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Abstract 

Owing to extremely slow decay of correlations, the limit H ~ 0 presents a poor approximation 
for the Ising model on the Sierpifiski gasket. We present evidence of the competitive interplay 
between finite size scaling and thermodynamic scaling for this model, where both finite size 
and finite field induce an apparent phase transition. These observations may be relevant for the 
behavior of porous magnetic materials in real laboratory conditions. 

The Ising model on the Sierpifiski gasket presents one o f  the rare exactly solved 

[1,2] models in statistical physics in the case of  nonzero external magnetic field. The 

critical behavior was exactly deduced [l] in the thermodynamic limit, for H -+ 0- ,  

where it was shown that the model exhibits a phase transition only at zero temperature. 

Nevertheless, this model has an unusual property that the nature of  magnetic phase 

transitions deduced for an infinite system is not applicable to systems of  laboratory 

dimensions [3]. For the same reason why it is relevant to ask [4] how finite size 

affects thermodynamic behavior of  real samples, the question should be posed how 
the presence o f  small fields (unavoidable in real laboratory conditions) may affect 
measurements. Another unusual property of  the Ising model on the Sierpifiski gasket 
that up to date went unnoticed, is that e x t r e m e l y  low field causes magnetic ordering in 

a wide temperature range. In this paper we discuss the fine competition between finite 

size scaling and scaling with the field, which should both be quite relevant in laboratory 
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conditions. In real experiments involving porous magnetic materials or other materials 
with (stochastic) fraetal structure, similar considerations may also be necessary. 

We consider a Sierpiflski gasket (SG) with an Ising spin at each vertex, described 
by the Hamiltonian 

= - J Y ~  SiSj - H y ] S i ,  (1) 
(nn) i 

where J is the coupling constant, Si = 4-1 is the spin at site i, H is the external 
magnetic field, and (nn) denotes summation over the nearest neighbor pairs. SG itself 
is constructed in stages, the zeroth stage being a simple equilateral triangle of unit side 
length. In each construction stage n, three triangular structures from the previous stage 
are joined by their vertices into a larger triangular structure. At each stage the partition 
function is given by 

Z = Z1 + 3Z2 + 3Z3 + Z4, (2) 

where Zl, Z2, Z3, and Z4 are partial partition functions corresponding to {+ + +}, 
{ + -  +}, { - + - } ,  and { - -  - }  configurations of the vertex spins, respectively. For 
the zeroth stage of construction we have 

Z1 = e 3[¢J+3~H , 

Z2 = e -M+IIH , 

Z3 

Z4 

where 
between 

(3a) 

(3b) 

= e  -M-~H , (3c) 

= e  3M-3BH , (3d) 

f l =  1/kBT, and kB is the Boltzmann constant. The exact recursive relations 
the partial partition functions at two consecutive stages of construction are 

given by [5] 

Z~ = Z~e -3~H + 3Z, Z~e -#H + 3Z2Z3e [~H + Z3e 3~H , 

Z~ = Z~Z2e -311H + Z3e -[3H + 2ZIZ2Z3 e-[jH 

4-2Z2Z2e [~H 4- Z22Z4 e[3H 4- Z2Z4 e3[JH , 

Z; = Z, Z22 e-3lJ" 4- ZIZ2e -l~" + 2Z2Z3e -I~H 

4-2Z2Z3Z4e tJH + Z3e IsH + Z3Z2e 3[~H , 

(4a) 

(4b) 

(4c) 

Z~ = Z3 e -3l~" + 3Z2Z2e - lm + 3Z2Z4e I~H + Z3 e 31IH . (4d) 

Since the aim of this paper is to discuss the competition between the thermodynamic 
limit and the limit H --~ 0 + on the basis of extremely high precision numeric calcu- 
lations, it is important to emphasize here that recursive relations corresponding to (4) 
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Fig. 1. Temperature dependence of  the order parameter (m 2) for different steps of  construction 
n = 4,8, 16,32,64, 128 of  the Sierpifiski gasket for (a) zero field and (b) in the field H/J = 10 -7 (con'e- 
sponding to H/O#B ~ 0.22 G for coupling constant J/k8 = 300 K). Finite size induces an apparent phase 
transition, vanishing only in the true thermodynamic limit (see Ref. [3]). It is seen that the presence of  a 
small field inhibits the shift towards zero temperature, with increasing system size, of  the ordered phase 
region. 

given in Refs. [2, 3] are no t  e x a c t  for finite systems in nonzero field. In both refer- 
ences, the field dependent multiplicative terms in (4) (corresponding to the fact that 
the energy at a given stage of construction is not a simple sum of energies of the three 
constituent previous stage structures) have been neglected, which is strictly valid only 
after one of the two limits has been reached. Differentiating (4) with respect to field, 
one obtains [5] recursive relations for the field derivatives of the partition function, 
which can be numerically iterated for arbitrary set of parameters J ,  H, and T. 

From the numerical viewpoint, iteration of recursive relations is not demanding in 
either computer speed nor memory. However, it turns out that as n increases, the 
result of numerical iterations becomes increasingly dependent on the precision used. 
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Highest available precision of Fortran, REAL* 16 (128 bits distributed between mantissa 
and exponent provide a maximum of 38 decimal digits for the mantissa) becomes 
insufficient for large sizes and small values of the field. To overcome this difficulty, we 
have used "Mathematica" symbolic language which has arbitrary available precision. 
In Fig. 1 we present numerical results for the temperature dependence of (m2), for 

n = 4, 8, 16, 32, 64, 128 (precision of roughly 100 decimal digits proved to be sufficient 
for all our calculations). Fig. l(a)  (H = 0) corresponds to the results of  Liu [3], where 
it was shown that n ~ ~ is a poor approximation for laboratory size systems. Apparent 
magnetic transition temperature Tm(L,H), defined as the point where (m2)L = 1/2, was 

found [3] to have limiting behavior 

1 
Tm(L ~ oo, H = 0) ~ ln lnL ' (5) 

where L = 2 n is the linear size of  the gasket. In Fig. l(b) we present corresponding 
results for a very small field H/J = 10 -7. It follows that the (weak) dependence of 

Tm on L is suppressed by the presence of the small field beyond n = 16, and that even 
in the thermodynamic limit the system should remain ordered up to Tm ~ J/kB ! 

In Fig. 2 we present analogous results for different values of  field H/J = 10 -2, 10 -4, 
10 -8, 10 -16, 10 -32, 10 -64. Fig. 2(a) compared with Fig. l(a) stresses the analogy be- 

tween "finite size" and "finite field" (infinite system size here corresponds to iterating 
recursive relations beyond the point where the curves stop changing with further it- 

erations). It follows that H ---+ 0 + also presents a poor approximation for this model, 
that is, the system remains ordered up to temperatures of  the order of  ksT/J ~ 1 in 

the presence of inconceivably small fields. In analogy with Fig. l(b), in Fig. 2(b) 
we present temperature dependence of (m 2) for n = 16, and different field values. It 
follows that the (weak) dependence of Tm on H is suppressed by finite size beyond 
H/J = 10 -8. 

Following Liu [3] let us now assume that we are dealing with a real sample and 
assign a = 3/~ to the lattice constant and J/kB = 300 K (this value of the coupling 
constant corresponds to a material with transition temperature of  roughly 1000 K on 
the triangular lattice). Further taking 9 = 2 for the Lande factor, and using values 
#B = 0.927 × 10-2°erg/G and kB = 1.381 × 10-16erg/K for the Bohr magneton and the 

Boltzmann constant, respectively, we have H/9#8 ~ 0.22 G for the field of Fig. l(b), 
which is smaller than the field of  the earth (~1 G). We can conclude that a laboratory 
sample with SG structure larger than L = 216a ~ 6.5 × 10 -4 cm should exhibit an 

apparent phase transition at roughly room temperature, in the field of  the earth. I f  the 
field of  the earth is compensated and experiment performed at the order of 1 mG, 
the apparent transition temperature should become size independent for sample sizes 
exceeding L = 22°a ~ 0.1 mm. 

To gain a better understanding of the competition between the thermodynamic limit 
and the limit of  zero field, let us now turn to the scaling arguments of  Ref. [1] which 
predict that magnetization should scale as 

m(L, r ,h)  = ~ (L/~, ~Dh) , (6) 
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Fig. 2. Temperature dependence of  the order parameter (m 2) for difl'erent field values H/J = 10 -2,  10 -4,  
l0 8, l0 16, 10-32, 10-64 for (a) n = cx~ (that is, n large enough so that the curves stop changing 
with a further increase of  n), and (b) n = 16. Finite size (n = 16 in (b)) inhibits the shift towards zero 
temperature, with decreasing field, of  the ordered phase region. Finite field also induces an apparent phase 
transition, vanishing only in the true limit of  zero field. 

where h = H/J is the dimensionless field variable, D = In 3 / In  2 is the fractal dimen- 

sion o f  the gasket, and ~ is the correlation length which was shown [1,2] to have low 

temperature behavior, 

~ ~exp [log2 (e4-~ +4flJ +e-4~J- 1---~e-Slu +...)] . (7) 

In zero field, curves m(L, T) should collapse onto a single curve if plotted versus L/~, 
and from the definition of  Tm it follows that L/~m should be preserved, leading to 
limiting relation (5). In Fig. 3(a) we present numerical data for Tm(L,H = O) versus 
log(log(L)), corresponding to results of  Ref. [3]. It is seen that even for the largest L 
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Fig. 3. Apparent magnetic transition temperature Tm versus (a) size (for zero field), and versus (b) field (for 
system sizes for which (m 2) temperature dependence stops changing with a further increase of size). Note 
the double logarithmic scale on both graphs. Results for zero field were first obtained in Ref. [3], where it 
was shown that the thermodynamic limit presents a poor approximation for the Ising model on the Sierpifiski 
gasket. From (b), a similar conclusion can be drawn for the limit H ---* 0. 

considered (L = 1 0 4 ° a  ~ 1032 cm)  equat ion (5)  is still not  a very good approximat ion 

for the behavior  o f  Tm. This corresponds to the fact that at kBTm/J ~ 0.65, the first 

correction term in (7) still amounts  to roughly  5% of  the leading term. I f  we now first 

take the l imit  L ~ c~, we conclude that quant i ty  ~m°h should be constant,  leading to 

the analog o f  (5),  

1 
Tm(L = cc, H --~ 0 +)  ~ l n l n h  D " (8)  

In  Fig. 3 (b)  we plot Tm(L = cx~,H) versus l o g ( l o g ( h - l ) )  (obta ined for values  of  L 

for which  Tm stops changing  with further increase o f  L). From Fig. 3 (b)  it follows 
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Fig. 4. Pairs of values log(Iog(h -1)) and log(log(L)) that correspond to the same values of Tm in Fig. 2, 
representing the competition between finite size scaling and scaling with the field. The region above the line 
corresponds to dominance of finite size, and the region below the line to dominance of the field. 

that even for inconceivably small fields o f  the order of  H / J  ~ 10 -60  (corresponding to 

2 × 10 -54 G for J/k8 = 300 K), k~T, , /J  remains of  the order of  unity. As in the case 

H = 0, L ~ ~ ,  we see that (8) is still not a very good approximation for the behavior 

of  Tin, and that correction terms should be retained in (7). Nevertheless, Fig. 3 serves 
the purpose o f  drawing the analogy between the thermodynamic limit and the limit 

H ~ 0, by displaying the fact that both limits present a poor approximation for the 

Ising model on the Sierpifiski gasket. 

Finally, to compare the influence o f  L and H on the behavior of  Tin, in Fig. 4 

we plot pairs of  values log( log(h- I ) )  and log(log(L)) that correspond to the same 

values of  Tm in Fig. 3. The observed linear behavior in the whole region follows from 

equating the scaling variables L/~m and h-I/D/~m. The region above the line corresponds 

to the dominance of  finite size scaling ((m 2) changes with L and is insensitive to 

small variations in H),  and the region below the line corresponds to dominance of  

thermodynamic scaling ((m 2} changes with H and is independent of  L). 
In conclusion, the extremely strong temperature dependence of  the correlation func- 

tion of  the lsing model on the Sierpifiski gasket gives rise to nontrivial thermodynamic 

behavior not only for large (but finite) systems, but also for infinite system in (tiny) 

finite fields. Both finite size and finite field induce an apparent phase transition, van- 

ishing only in the true thermodynamic limit and the true limit o f  zero field, and both 

limits present poor approximations of  realistic laboratory conditions. While the geomet- 
ric properties of  stochastic fractals have been widely studied over the past decade (see 
e.g. [6]), much less is known about the thermodynamic properties of  model systems 

on fractal substrates. It remains to be shown whether such slow decay of  correlations 

as given by (7) is encountered in real systems with fractal geometry, and if so, to 
which extent are finite size and finite field, encountered in real laboratory conditions, 
relevant for thermodynamic behavior of  fractal magnetic samples. 
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