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We use molecular-dynamics simulations in two dimensions to investigate the possibility that a core-softened
potential can reproduce static and dynamic anomalies found experimentally in liquid water: ~i! the increase in
specific volume upon cooling, ~ii! the increase in isothermal compressibility upon cooling, and ~iii! the increase
in the diffusion coefficient with pressure. We relate these anomalies to the shape of the potential. We obtain the
phase diagram of the system and identify two solid phases: a square crystal ~high-density phase! and a
triangular crystal ~low-density phase!. We also discuss the relation between the anomalies observed and the
polymorphism of the solid. Finally, we compare the phase diagram of our model system with experimental
data, noting especially the line of temperatures of maximum density, the line of pressures of maximum
diffusion constant, and the line of temperatures of minimum isothermal compressibility.
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I. INTRODUCTION

Most liquids contract upon cooling and become more vis-
cous with pressure. This is not the case for the most impor-
tant liquid on earth, namely, water. For at least 300 years, it
has been known that the specific volume of water at ambient
pressure starts to increase when cooled below T54 °C @1#. It
is perhaps less known that the viscosity of water decreases
upon increasing pressure in a certain range of temperatures
@2#. Moreover, in a certain range of pressures, water exhibits
an anomalous increase of compressibility, and hence of den-
sity fluctuations, upon cooling. These anomalies are not re-
stricted to water but are also present in other liquids @3–5#.

In order to investigate these anomalies, we utilize com-
puter simulation of a class of potentials called ‘‘core-
softened’’ potentials, first introduced by Stell, Hemmer, and
their co-workers @6#. We define a core-softened potential as a
spherically symmetric potential that has a region of negative
curvature in its repulsive core @7#. An example of a discrete
and of a smooth core-softened potential is shown in Fig. 1.
Debenedetti et al. noted that a ‘‘softened core’’ can lead to a
density anomaly @8#, i.e., one of the anomalies found in wa-
ter. Furthermore, ab initio calculation @9# and inversion of
the experimental oxygen-oxygen radial distribution function
reveals that a ‘‘core-softened’’ potential can be considered a
realistic first-order approximation for the interaction between
water molecules @10#.

Although directional bonding is certainly a fundamental
issue in obtaining quantitative predictions for network-
forming liquids like water, it could be the case that core-
softened potentials can be the simplest framework to under-
stand the physics of those anomalies. Here we demonstrate,
by means of numerical simulations for d52, that the core-
softened potential can lead to anomalies in the density, in the
compressibility, and in the viscosity. We also offer an expla-

nation for the occurrence of these three anomalies in terms of
the shape of the potential.

The paper is organized as follows. In Sec. II, we define
the potentials studied. In Sec. III, we describe the methods of
simulations employed. In Sec. IV, we present the results re-
garding the density anomaly. In Sec. V, we discuss the rela-
tion of the structures in the solid phase and the density
anomalies. In Sec. VI, we present the results for the diffusion
anomaly and give an explanation of such an anomaly in
terms of free volume. In Sec. VII, we present the results on
the compressibility anomaly. Finally, we present the overall
phase diagram in Sec. VIII and our conclusions and com-
ments in Sec. IX.

II. DISCRETE AND SMOOTH MODELS

A. Discrete potential

The core-softened potentials that we study are shown in
Fig. 1 as a function of particle pair distance r. The discrete
potential is composed of a hard core of diameter a that has a
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FIG. 1. Discrete ~broken line! and smooth ~solid line! forms of
the core-softened potential u(r) studied here. Length parameters
a ,b ,c and energy parameters e ,l are shown.
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repulsive shoulder of width b2a at depth le and an attrac-
tive well of width c2b and depth e . The form of the func-
tion is thus

u~r !55
` , 0,r,a

2le , a,r,b

2e , b,r,c

0, r.c .

~1!

All of the results reported here for the discrete potential
are for a51, b5A2, c5A3, e52, and l50.5.

In the case of water, one can attribute the larger distance
r5b to hydrogen bonding, for which the system acquires a
low energy and expands at the same time. The inner distance
r5a , on the other hand, corresponds to a nonhydrogen
bonded energy state. Recent studies have proposed this form
of potential as the interaction between clusters of strongly
bonded pentamers of water @11#. This type of interaction is
expected to reproduce the density anomaly. The reason is
that at low pressures and at low temperatures, nearest-
neighbor pairs sit in the outer well, which has a lower en-
ergy. By increasing T, in order to gain more entropy, the
system explores a larger portion of the configurational space,
which is not probed at lower temperatures. This includes
penetrating the ‘‘soft’’ core (a,r,b), which on average
can lead to anomalous contraction upon heating.

B. Smooth potential

While the discrete potential u(r) is appropriate for deriv-
ing the closed form of the equation of state in one dimension
~1D! @5,12,13#, for simulations it is not necessarily the most
appropriate. As we will show in the next section, the smooth
version of the potential u8(r) requires a different method of
simulation from that of u(r). The potential u8(r) we use is
obtained by adding a Gaussian well to the Lennard-Jones
potential and has the form

u8~r !54e8F S s

r D r12
2S s

r D r6G
2l8e8expF2wnS r

s
2

r0

s
D nG ~2!

for r<rc and vanishes for r.rc . We use e851.0, l8

51.7, w55.0, r051.5, s51, and n52 in order to mimic
the shape of the discrete potential, as shown in Fig. 1.

III. MOLECULAR-DYNAMICS SIMULATION METHODS

The method of simulation in both the discrete and the
smooth cases is the molecular-dynamics ~MD! method. Our
simulations are performed in 2D with periodic boundary
conditions. The overall qualitative results of the simulations
for the discrete and the smooth potential are similar, while
the quantitative results differ. In what follows, we explain in
more detail the MD method used in each case.

A. Constant-volume simulation of the discrete potential

For the discrete potential @Eq. ~1!#, we use the collision
table technique @14# for N5896 disks. To each disk we as-
sign a radius a/2. We define the density r to be the ratio of
the total area of all the disks to the area of the box. Energies
are measured in units of e , temperature is calculated in units
of energy divided by the Boltzmann constant, e/kB , and the
mass of the particle is set at m51.

The average pressure is calculated using the virial equa-
tion for step potentials @14#

P5K 1

VFK1

1

2dt (
i , j

8 m~v
W

i82v
W

i!•~rW i2rW j!G L , ~3!

where K5( imv
W

i
2/2 is the total kinetic energy, N is the num-

ber of particles, ( i , j8 is the sum over the particle pairs (i , j)

undergoing a collision in the time interval dt , v
W

i and v
W

i8 are
the velocities of the particle i before and after a collision, and
rW i and rW j are the positions of the particles i and j undergoing
a collision. The angle brackets denote average over the total
period of data aquisition.

We simulate state points along constant-volume paths.
For thermalization, we use the Berendsen method of rescal-
ing the kinetic energy @14#. We thermalize the system for 105

time units, which corresponds to ;106 collisions per par-
ticle, and then acquire data for 106 time units corresponding
to ;107 collisions per particle.

B. Constant-volume simulation of the smooth potential

For the smooth version of the potential @Eq. ~2!#, we use
the velocity Verlet integrator method @14# for a system of
N52500 disks. We record the results in reduced units in
which s , e8, m, and kB are all unity. We choose rc52.5, and
the length of each MD time step dt50.01. We assign to each
particle a radius 21/6, which corresponds to the minimum of
the Lennard-Jones potential s , and we define the density r to
be the ratio of the total area of all the disks to the area of the
box.

In order to achieve a preset temperature, we use the Ber-
endsen method of rescaling the velocities @14#, resulting in
the time dependence

T~ t !5T`1@T~0 !2T`#e2t/t, ~4!

where t is a preset time constant @14#. Typical values of t
are around 104dt .

We first thermalize the system for a time Dt'10t , and
we ensure that equilibrium is attained by monitoring the time
dependence of observables like T, P, and the potential energy
U. Then we acquire data, running the system for an addi-
tional period of time at constant NVE conditions ~microca-
nonical ensemble!. We calculate P and T and we consider the
system to be in equilibrium only when the fluctuations of
these quantities are less than 1% of their average values. The
acquisition time is chosen to be more than the time it takes
for the system to equilibrate and is typically (53104)dt to
(23105)dt .
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The average simulation speed on Boston University’s SGI
Origin 2000 supercomputer was approximately 10 ms per
particle update. Each of the state points we study requires
between 8 and 16 h on one processor, and thus over 1000 h
total computational time was utilized.

C. Constant-pressure simulation of the smooth potential

In order to check that our results are not biased by such
problems as phase coexistence, which can affect constant-
volume simulations, we also perform constant-pressure
simulations in the case of the smooth potential. Constant-
pressure simulations allow us to determine more accurately
the locations of the freezing line and the density maximum.
We use the feedback method proposed by Broughton @15#,
where the dimensions of the box and the positions of the
particles are rescaled to obtain the desired pressure P. The
amount of rescaling depends on the difference between the
present pressure P(t) and the desired pressure P.

Using the Broughton method and the Berendsen method,
we gradually drive the system to the desired P and T, while
simulating under readjusting V and E conditions. We choose
pressure and temperature tolerances dP and dT less than 1%
of the desired P and T. Once P(t) and T(t) reach values
within the range P6dP and T6dT , we stop thermalization
and pressurization. If the system stays within these limits for
an interval of time of the same order of time needed to reach
the desired P and T, we conclude that the system has equili-
brated, turn off the thermalization and pressurization, and
start collecting data. During this collection period, we moni-
tor temperature and pressure to check that their average val-
ues coincide with the desired ones within an accuracy of 1%.
For our results, the time Dt needed to reach equilibrium is
usually of the order of 500 000 steps dt , so Dt'5000 in
Lennard-Jones units. Data are acquired over a period of
10Dt . We test our code by simulating a Lennard-Jones sys-
tem of 2304 disks and comparing the results with the previ-
ously known phase diagram of a 2D Lennard-Jones system.

IV. DENSITY ANOMALY

The temperature of density maximum (TMd) line is the
border of the region in the P-T plane where the liquid ex-

pands upon cooling. Figure 2 shows a set of different isobars
for the smooth potential. The TMd line corresponds to the set
of maxima along those isobars.

In the case of constant-volume simulations, the TMd line
corresponds to the minima along constant-volume paths (P
versus T graphs of Fig. 3! since for any thermodynamic
quantity X

S ]X

]T D
V

5S ]X

]T D
P

2

~]X/]P !T~]V/]T !P

~]V/]P !T
. ~5!

By substituting X5P , we find

S ]P

]T D
V

5

aP

KT
, ~6!

where

aP[V21S ]V

]T D
P

~7!

is the thermal expansion coefficient and

FIG. 2. Isobars for the smooth potential.

FIG. 3. Isochores for the smooth potential ~left panel! and the
discrete potential ~right panel!.
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KT[2V21S ]V

]P D
T

~8!

is the isothermal compressibility. Taking a derivative of Eq.
~5!, using aP50 at the TMd line, we find

S ]2P

]T2 D
V

5

V21~]2V/]T2!P

KT
. ~9!

Equations ~6! and ~9! show that since KT is always posi-
tive and finite for systems in equilibrium not at a critical
point, a minimum along the isochore is equivalent to a mini-
mum along an isobar, which is the density maximum point
TMd . Figure 3 shows the isochores for the smooth and the
discrete potentials.

To confirm that we are investigating the liquid state part
of the phase diagram, we introduce a criterion to distinguish
the liquid state from a frozen state. We determine the freez-
ing line as the location of points where isochores overlap. In
this way, we establish an approximate location for the freez-
ing line. Crossing this line from the liquid side, we find a
sharp decrease in diffusivity D coinciding with the appear-
ance of slowly decaying peaks in g(r) as a function of r,
which signals the build up of long-range correlations ~Fig.
4!, which is a characteristic of 2D solids.

We confirm the above criterion adopted to locate the
freezing lines by using isobaric simulations for the smooth
potential. Indeed, they show a sharp change of density, in
correspondence with the estimated freezing line at high pres-
sures ~Fig. 5, lower panel!. The presence of a hysteresis loop
~Fig. 6! suggests that the liquid-solid transition is first order;
however, by lowering the pressure, the loops become less
and less pronounced and eventually disappear, eliminating
the possibility of a hexatic second-order transition @16#.

For a few state points near the freezing line, we have
checked our results by simulating N52500 particles in rect-
angular boxes with aspect ratio A3/2 (Lx5A3/2Ly , with
Lx3Ly[L0

2) which accommodate triangular lattices per-

FIG. 4. Radial distribution function at high and low tempera-
tures, along the P50.48 isobar for the smooth potential. Notice
how, by lowering T, long-range correlations develop @g(r)51 if
particles at distance r are uncorrelated# and more particles are ex-
pelled from inside the soft core r;1.1 into the attractive well
r;1.5 ~inset!. As the average interparticle distance is growing upon
cooling, the system is expanding and there is hence a density
anomaly.

FIG. 5. Phases for the core-softened model ~smooth potential!.
The upper panel shows a snapshot of the liquid phase and snapshots
of different types of crystals for the solid phase at low pressures
where the freezing line is negatively sloped, and at high pressures
where the freezing line is positively sloped. Lower panel shows the
density jumps along isobars; note that the low-pressure isobar
shows a density anomaly before jumping to a low-density solid.

FIG. 6. Hysteresis loop near the freezing line for a high-pressure
isobar ~smooth potential!. The continuous line is obtained upon
heating, the dashed line upon cooling.
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fectly. This eliminates any possible artificial hindrance in
crystallization that may arise from the asymmetry imposed
by the shape of the square box.

For water, the locus of the TMd line in the P-T phase
diagram is of special interest to distinguish between different
scenarios proposed to explain its anomalies @17–19#. In Fig.
7, we see that the TMd line changes from negative slope at
high pressures to positive slope at low pressures. This
change in slope is similar to what is observed in simulating
model potentials of water like SPC/E or ST2 @17,20#. These
results suggest that the change in slope can be a general
phenomenon stemming from the general core-softened form
of the interaction in the simulation.

V. STRUCTURES IN THE LIQUID AND SOLID PHASES

Figure 5 ~upper panel! shows the different phases of the
system. In our simulations, we see that the TMd line is lo-
cated in the region of pressures where the freezing line is
negatively sloped, as in water. A density anomaly and a
negatively sloped melting line are often associated @3,21#.
This has proven to be the case for substances like water ~Fig.
8! and tellurium @5# and for some computer models @12,22#.
This association is plausible since the isobaric thermal ex-
pansion coefficient aP is related to the cross fluctuations in
volume and entropy as

aP}b^dVdS&. ~10!

Approaching a freezing line, we expect local-density fluc-
tuations to have structures similar to the neighboring solid as
they are going to trigger the liquid-solid transition. On the
other hand, the Clausius-Clapeyron relation for the slope of
the freezing line

dP

dT
5

DS

DV
~11!

implies that, if the freezing line is negatively sloped, the
solid, which has a lower entropy than the liquid, will have a
higher specific volume. Therefore, if the fluctuations in the
liquid are ‘‘solidlike,’’ aP @Eq. ~10!# will turn out to be
negative.

To distinguish different local structures in the liquid, we
plot the radial distribution function g(r) for different pres-
sures and temperatures ~Fig. 4!. As expected, at low pres-
sures cooling expels particles from the core, while increasing
pressure at fixed temperature has the opposite effect.

Since our system is two-dimensional, we can use visual
inspection to develop an intuitive picture of the possible lo-
cal structures ~Fig. 5, upper panel!. If the fluctuations in the
liquid are ‘‘solidlike,’’ near the freezing line we expect to
see local structures that resemble the structure of the nearby
solid.

We find that at low P and T, the system is frozen with a
hexagonal structure ~Fig. 9, lower left panel!. A ‘‘snapshot’’
of the system along the same isobaric line ~Fig. 9, lower right
panel! shows clearly that local patches with hexagonal order
are present in the liquid phase near the freezing line. We will
refer to this structure as the ‘‘open structure.’’ Similarly, at
high pressures the local patches in the liquid phase near the
freezing line ~Fig. 9, upper right panel! resemble the struc-
ture of the system when it is frozen at low T and high P ~Fig.
9, upper left panel!. We will refer to this as the ‘‘dense

FIG. 7. Phase diagram with the TMd , PMD , KTmin
, and freezing

line for the smooth potential ~left panel! and discrete potential ~right
panel!.

FIG. 8. Sketch of the phase diagram of water. The portion of the
TMd line that is to the left of the melting line corresponds to experi-
ments in the supercooled region of water. Notice that the presence
of a density anomaly in the region of the negatively sloped melting
line can occur in the metastable phase of the liquid. Data are ob-
tained from Ref. @2#.
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structure.’’ For the open structures, each particle has six
neighbors sitting in the deepest well, and the softened core
behaves as the effective core for the particles. The dense
structure is the next energetically favorable local arrange-
ment, with four neighbors in the external well and four in the
softened core, for which the effective core is the hard core.

VI. DIFFUSION ANOMALY

We next study the diffusion anomaly, which is another
surprising feature of water. While for most materials diffu-
sivity decreases with pressure, liquid water has an opposite
behavior in a large region of the phase diagram @2# ~Fig. 8!.
The pressures where the system has a maximum diffusivity
along isotherms define the line of the pressure of maximum
diffusivity, PMD .

We observe that our core-softened potential reproduces
this anomaly. We first measure the mean-square displace-
ment ^Dr2(t)&[^@r(t1t0)2r(t0)#2& and then the diffusion
coefficient using the relation

D5

1

2d
lim
t→`

^Dr2~ t !&

t
. ~12!

We measure ^Dr2(t)& by averaging over the starting time t0
in Eq. ~12!. We find that there is a region of the phase dia-
gram in which D increases upon increasing P ~Fig. 10!.

In order to understand the diffusion anomaly, we first note
that, for normal liquids, D decreases with P because upon
increasing P the density increases and molecules are more

constrained. As a result, the viscosity increases and hence D
decreases. In the case of water, the anomaly can be related to
the fact that increasing pressure ~and hence density! breaks
hydrogen bonds, which in turn increases the mobility of the
molecules. We present a more general explanation that can
apply equally to our radially symmetric core-softened inter-
action, which does not possess any directional bonds similar
to hydrogen bonds. The low-energy interparticle state at r
'b plays the role of nondirectional bond. Note that D is
proportional to the mean free path of particles, which in-
creases with the free volume per particle v free[v2vex ,
where vex is the excluded volume per particle resulting from
the effective hard core. At low temperatures, vex for the
dense structure is proportional to the area a2 of the hard core,
while for the open structure it is proportional to the area b2

of the soft core. Increasing P decreases v , which is the main
effect in normal liquids. For the core-softened liquid, on the
other hand, increasing P can also decrease vex by transform-
ing some of local open structures to dense structures. Since
both Dv and Dvex decrease with P and since Dv free5Dv

2Dvex , the effect of P on D depends on whether Dv or
Dvex dominates. The anomalous increase in D along the iso-
therms near the freezing line is a sign of the dominance of
the Dvex term. Thus the anomaly in D must disappear near a
certain pressure above which the average distance between

FIG. 9. Snapshots of the system ~discrete potential! in the solid
phase at high pressure ~upper left! and low pressure ~lower left!,
and in the liquid phase at high pressure ~upper right! and low pres-
sure ~lower right!. Moving along an isobar, patches of local order
similar to the low-temperature solid develop. At high pressure, the
average distance between particles ~which is the radius of the disk!

is of the order of the hard core, while in the low-pressure solid, the
distance between particles is larger, of the order of the softened
core.

FIG. 10. Diffusion coefficient D in the liquid phase for the con-
tinuous potential ~left panel! and the discrete potential ~right panel!
along various isotherms. Lines are intended as a guide for the eye.
Notice the anomalous sections of the graph, where (]D/]P)T.0.
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particles corresponds to the dense structure, and as a result
the contribution of the open structure to vex is negligible.

We verified this in our simulation by observing a corre-
spondence between the disappearance of the diffusion
anomaly and the disappearance of the peak in g(r), corre-
sponding to the open structure that is observed in real water.

VII. ISOTHERMAL COMPRESSIBILITY

In order to investigate the anomaly in isothermal com-
pressibility KT , we calculate KT at each state point using the
data in Fig. 3. In the smooth potential case, we verify these
results using

KT5 lim
q→0

S~q !

nkBT
~13!

as an alternative method @23#, where n is the number density
of the system and S(q) is the structure function and is related
to the pair correlation function via

S~q !511nE e iq•xg~x!dx. ~14!

.
We first calculate g(r) for each state point averaging over

all thermalized configurations. We then perform numerical
integration using Eq. ~14! to find S(q), and finally we ex-
trapolate S(q) to q50 and substitute in Eq. ~13! to find KT .
We show an example of the graphs for g(r) and the resulting
S(q) @normalized by the extra factors in Eq. ~13!# in Fig. 11.
From the low q tail of the curve, we find the limiting value
using Eq. ~13!.

We graph KT along isobars, as shown in Fig. 12. For large
T, the KT decreases upon increasing P. For small T, the be-
havior is the opposite and the compressibility anomaly oc-
curs. As seen for all isobars shown in Fig. 12 ~except a
low-pressure one!, KT increases by lowering T.

VIII. PHASE DIAGRAM

In water, the TMd line is negatively sloped for positive
pressures. For several models that mimic water behavior, it is
found that the TMd line has a reentrant shape, changing slope
at low or negative pressures @3#. In our simulations, we find
such a reentrant TMd line; the change of slope of the TMd
happens at positive pressures in the smooth version and at
negative pressures in the discrete case ~Fig. 7!.

FIG. 11. Averaged pair distribution function for the smooth po-
tential at P51.0,T50.7 ~upper panel!. The structure function
~lower panel!, multiplied by the factor 1/nkBT , derived by integrat-
ing g(r), where kB is the Boltzmann constant. The q→0 limit of
this function gives KT , which is around 0.1 in this case.

FIG. 12. Isothermal compressibility along isobars for the con-
tinuous potential ~left panel! and for the discrete potential ~right
panel!, computed directly from the numerical values of P(V ,T).
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Moreover, we have graphed the location of the minimum
KT point along each isobar; the locus of these points is called
the minimum compressibility line (KTmin

). Sastry and co-

workers @18#, from basic thermodynamic arguments, show
that ~i! the KTmin

line intersects the TMd line at its infinite

slope point, and ~ii! the compressibility must increase upon
cooling in the region to the left of a negatively sloped TMd

line. Our results are in agreement with both of these state-
ments ~Fig. 7!.

Theories relating D to the entropy @24# predict that the
anomalous behavior (]D/]P)T.0 is related to an anomaly
in the entropy (]S/]P)T.0. Due to the Maxwell relation
(]S/]P)T52(]V/]T)P , whenever there is a density
anomaly, an entropy anomaly occurs, and the value of en-
tropy along isotherms reaches a maximum at the T Md line.

In Fig. 7, we also show the PMD line where D reaches its
maximum with pressure. Notice that, for the continuous po-
tential, the maximum in D shifts to higher P with increasing
T. This trend is also observed in the SPC/E model of water
@25# but is in contrast with the behavior of real water ~Fig.
8!.

IX. SUMMARY

We find that core-softened potentials reproduce the quali-
tative behavior of water in many respects; in particular, the
liquid phase of core-softened potentials can show both ther-
modynamic anomalies and dynamic anomalies. Moreover, as
in real water, the freezing line changes slope from a positive
value at high pressures to a negative value at low pressures
in the P-T phase diagram and more than one solid phase is
present. The polymorphism of the solid phase and the
anomalies in the liquid phase can be related to the possibility
of different local structures due to the shape of the potential.
The phase diagrams of the discrete and the smooth versions
of the core-softened potential are similar to that of real water,
but the TMd line is shifted into liquid phase and the KTmin

line
has a smaller slope. Only for the discrete potential do we find
a PMD line with a negative slope.
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