monomers of
the other molecules from being attracted to the central part of
the molecule.

Simulations of the 7-site model with repulsion (Fig. 8)
give the ⌘c = 0.11, while the model of disconnected
monomers with attraction range Ra = 1.1 has ⌘c of 0.254.
Thus the CVF reduction factor for the 7-site patchy model
is 2.3. The width of the scaled phase diagram for the patchy
model is the same as for the 3-site with dmax = 2 for the
same radius of attraction Ra = 1.1 and it is significantly wider
than the phase diagram of the 3-site model with dmax ⇡ 1.3
which is the most realistic value predicted from analyzing
the all-atom models of the hinges (Fig. 4). We assume
that the scaled coexistence region for this dmax should be
almost the same as the coexistence regions for dmax = 1.0
and dmax = 1.64, which practically coincide with each other.
Thus the 7-site patchy model can account for both the
experimentally observed reduction of the CVF and for the
widening of the scaled phase diagram. Note that this model
does not spontaneously crystallize near the liquid-gas critical
point. The radial distribution function indicates that the liquid
phase is a typical net-forming liquid in which each molecule
has 9 neighboring molecules in the first coordination shell.
Thus, in a typical configuration, the outer surface of each
monomer of a given molecule is attached to three monomers,
each of which belongs to a di↵erent neighboring molecule.

FIG. 8. Results of the simulations of the 7-site patchy model. (a) Isotherms near the critical temperature. (b) Coexistence curve obtained by simulations of the
gas-liquid boundary in the elongated box. Symbols show results obtained by the Maxwell construction on the isotherms. Lines with error bars show the results
obtained by direct simulations of the coexisting phases.
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This loose-packed structure with a very low volume fraction
can collapse under high pressure, suggesting the existence
of a density anomaly and even a second liquid-liquid phase
transition.26–31 Note that the seven-point model has a number
of parameters that can be adjusted to better simulate the actual
IgG antibody proteins.

IV. CONCLUSION

We perform multiscale simulations of the human IgG in
order to explain large di↵erences between the phase diagram
of Y-shape IgG proteins and those of globular proteins. Our
results show that if we assume that the IgG domains are
spheres with an average protein density connected by bonds
of appropriate length obtained from the simulations of the
IgG hinges, the reduction of CVF with respect to the globular
proteins is insignificant. There are two possible ways to
explain the discrepancy. The first is simply to assume that the
e↵ective diameters of the domains are greater (6 nm) than one
would predict from the average protein density (4.8 nm). A
second possible explanation is to assume that the inner parts of
the IgG molecule near the points of attachment to the hinges
do not attract the domains of other IgG molecules. The results
of the simulations of a 7-site model with repulsion of the inner
parts of the IgG not only reproduce the reduction of the CVF
but also display a dramatical expansion of the coexistence
region in the scaled ⌘ � T phase diagram [Fig. 4(b)]. Thus,
our simulations of the 7-site patchy model provide a general
framework for future modeling of the phase diagrams of
human antibody solutions.

SUPPLEMENTARY MATERIAL

See supplementary material for the distribution of
distances defined in Fig. 3(a). In supplementary material
Fig. S1, we show the distribution of distances of IgG hinges
in vacuum. Fig. S2 shows the distribution of distances of
IgG hinges in water. In Fig. S3, we indicate the dependence
of the surface tension on temperature and the Arrhenius
relationship for temperature and pressure in a gas-liquid
equilibrium system for trimers with finite range of attraction.
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