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Abstract 

We describe a geometric approach for studying phase transitions, based upon the analysis of 
the "density of states" (DOS) functions (exact partition functions) for finite Ising systems. This 
approach presents a complementary method to the standard Monte Carlo method, since with 
a single calculation of the density of states (which is independent of parameters and depends 
only on the topology of the system), the entire range of parameter values can be studied with 
minimal additional effort. We calculate the DOS functions for the nearest-neighbor (nn) lsing 
model in nonzero field for square lattices up to 12 × 12 spins, and for triangular lattices up to 
12 spins in the base; this work significantly extends previous exact calculations of the partition 
function in nonzero field (8 x 8 spins for the square lattice). To recognize features of the DOS 
functions that correspond to phase transitions, we compare them with the DOS functions for the 
lsing chain and for the Ising model defined on a Sierpinski gasket. The DOS functions define a 
surface with respect to the dimensionless independent energy and magnetization variables; this 
surface is convex with respect to magnetization in the low-energy region for systems displaying 
a second-order phase transition. On the other hand, for systems for which there is no phase 
transition, the DOS surfaces are concave. We show that this geometrical property of the DOS 
functions is generally related to the existence of phase transitions, thereby providing a graphic 
tool for exploring various features of phase transitions. For each given temperature and field, 
we also define a "free energy surface", from which we obtain the most probable energy and 
magnetization. We test this method of free energy surfaces on lsing systems with both nearest- 
neighbor (Ji)  and next-nearest-neighbor (,/2) interactions for various values of the ratio R =_ Jl/J2. 
For one particular choice, R = -0 .1 ,  we show how the "free energy surface" may be utilized to 
discern a first-order phase transition. We also carry out Monte Carlo simulations and compare 
these quantitatively with our results for the phase diagram. 
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1. Introduction 

The two-dimensional Ising model in nonzero magnetic field remains one of the 
outstanding unsolved problems of modem statistical physics. Many properties of the 
model for different lattices and choices of the interaction parameters have been firmly 
established through a wide variety of approximate methods [1-5], and exact solutions 
have been obtained for special cases of interactions [6-8]. However, a straightforward 
procedure for establishing the existence, or absence, of phase transitions has not yet 
been established for systems with more than nearest-neighbor interactions. 

Here we show that a study of the energy level degeneracies or density of states 
functions (DOS) for finite-size Ising systems provides a general geometric tool for 
discerning the existence of ordered phases, frustrated states and limits of phase stability. 
This method can be applied to a variety of interactions and lattice geometries. The DOS 
functions of finite Ising systems have been calculated on the triangular lattice in zero 
field, and the square lattice in both zero and nonzero field [9]. The DOS functions for 
finite lattices capture some of the basic properties of the infinite systems and, when 
scaled with the system size, show surprisingly regular behavior. The thermodynamic 
quantities calculated from them display the expected finite size scaling behavior already 
for very small system sizes. 

We calculate the exact DOS functions for nearest-neighbor Ising systems in nonzero 
field on various lattice geometries. By comparing the DOS functions for different lat- 
tices, we find that the DOS surfaces are convex  (with respect to magnetization [10], 
around zero magnetization) in the low-energy region for lattices with a phase transi- 
tion at nonzero temperature. For lattices with no phase transition, the DOS surfaces are 
concave. This property of the DOS functions is directly related to the number of spin 
configurations with finite magnetization that can be realized at some given low-energy 
value. If  the DOS surface is convex, the system is unlikely to be found in spin configu- 
rations having low values of the magnetization and  low energies (so it exhibits nonzero 
equilibrium magnetization at low T). Conversely, if the DOS surface is concave, the 
system is most likely to be found in spin configurations with zero magnetization (so 
the equilibrium magnetization is zero for all T). 

We extend the analysis to a quantitative study of properties by looking for dominant 
contributions to the partition function at different temperatures. We show that below 
the critical temperaatre To, a modification of the DOS surface (that can be related to 
the system free energy) has two distinct peaks corresponding to positive and negative 
spontaneous magnetization values. On the other hand, above Tc there is just one peak 
at zero spontaneous magnetization. In the more complicated case with both nearest- 
neighbor (nn)  interactions J1 and next-nearest-neighbor (nnn)  interactions J2, we show 
(by looking at the corresponding DOS surfaces) the existence of a first-order phase 
transition and discuss the behavior of the model for different signs and values of the 
ratio R =- J1/J2. We use this procedure to obtain the phase diagram for a specific 
choice of R and compare this phase diagram with the phase diagram we obtain by 
Monte Carlo simulations. 
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This paper is organized as follows. In Section 2 we explain the DOS function 

approach, while in Section 3 we present the results for the square and triangular lattices, 
Ising chain and the Sierpinski gasket. In Section 4 we treat the nnn Ising model, and 
explore the effect of different signs and values of the interaction ratio R. We summarize 
the results in Section 5. 

2. The DOS functions 

2.1. Definitions 

First we outline the density of states formalism and establish the notation we shall 
follow subsequently. For simplicity, we treat here only the nn case. The generalization 
of the formalism to the more complicated nnn case is given is Section 4. The Ising 
Hamiltonian is given by 

= - J  ~ sis j - H ~ s i ,  (1) 
(,~) i 

where J is the nearest-neighbor interaction strength, si = ± l  is the Ising spin vari- 
able at the site i, H is the external magnetic field, and (nn I denotes summation over 
the nearest-neighbor pairs. When J > 0 the energy contribution of a pair of paral- 
lel spins is lower (we say that the bond between them is "satisfied"). When J < 0 
(antiferromagnetic case) the energy contribution of a pair of antiparallel spins is lower. 

For any finite Ising system with arbitrary geometry, the energy spectrum is discrete. 
When J > 0, the ground state has all the bonds satisfied, with all the spins parallel to the 
field. Starting from the ground state configuration, the higher energy levels are obtained 
by flipping spins, so that more and more bonds are unsatisfied, and more spins are 
antiparallel to the field. The partition function of a ferromagnet with arbitrary geometry, 
composed of N spins interconnected by N8 bonds, can thus be written in the form [9] 

N~ N 
Z = e fl(JNB+HN) ~ ~ ~ k e e  -2#(kJ+eH) . (2) 

k=0 (=0 

Here, @ke are degeneracies of the discrete energy levels 

Eke =-- J ( - N B  + 2k) + H ( - N  + 2t~), (3) 

and fl is the reciprocal of the temperature times the Boltzmann constant, fl -~ l/ksT. 
The first term on the right-hand side of (3) corresponds to the interaction energy of the 
system, while the second term represents the energy due to the external field H. The 
integer k (O<~k<~NB) represents the number of unsatisfied bonds, and ( (0~<(~<N)  
the number of spins antiparallel to the field. 

Expression (2) has been used in classic textbooks [11] to stress the fact that although 
the partition function depends o n  2 N configurations, each of which is specified by N 
numbers {sl,s2 . . . . .  SN}, the energy of a configuration depends only on two numbers, 
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k and ~, and that the energy levels are in general highly degenerate. For example, the 
10 × 10 square lattice with open boundary conditions has altogether 2 l°° ~ 1030 possible 
configurations, but only (NB + 1)(N + 1) = 18281 N 104 different energy levels. Even 
with the largest computer, 1030 is too many calculations, but managing a polynomial 
with 10 4 terms is practicable. The main problem is thus to determine the degeneracy 
matrix ~kf. 

2.2. Convergence of the DOS function 

Two decades ago the set ~k~ was calculated [12] for the 5 × 5 square lattice and 
N the 3 × 3 × 3 cubic lattice, and the set ~k - ~¢=0 ~k/ (for the zero field case) was 

calculated [13] using the transfer matrix (TM) method for the cubic 3 × 3 × 6 lattice. 
The set ~k for the 5 × 4 x 5 lattice was only recently calculated [14] using the TM 
method on the massively parallel Connection Machine CM II. The sets of degeneracies 
were used to calculate the thermodynamic response functions and the distributions of 
zeros of the partition function in the complex plane [12-15]. In Ref. [9] where the 
calculation of the set ~kt' for the 8 × 8 square lattice was reported, it was shown that 
the sets ~ke can be regarded in their own right as relevant quantities for determining 
thermodynamic behavior of  infinite systems. 

We show how these degeneracies for different lattices form three-dimensional surfaces 
which converge rapidly with increasing system size towards definite shapes. Denoting 
the density of states by ~(E,N), for a given system size N and a given energy value 
E, the relation 

l n ~ ( E , N ) ~ N f ( E )  (4) 

holds for already very small systems [9]. The quantities 

In ~k~ 
&~ = - - ,  (5)  

N8 

as a function of dimensionless scaled variables 7c =- k/NB (0 ~< 7¢ ~< 1) and Z = f iN 
(0~<Z~< 1), with increasing system size, become independent of the system size and 
shape with a correction term of  the order (9(1/NB). We shall use the term DOS function 
to describe the set {Sk~}, where k = 1,2 . . . . .  NB and { = 1,2 . . . . .  N. We shall denote 
the interaction energy scale and the magnetization scale by 7c and t z. We discuss the 
convergence of the DOS functions further in Section 3, where the results for the nn 
Ising model are presented. 

2.3. The "free energy surface" 

We introduce the "free energy surface" Fk¢ per bond associated with the energy 
level E~ by the relation 

NB N 

Z = ~ ~ exp(-flF, iNB), (6) 
k=0 •=0 
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Fig. 1. The equilibrium magnetization (dashed line) of the infinite 2D Ising system [1], together with the 
average magnetization (solid line) of  the 12 x 12 square lattice lsing system, and its net magnetization of 
the most probable states (the step-like curve). Compared to average magnetization, the net magnetization of 
the most probable states provides a better representation of the infinite system behavior. 

where, from (3) and (5), 

Fke, = Ek~ -- kBTSk~ . (7) 

We see that for the energy level E~, Ske and Fkl define quantities analogous to the 
entropy and free energy. It should be stressed here that the DOS function depends only 

on the topology of the lattice, and not on the particular choice of temperature, field and 
value of the interaction parameter. Given the rapid convergence of the DOS surfaces 
(with respect to scaled energy and magnetization variables) towards the corresponding 
infinite system surface [9], the properties of the infinite system are approximated closely 
by the most probable configurations of the finite system at given values of temperature 
and field. We determine the most favorable (equilibrium state) region of interaction 
energy and magnetization for given values of temperature and field by studying the 
free energy surface. To this end, it is useful to rewrite expression (6) in the form 

Z = e [I(JNB+HN) ~ ~ exp NB --2fl ]¢J + i  H + Skf • (8) 
k=0 d=0 

To determine the equilibrium interaction energy and magnetization values (for given T 
and H)  one must subtract from the DOS surface S~ the plane -2fl(  k J  + [ ( N / N ~ ) H ) ,  
and search for values of lc and t ~ for which the resulting surface - f lFk t  has the max- 
imum value. Thus, we assume that we can represent the equilibrium state parameters 
by the corresponding values of the most probable state of the finite-size system. To 
corroborate this assumption, in Fig. 1 we present the equilibrium magnetization of the 
infinite 2D Ising system [1], together with the average magnetization of the 12 × 12 
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square lattice Ising system and the net magnetization of the most probable states. We 
see that the latter is a much better representation of the infinite system behavior. 

Note that the DOS function calculated for the ferromagnetic system also describes the 
antiferromagnetic system, if the beginning and the end of the lc axis are interchanged 
(an unsatisfied bond in the ferromagnetic case is satisfied in the antiferromagnet). 
Thus, the part of the DOS function with 0 ~< 7¢ ~< 0.5 corresponds to possible states of 
a ferromagnet, while the 1 ~> 7c~>0.5 part corresponds to the antiferromagnetic states 

(negative temperatures). 

3. Comparison between the DOS functions of Euclidean and fractal lattices 

Next we compare the DOS functions of  the nn Ising model in a field for differ- 
ent lattices: square, triangular, one-dimensional chain, and the Sierpinski gasket. This 
comparison enables us to draw a general conclusion about the relation between the 
concavity of the DOS surface and the existence of a phase transition. We describe 
briefly below how the DOS functions presented in this paper are calculated. 

3.1. Euclidean lattices 

In the case of 2D lattices with Euclidean geometry (such as the square and the 
triangular lattice), the DOS functions can be calculated by the TM method, introduced 
by Binder [13] (for the H = 0 case) and generalized in Ref. [9] (for the case H ~ 0). 
Using the TM method we have been able to extend [16] results for the exact DOS 
functions for square lattices up to 12 x 12 spins, and to calculate these functions 
for equilateral wedges of the triangular lattice up to 12 spins in the base. The DOS 
functions for the Ising chain are readily obtained for arbitrary system size from the 
known exact solution [2]. 

3.2. The Sierpinski  9asket  

In the case of the Sierpinski gasket the most efficient way of obtaining the DOS 
functions is by the real space renormalization group (RG) method [17,18], which we 
describe here briefly. The Sierpinski gasket can be obtained from an equilateral tri- 
angle (called generator) that contains four smaller identical unit triangles. The entire 
fractal lattice is constructed in self-similar successive stages, labeled by the integer n 
(0~<n~<cx~), so that n = 0 and n = l correspond to the unit triangle and generator, 
respectively. At stage n of construction the generator is enlarged 2 n times and each 
of its three upward oriented triangular segments is filled with the structure at stage 
( n -  1). 

Luscombe and Desai [17] showed that, for nonzero magnetic field, four parameters 
are needed to obtain exact RG recursive relations. In their derivation of these relations 
they use partial partition functions ZI, Z2, Z3 and Z4, defined at each stage n by fixing 
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the three apex spins into configurations {+, +, +}, {+, + , - } ,  { + , - , - }  and { - , - , - } ,  
respectively, and by performing the summation over all possible configurations of all 
the other spins. Since we are interested in the partition function itself, rather than the 
fixed points of the RG transformations, we can regard Za, Z2, Z3 and Z4 as the RG 
parameters. Thus, denoting by Z[ {i = 1 . . . . .  4} the partial partition functions at stage 
n + 1, and using a slightly different approach [18] than Luscombe and Desai [17], we 
obtain the following RG recursion relations: 

Z~ ~- Z~y  -3 -b 3Z1Z2y -1 + 3Z2Z3y + Z33y 3 , 

Z~ =- Z2Z2y -3 + 2Z1Z2Z3Y -1 + 2Z2Z2y + Z~Z4y 

4-Z2Z4y 3 q- Z3 y -1 ' 
(9) 

Z~ ~- Z1Z2y -3 + 2Z2Z3y - I  + 2Z2Z3Z4Y + Z1Z2y -1 

+ Z3Z2 y + Z3 y , 

Z~ = Z3y  -3 + 3Z2Z2y -1 + 3Z22ZaY + Z3y  3 , 

where x _= exp(flJ) and y - exp(flH). The total partition function at stage n is given 
by 

Z = Z1 + 3Z2 + 3Z3 + Z4. (10) 

Hence, starting with partial partition functions for the unit triangle (n = 0) 

ZI O) = x3 y 3 , 

Z2 o) = x - l y '  (11) 
z~O) = x - l y - I  , 

z~O) = x3 y -3  , 

the stage n partition function is obtained by applying recursion relations (9) n times, 
and then using (10). The terms of the resulting expression for Z will have the general 
form 2x~y v (where 2, p and v are integers), that is, Z itself will be of the form (2). 
Although the above procedure is conceptually simple (it consists of multiplication and 
addition of polynomials in x and y), it cannot be implemented easily for increasing 
n. To surmount this problem, we implemented the underlying procedure numerically 
[16], to obtain the DOS functions up to stage 4 of construction of the lattice. 

3.3. Comparison between different geometries 

To display the rapid convergence of the DOS surfaces towards the corresponding 
limiting surfaces, in Fig. 2 we depict the data for different system sizes for the triangular 
lattice, the linear chain and the Sierpinski gasket. The corresponding pictures for the 
square lattice DOS surfaces are given in Ref. [9]. It can be seen from Fig. 2 that 
in all cases under study the convergence of the DOS functions is manifested through 
the rapid smoothing of the surfaces with increasing system size, while their shape 
remains basically unchanged. This means that, although the systems are rather small, 
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Fig. 2. The scaled DOS surfaces Sk~' presented versus scaled interaction energy variable k = k/NB and 
scaled magnetization variable t r ~ f /N, for the Ising model on (a) the equilateral wedge of the triangular 
lattice with 11 and 12 spins in the base, (b) the linear chain with N = 64 and N = 128 spins, and (c) the 
Sierpinski gasket at the 3rd and 4th stage of its construction. In all three cases we observe rapid convergence 
of the surfaces with increasing system size, towards stable shapes that can be expected for infinite systems. 

their DOS surfaces rapidly approach the stable shapes that can be expected for the 

corresponding infinite system. In particular, we note the clear appearance (see Fig. 2) 

of fiat regions of  the DOS functions, where @k¢ = 0 (and, for practical reasons, we 

denote also 6Pk¢ = 0), together with the fact that their shapes do not change appreciably 

with increasing system size. The boundaries of  these regions separate accessible and 

inaccessible states of the system under study, and so represent the limits of phase 

stability. 
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Fig. 3. Comparison of the scaled DOS surfaces for the Ising systems on (a) the square lattice with 12 × 12 
spins, (b) the wedge of the triangular lattice with 12 spins in the base, (c) the linear chain with N = 128 
spins, and (d) the Sierpinski gasket at the stage 4 of its construction. Note that at small energies (small ,~ ) 
the DOS surfaces are convex around zero magnetization ( / =  0.5) for the square and triangular lattices. 

To compare the DOS functions for different lattices, we show in Fig. 3 the DOS 

surfaces for the largest systems for which we have performed calculations: 

( i )  the square lattice with 12 × 12 spins, 

( i i)  wedge o f  the triangular lattice with 12 spins in the base, 

(ii i)  linear chain with 128 spins, and 

( iv)  the Sierpinski gasket at the stage 4 of  its construction. 

While  making this comparison, we keep in mind the fact that the Ising ferromagnet on 

both the square and triangular lattice has spontaneous magnetization for T ¢ 0, which 

is not true in the case o f  the chain and the gasket. 
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We first observe from Fig. 3 that the DOS surfaces for the square and triangular 
lattices are convex (with respect to ~z) for small lc, while the surfaces for the chain 
and gasket are concave. At low temperatures, the dominant states are those with low 
energies. 

(a) When the DOS surface is convex at low energies, states with finite magnetization 
will have the maximum degeneracies, at a given low-energy cro~S-section of the DOS 
function. Thus, the equilibrium state of the system will be given by one of these 
maximum degeneracy states with finite magnetization. This explains why the convexity 
of the DOS surface results in a finite spontaneous magnetization. 

(b) When the DOS surface is concave, the equilibrium properties of the system are 
always determined by states with zero magnetization, and we do not observe a phase 
transition. 

The concavity of the Sierpinski gasket DOS surface is expected to occur for all 
fractals with a finite order of ramification, This concavity is determined by the number 
of spin configurations that can be realized for small values of energy (small percentage 
of unsatisfied bonds) and small values of magnetization (roughly half of the spins "up" 
and half of the spins "down"). For a small value of energy, if the number of spin 
configurations with small magnetization is larger than or comparable to the number 
of configurations with larger magnetization, then the DOS function will be concave. 
Otherwise, it will be convex. Starting with a configuration with all spins "up", it is 
possible in the case of the chain and in the case of finitely ramified fractals to destroy 
the nonzero magnetization at a very small energy cost. This can be done trivially for 
the chain since the spins of any arbitrary segment of the chain can be flipped, with 
only the spins at the edges of the segment unfavorably aligned. In the case of a finitely 
ramified fractal, a finite number of links connect any arbitrarily large part of the lattice 
with the rest of the lattice. Hence the total magnetization of the fractal lattice can 
be changed dramatically without affecting the energy significantly. To establish the 
concavity of the DOS function, however, it is necessary to show that the degeneracies 
at low energies decrease with increasing magnetization. Although a general argument 
is difficult to make, for individual cases that have been studied [18] the DOS surfaces 
are concave at low energies. In the case of compact Euclidean lattices and infinitely 
ramified fractals, however, one can flip a large part of the lattice only by simultaneously 
upsetting a large number of bonds (the interface between the two parts corresponds to 
the linear size of the system). 

3.4. Exis tence  o f  spontaneous magnetization 

It was shown in Section 2 that the "free energy" minima can be located as the points 
of maximum difference between the DOS surface and the plane -2fl(IcJ+Z(N/NB)H). 
In Fig. 4(a), this procedure is depicted for the zero field ferromagnet on the square 
lattice, being well above the system critical temperature (kBTc = 2/[In(1 + x/~)] [1]) 
where both the DOS surface and the -2f l  lcJ plane are shown. Changing temperature 
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Fig. 4. (a) The DOS surface for the Ising system on the square lattice with 12 × 12 spins, and the plane 
defined by -2fl(kJ +~(N/NB)H) (see Eq. (7)), for the choice of parameters 1/fl = 6J and H - 0. The 
difference between the DOS surface and the plane determines the negative "free energy" --flFk¢. (b) The 
negative "free energy" for the same system as in (a), for H = 0 and two different choices of temperature. 
The appearance of the saddle-point at lower temperatures implies the existence of spontaneous magnetization. 

corresponds to changing the angle o f  rotation o f  the plane about the 2 axis, while 

changing the field corresponds to rotation about the k axis. 

In Fig. 4(b) we present the surface - f lF te  for the same system, for different temper- 

ature values. Below the critical temperature, there are two distinct peaks corresponding 

to nonzero positive and negative spontaneous magnetization values, whereas above T,, 
there is just one peak corresponding to zero magnetization. Notice that the peaks o f  the 
"free energy" surface for temperatures below Tc correspond to the ridges o f  the DOS 

surface, which can thus be related to the zero field equilibrium magnetization values. 
In addition, one can observe that introducing nonzero field (that is, rotating the plane 

- 2 f l  k J  around the k axis) breaks the symmetry (with respect to the Z = 0.5 plane) 

of  the peaks of  the --flFkt surface. In Fig. 5 we present the - f l F t t  surfaces for the 
triangular lattice, the linear chain and the Sierpinski gasket in zero field, from which 
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Fig. 5. The negative "free energy" as given by the term in square brackets in Eq. (7), for the Ising systems 
(at various temperatures, and in zero field) (a) on the equilateral wedge of the triangular lattice with 12 
spins in the base, (b) the linear chain with N = 64 spins, and (c) the Sierpinski gasket at the stage 4 of 
its construction. The presence of two peaks at 2 ~ 0.5 in the first surface for the triangular lattice indicates 
spontaneous magnetization below Tc. 

it is evident that only the triangular lattice exhibits spontaneous magnetization at low 

temperatures. 

4. DOS Functions for the Ising model with next-nearest-neighbor interactions 

The presence of both the nearest-neighbor (nn) and the next-nearest-neighbor 

(nnn) interactions for the Ising model on the square lattice introduces more complex 
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thermodynamic behavior [19]. It offers a challenge for the application of the DOS 
function approach, and here we study the Ising model for different ratios of the two 
interaction parameters. 

4.1. Definitions 

We now consider the Hamiltonian 

JCg~ = - J l  ~ sisj - J 2  ~ sisj - H ~ s i ,  (12) 
(nn) (nnn) i 

where (nnn) denotes summation over next-nearest-neighbor pairs, Jl is the nn inter- 
action strength and J2 is the nnn interaction strength. The analog of Eq. (3) for the 
partition function for the system with N spins, connected by Ns, nearest-neighbor bonds 
and NB2 next-nearest-neighbor bonds, is given by 

Nnl Ns2 N 
Z ---- exp{//(JlNB, +J2NB2 +HN)}  ~ ~ ~ ~k, k2: 

kl-0 k2=0 :=0 

x exp{-2//(klJl + k2J2 + : H ) } ,  (13) 

where ~k, k2: are degeneracies of discrete energy levels 

Ek,&: =- Jt(-NB, + 2kl) + J2(-NB2 + 2k2) + H ( - N  + 2 : ) ,  (14) 

while integers kl (0~<kl ~<Ns~) and k2 (0~<kz~<NB2) represent the number of nn and 
nnn bonds with antiparallel spins at their ends, respectively. 

It is clear that the interaction energy scale, determined by the first two terms on the 
right-hand side of (14), now depends on the choice of the ratio R - J1/J2. In order to 
compare the DOS functions for different values of R, we introduce a general interaction 
energy scale 

~,kx = [JI(-NB, + 2kl) + Jz(-NB2 + 2k2) - Emin] 
Emax - Emin ' (15) 

where Emin and Emax are the minimum and the maximum value, respectively, of the 
interaction energy term JI(-NB, + 2 k l ) +  J2(-Ns,  + 2k2), for a given choice of Jl 
and J2. The interaction energy~,k~ takes values in the interval [0, 1], for all choices 
of kl, k2, Jl and J2. For extremely large (or small) values of R, the energy scale is 
divided into main levels (determined by the stronger interaction) and closely spaced 
sublevels (determined by the weaker coupling). It is helpful to bin the energy scale 
into equidistant intervals (we choose the number of intervals to be proportional to 
the number of main levels). Whether the energy scale is binned or not, for each 
particular choice of J1 and J2, the energy levels are organized in increasing order, so 
that the possible interaction energy values are given by the set {gk; k = 1 . . . . .  NL}, 
with 8k < Sk, for k < k'. Here N£ <~(NB~ + 1)(N82 + 1 ) is either the number of possible 
combinations of indices kl and k2 (that label distinct energy levels), if the scale is not 
binned, or the number of the energy intervals, if the scale is binned. The corresponding 
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degeneracies, in case of binning, are sums of degeneracies of the actual levels found 
inside a given interval (bin). The entropy b°k¢ per spin is given by 

in ~ 
5Pk~ ~ , (16) 

N 

corresponding to the energy level 

Eke ~ [Sk (Emax - Emin ) q- Emin] "+" H ( - N  + 2g).  (17) 

Hence, the partition function can be written in the form 

N { [ /g~ Emax - E m i n e X p  --fl ~, k ~/ ) ]} Z = e ~(-Emin+HN) ~ ~ N q- 2~I-I q- ~'Pk~ (18) 
k=0 f=0 

which is the analog of  (8) for the nn interaction case. Further analysis of the DOS func- 
tion (16), plotted versus scaled energy variable 8k and scaled magnetization variable 
E, f o r  each particular choice of Jl and J2, is analogous to the nn case analysis which 
has been performed in Section 3. 

Before going into details, we note that the DOS function is determined only by the 
topology of the lattice and the ratio R. Similar to the nn case, where the possible states 
of the ferromagnet and the antiferromagnet correspond to different parts of the DOS 
surface, for given R > 0 the region d~k 40.5 corresponds to the case with (J~ > 0) and 

(J2 > 0), and 8k ~>0.5 corresponds to the case with (dl < 0) and (.]2 < 0). On the other 
hand, for given R < 0 the gk~<0.5 region corresponds to (J1 < 0) and (./2 > 0) and 
gk/>0.5 corresponds to (Jl > 0) and (J2 < 0). 

Using the TM method [9] generalized for the present case of nn and nnn interactions, 
we obtain [ 16] exact data { ~k, k2¢; kl = 0 . . . . .  NB, ; k2 = 0 . . . . .  NB2; f = 0 . . . . .  N} for the 
square lattice with up to 9 × 9 spins. In Figs. 6 and 7 we present the DOS surfaces of 
the system with 9 × 9 spins for five positive and five negative representative values of 
R, respectively. The first overall observation is that the variation of the ratio R causes 
larger differences in the shape of DOS functions than the variation of the underlying 
lattices in the nn case (see Fig. 3). In the next two paragraphs we shall comment 
separately on the positive and negative R cases. 

4.2. R-dependent behavior 

Starting with a very small positive value of R, when the two ferromagnetic sublattices 
are almost decoupled, we can notice from Fig. 6 that there are three ridges of the DOS 
surface that occur at small values of 8k and ~ ,-~ 0, ~z ,.~ 0.5 and ~ ~ 1, whose initial 
parts correspond to the {+ ,+} ,  ( { + , - } ; { - , + } )  and { - , - }  configurations of  the 
sublattices, respectively. The beginning of the middle ridge is shifted slightly forward 
on the energy scale (in comparison with the outer ridges). Looking from the opposite 
side (corresponding to (3"1 < 0) and (./2 < 0)), we find that the single central ridge 
is also slightly shifted away from d~k = 1, indicating a slight frustration of  the system 
at low temperatures (without macroscopic residual entropy). When R is increased, the 
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Fig. 6. The DOS surfaces for the square lsing model with 9 × 9 spins, with the nn and nnn interactions, for 
various positive values of  the ratio R -- J t /J2 .  The diversity of  the DOS function shapes is much greater 
than in the case of the nn Ising model situated on different lattices. 

central ridge is further shifted forward on the energy scale until it totally disappears at 
R -- 1 while, at the same time, the frustration of the antiferromagnetic case increases. 
The sharp cutoff of the DOS function, at large gk, for R = 1, indicates the appearance 
of a nonzero residual entropy of the corresponding antiferromagnet; the ground state 
energy level is highly degenerate. Further increasing R reduces the frustration, and 
for R >> 1 the effect of the presence of n n n  interactions becomes negligible (one can 
compare the R = 100 DOS surface with the surface depicted in Fig. 3(a)). 

For small negative values of R the situation is similar to that observed in the case of 
small positive R, except that now the two outer ridges, compared with the middle ridge 
for small ~k, are shifted forward on the energy scale (see Fig. 7). This is related to the 
fact that the two almost decoupled ferromagnetic sublattices mutually interact through 
weak antiferromagnetic coupling, and the ground state of the system corresponds to the 
Nrel spin configuration. On the other hand, the shape of the DOS surface on the large 
gk side again shows slight frustration of the spin system, corresponding to the fact that 
if both sublattices order antiferromagnetically (large ]J2]) then the weak ferromagnetic 
n n  bonds (that connect the sublattices) cannot all be simultaneously satisfied. Increasing 
the magnitude of R shifts the two outer ridges still forward, on the energy scale, up to 
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Fig. 7. The DOS functions for the same system as in Fig. 6, for various negative values of the ratio R. 

the point gk = 0.5, for R = 1. At the same time, looking from the large gk side, the 
frustration is increased and residual entropy is brought about. If the magnitude of R 
is further increased and the antiferromagnetic nn coupling takes over, only the central 
ridge remains on the small 6k side. The large 8k side [(J1 > 0) and (J2 < 0)] now 
becomes more interesting, since the two outer wedges take over the role of ground 
states and the residual entropy is destroyed, although the system remains frustrated (in 
the sense that the nnn bonds are not satisfied in the ground state spin configurations). 
Finally, for R ~ 0 we again arrive at the already observed nn limit (see Fig. 3(a); in 
fact, the DOS function depicted in Fig. 8(e) represents the mirror image of the DOS 
function in Fig. 7(e)). 

4.3. F i r s t  o rder  t rans i t i ons  

We conclude this section by demonstrating that the DOS function approach can be 
used not only as a graphical tool for detecting the continuous appearance (disappear- 
ance) of  spontaneous magnetization, but also as a tool for studying abrupt changes of 
magnetization. We shall show this in the case of a metamagnet (J~ < 0) and (,/2 > 0) 
in (12) [19]. The metamagnet can display either a first- or a second-order phase transi- 
tion between the paramagnetic phase and the antiferromagnetic phase depending on the 
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Fig. 8. The graphic demonstration of the existence of the first-order phase transition in the case of the 
metamagnet represented by the model Hamiltonian (11 ), with Jl/Jz = -0.1. (a) The DOS surface for the 
9 × 9 system cut by the plane --/3[~k(Ernax -- Emin)/N + 22H] (see Eq. (16)), for the choice 1//3 = 10J2 
and H = J2. (b) The negative "free energy" surface at 1//3 = 0.9J2 and H = 0.16J2. (c) The same surface 
as in (b) for H = 0.18./2. In (b), the peak at low magnetization is higher than the high magnetization peak. 
A small increase in H causes the high magnetization peak to become dominant, in (c). 

temperature, at finite values o f  the field H.  We have already drawn the DOS functions 

o f  such systems in Fig. 7. A typical example is the case R = -0 .1  (see Fig. 7(b)) .  To 

observe the first-order transition and obtain the value of  the field at which it happens, 

we calculate the "free energy surface" as described in Section 3 for the nn Ising case. 

For each set of  values of  T and H,  we subtract the plane --]3[gk(Ema× -- Emin)/N + f i l l ]  

from the DOS surface, and search for the maximum value of  the resulting surface (see 

Eq. (16)).  The subtraction is depicted in Fig. 8(a) for R = -0 .1 .  Figs. 8(c) and (d)  

show the negative of  the "free energy" for two values of  H separated by  a first-order 

line, for a fixed value of  temperature. For the lower value of  the field, the maximum 

of  the negative "free energy" appears at a very low magnetization (Fig. 8(b)),  which 

is abruptly shifted to a high magnetization (Fig. 8(c))  for the higher field value. 

We use this procedure at different temperatures below the tricritical temperature to 

locate magnetic field values for which the first-order transition occurs. As in the nn 

case, we identify the corresponding magnetization values by  locating the peak positions 

o f  the "free energy surface". Above the tricritical temperature, the "free energy surface" 

exhibits a single peak at all fields, since the transition from the paramagnetic state to 

the antiferromagnetic state is o f  second order. The magnetization at the second-order 

transition exhibits a discontinuous slope. We use this as the criterion for locating the 

field values at which the second-order transitions take place. 
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Fig. 9. The phase diagram of  the metamagnet represented by the model Hamiltonian (11), with Ji/J2 = -0.1 
obtained using the procedure described in Fig. 8 from DOS functions of  a 9 × 9 system, together with the 
corresponding phase diagram obtained from Monte Carlo simulations of  a 128 × 128 system. While the 
phase diagram obtained from the DOS functions exhibits pronounced finite size effects, it still gives a fair 
representation of the infinite system behavior. In conjunction with the more accurate (but time consuming) 
Monte Carlo method, this approach may be used for preliminary analysis of  system behavior for a wide 
range of  parameters (such as the interaction ratio in the present case of the metamagnet). 

In Fig. 9 we show the magnetization values at the first- and second-order transitions 

obtained from the procedure described. In Fig. 9 we also show the phase diagram 
obtained from Monte Carlo simulations of  a 128 x 128 system. We see that the phase 
diagram obtained from the DOS functions gives a fair representation of infinite size 
behavior, as obtained by the Monte Carlo data. 

While the Monte Carlo method provides more accurate results, the DOS functions 
can be very useful in exploring wide parameter ranges. The DOS functions are calcu- 
lated without reference to specific values of  the interactions. With minimal additional 
computational effort, the s a m e  DOS function can be used for analysis of  behavior in 
different regimes of parameter values. Thus, for models with multiple parameters, the 
DOS function calculations may be used in conjunction with Monte Carlo calculations 
to explore overall behavior. 
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5. Conclusions 

We have presented exact enumerations of the density of states functions of Ising 
systems with nn  couplings in n o n z e r o  field, for the square lattice (up to size 12 × 12), 
the triangular lattice (having up to 12 spins in the base), linear chain (having up to 
N = 128 spins), and the Sierpinski gasket (up to stage 4). We also presented the 
density of states functions (DOS) for the square lattice with nn  and n n n  interactions, 
in nonzero field, with 9 x 9 spins. 

Analyzing the scaled DOS functions for systems with nn  interactions on various 
lattices, we found that the topology of the lattice alone determines the shape of the 
DOS surface. In all cases where the model exhibits nonzero spontaneous magnetization 
at nonzero temperatures, the DOS functions are convex in the low interaction energy 
region. A simple graphic construction was then used to determine the regions of inter- 
action energy and magnetization that correspond to the equilibrium states at different 
values of temperature and field. When both the nn  and n n n  interactions are present, 
the interaction energy scale depends on the ratio R = J l / J 2 ,  resulting in different DOS 
functions for different values of R. In this case, the DOS surfaces differ from one 
another more than the DOS surfaces for systems with nn  interactions situated on 
different lattices. We studied the DOS surfaces for different positive and negative 
values of R. 

We demonstrated the existence of first-order phase transitions at finite magnetic field 
by studying the "free energy surface" obtained from the DOS surface, for different 
temperature and magnetic field values. We obtained the phase diagram of the system for 
a specific value of R using this method, and suggested how DOS function calculations 
may be used in exploring the behavior of systems in a complementary fashion to the 
well-established Monte Carlo method. In an alternate approach of using DOS function 
calculations to study critical phenomena, series expansions coefficients to large orders 
have recently been obtained from finite lattice calculations [20]. 

We note that our approach has some features in common with the "histogram Monte 
Carlo" approach [21]. These approaches are similar in that it is not necessary to make 
a new calculation for each set of parameters. For example, if one makes a Monte Carlo 
calculation of the specific heat for one temperature, then using the histogram approach, 
one can obtain the specific heat for nearby temperatures without requiring additional 
Monte Carlo calculations. In our method, a single calculation of the DOS functions 
suffices to obtain the specific heat for all temperature values (not only nearby tempera- 
tures). The advantage of the histogram Monte Carlo method is that large system sizes 
can be treated, while the advantage of our method is that it gives the full phase diagram. 
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