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On the Possible Phase Transition for Two-Dimensional Heisenberg Models
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Recently the authors presented evidence suggesting the presence of a phase transition for
two-dimensional Heisenberg models with nearest-neighbor ferromagnetic interactions and S>3.
Here we further analyze the first six coefficients of the high-temperature series for the zero-
field susceptibility, and incorporate the results of recent calculations beyond sixth order into
the arguments for a phase transition. It is found that the higher-order coefficients support the
previous suggestion concerning the existence of a phase transition for S>3}, and are con-
sistent with a zero critical temperature for the particular case S=4%. Finally, two preliminary
calculations on the nature of the low-temperature phase are described. The first of these,
due to Dyson, is an intuitive generalization of spin wave theory. The other is an approxi-
mate calculation for the rectangular net within the classical Heisenberg model: Considering
this net to consist of linear chains, the intrachain interactions are treated exactly, while the
interchain interactions are treated via a molecular field approximation. Both of these calcu-
lations support the original suggestion of a phase transition for two-dimensional Heisenberg

models.

T has commonly been supposed that the two-dimen-
sional Heisenberg model with nearest-neighbor ferro-
magnetic interactions will not undergo a phase tran-
sition. Recently, the opposite has been suggested' for
spin quantum number S>3. This suggestion was based
on the behavior of the first six terms in the high-temper-
ature expansion of the zero-field susceptibility x, and
on a discussion pointing out that the previous argu-
ments against the existence of such a phase transition
are not substantial. Here we further analyze these
coefficients, and incorporate the results of recent calcu-
lations beyond sixth order into the arguments for a
phase transition for S>3. Also, some preliminary cal-
culations on the nature of the low-temperature phase
are described.

We recently pointed out that for some two-dimen-
sional lattices the ratios a;/a;; of successive terms in
the high-temperature series expansion of the zero-field
susceptibility x~ _:a:(J/ET)", when plotted against
1/1, seem to approach a straight line for large / in a
manner which is as regular as for three-dimensional
cases.! Hence the extrapolation to /=« and the identifi-
cation of the intercept with a critical temperature T
can be made as reliably in two dimensions as in three.
In Fig. 1 we plot T, vs S(S-+1) for the simple cubic
and plane triangular lattices, and note that T, varies
with .S as smoothly in two as in three dimensions. We
also find a smooth variation of the two-dimensional
critical temperature T,® with coordination number 2
for the triangular (3=6), square (3=4), and honey-
comb (z=3) lattices. This variation with S(>%) and
lattice is conveniently summarized (to within a few
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percent) by the formula
ET.®/ J=L(z—1)[25(S+1)—1]. (1)

A notable exception to the regular variation with / of
the a; occurs for the case S=4%, where the a; do not
behave sufficiently regularly to estimate T,® reliably.
However, the value of S for which the plot of T,® vs
S(S+1) in Fig. 1 passes through zero is very nearly 3,
suggesting that perhaps there is no phase transition for
S=4%. The high-temperature series has recently been
extended for S=% by methods practicable only for
S=1 123 Both Refs. 2 and 3 give numerical values of
the new coefficients only for selected three-dimensional
lattices, but Eq. (27) of Ref. 2 expresses one additional
term for the close-packed lattices, and three additional
terms for the loose-packed lattices, in terms of basic
lattice properties. From these, a7 for the triangular
lattice and a;— aq for the square and honeycomb lattices
have been calculated. Unfortunately, the additional
terms do not reduce the irregularity for the case of
S=1, and hence reliable extrapolations of the a; for
S=14% would still seem to be impossible.

There has been recent interest in taking advantage
of the tremendous simplifications which occur in the
classical Heisenberg model.® This model is of particular
interest in connection with the basic question considered
in the present paper, since it presents the same “‘di-
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T16. 1. The variation of the extrapolated estimates of the criti-
cal temperature with spin quantum number S for the (three-
dimensional) simple cubic and for the (two-dimensional) plane
triangular lattices.

lemma” as that which occurs quantum mechanically:
Arguments plausible at low temperatures lead to a
magnetization which is infinite in one and in two
dimensions, finite in three dimensions,® whereas the
high-temperature expansion coefficients strongly sug-
gest a phase transition at a nonzero temperature in two
as well as in three dimensions (but not in one). There-
fore calculations have been made’ on two-dimensional
lattices: the new coefficients obtained are a7 for the
triangular lattice and a7—as for the square and honey-
comb lattices. The additional terms in these classical
cases support the conclusion, already drawn' from the
first six terms, that there probably is a phase transition.

High-temperature expansion methods have been used
to predict not only the radius of convergence J/&T, of
the power series representation of x but also the form??®
of the divergence of x as 7—7". If one assumes the
divergence to be of the form x~(T— T,)™7, one finds'®
that for the three-dimensional cubic lattices v® (.5)=¢
1.3340.05/S. We have discovered an analogous vari-
ation with S( >1) for the square and triangular
lattices.! The results of using both the Domb-Sykes®
criterion and a related criterion {that for large I,
a1/ e ~(kT./ J)[1+(y—1)/1]} are completely summa-
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rized—to within a few percent—by vy®(S)=2.45
0.67/5%

What, then, happens for T< T,? Here we can only
discuss various possibilities. Our result that x(7)
(which is proportional to Y g { Sy Sk )r) diverges as T
approaches T, means that af 7.®, the spin correlation
function T'(R)= (S, Sz )r becomes very long-range.
For example, if we assume I'( R) « R~ for large R, our
result means that A<2 at T'=T,®. Intuitively, we
expect that x(7T) will not decrease with decreasing 7.1
If so, then x=o for all T<T.®, so that A(T) <2 for
T<T,®. This clearly includes the case of ‘“‘ordinary”
ferromagnetism, for which A\=0(T< T,). It also includes
the possibility that A>0(7<7T,), in which case the
saturation magnetization would be zero and the curve M
vs H would have an infinite derivative at =0 without
having a finite discontinuity.

We discussed with Dyson the evidence from the high-
temperature expansions that 7.®30. He has since
argued,’? on the basis of an intuitive generalization of
spin-wave theory, that M =0 for 77>0, and that at
low temperature, I'( R)~ R~ for large R, with X linear
in T.

We also considered, for the classical Heisenberg
model, an approximate calculation for the rectangular
net. Considering this net to consist of linear chains,
the intrachain interactions (J) are treated exactly,
while the interchain interactions (J’) are treated via a
molecular field approximation. This calculation gives a
spontaneous magnetization in two (and three) dimen-
sions, but not in one. The critical temperature obtained
in this calculation is nonzero for any nonzero values
of J and J', approaching zero (the correct limit)
continuously as J’/J—0; moreover, the value for the
two-dimensional square net is less than 509, larger
than the result (1) based upon high-temperature ex-
pansions.

Note added in proof: Recently Mermin and Wagner?
proved that the spontaneous magnetization is zero for
two-dimensional lattices with short-range interactions.
Consequently, the phase transition suggested by the
high-temperature expansion would have to be of the
zero-magnetization type discussed above. We note that
the Mermin-Wagner result shows that the molecular-
field-type approximation described above overestimates
the stability of long-range order, as has been known to
happen in molecular-field calculations involving small
clusters.

We wish to thank Professor F. J. Dyson for a stimu-
lating discussion.
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