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Abstract
The robustness of complex networks against node failure andmalicious attack has been of interest for
decades, whilemost of the research has focused on randomattack or hub-targeted attack. Inmany
real-world scenarios, however, attacks are neither randomnor hub-targeted, but localized, where a
group of neighboring nodes in a network are attacked and fail. In this paper we develop a percolation
framework to analytically and numerically study the robustness of complex networks against such
localized attack. In particular, we investigate this robustness in Erdős–Rényi networks, random-reg-
ular networks, and scale-free networks. Our results provide insight into how to better protect net-
works, enhance cybersecurity, and facilitate the design ofmore robust infrastructures.

The functioning of complex networks such as the internet, airline routes, and social networks is crucially
dependent upon the interconnections between network nodes. These interconnections are such thatwhen some
nodes in the network fail, others connected through them to the networkwill also be disabled and the entire
networkmay collapse. In order to understand network robustness and design resilient complex systems, one
needs to knowwhether a complex network can continue to function after a fraction of its nodes have been
removed either through node failure ormalicious attack [1–21]. This question is dealt within percolation theory
[21–24] inwhich the percolation phase transition occurs at some critical occupation probability pc. Above pc, a
giant component, defined as a cluster whose size is proportional to that of the entire network, exists; below pc the
giant component is absent and the entire network collapses. Only nodes in the giant component continue to
function after the node-removal process.

The robustness of complex networks under attack is dependent upon the structure of the underlying
network and the nature of the attack. Previous research has focused on two types of initial attack: randomattack
and hub-targeted attack. In a randomattack each node in the network is attackedwith the same probability [1–
3, 8, 10, 21]. In a hub-targeted attack the probability that high-degree nodes will be attacked is higher than that
for low-degree nodes [1, 3, 4, 7, 12]. An important feature of the network structure is its degree distribution,P(k),
which describes the probability that a node has a specific degree k. Networkswithdifferent degree distributions
behave very differently under different types of attack. For instance, the internet,which shows a power lawdegree
distribution, is extremely robust against randomattack but vulnerable to hub-targeted attack [1, 4].

However these two types of attack—random attack and hub-targeted attack—do not adequately describe
many real-world scenarios inwhich complex networks suffer fromdamage that is localized, i.e., a node is
affected, then its neighbors, and then their neighbors, and so on (seefigure 1). Examples include the effects of
earthquakes,floods, ormilitary attacks on infrastructure networks and the effects of a computer virus or
malware on computer networks. Recent occurrences of the latter include attacks carried out by cybercriminals
who create a ‘botnet’, a cluster of neighboring ‘zombie computers’ in a computer network and, by using them,
are able to damage the entire network. An understanding of the effect of this kind of attack on the functioning of
a network is still lacking.

Here wewill analyze the robustness of complex networks sustaining this kind of localized attack in order to
determine howmuch damage a network can sustain before it collapses, i.e., tofind the percolation threshold pc.
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Wealsowant to predict the fraction of nodes that keep functioning after an initial attack of a fraction of − p1
nodes, i.e., the relative size of the giant component (the order parameter), ∞P . Note that localized attack has been
studied only on specific network structures [25] or on interdependent spatially embedded networks [26], but a
general theoretical formalism for studying localized attacks on complex networks is currentlymissing.

Here we develop amathematical framework for studying localized attacks on complex networkswith
arbitrary degree distribution andwefind exact solutions for percolation properties such as the critical threshold
pc and the relative size of the giant component ∞P . In particular, we apply our framework to study and compare
the robustness of three types of randomnetworks, (i) Erdős–Rényi (ER) networks with a Poissonian degree
distribution ( = 〈 〉−〈 〉P k k k( ) e !k k ) [27], (ii) random-regular (RR) networks with a Kronecker delta degree
distribution ( δ=P k( ) k k, 0), and (iii) scale-free (SF) networkswith a power law degree distribution ( ∼ λ−P k k( ) )
[5].Wefind that the effect of a localized attack on an ERnetwork is identical to that of a randomattack. For an
RRnetwork, we find that the pc of a localized attack is always smaller (i.e.,more robust) than that of a random
attack.However, the robustness of a SF network against localized attack is found to be critically dependent upon
the power law exponent λ. Surprisingly, a critical exponent λc exists such thatwhen λ λ< c, for localized attack
the network is significantlymore vulnerable compared to random attack, with pc being larger.While for λ λ> c,
the opposite is true.

Consider a randomnetworkwith a degree distribution P(k), which indicates the probability that a node in
the network has kneighbors. The generating function of the degree distribution is defined as

= ∑ =
∞G x P k x( ) ( )k

k
0 0 [28, 29].We start from a randomly chosen ‘root’ node. All nodes in the randomnetwork

are listed in ascending order of their distances from this root node (see figure 1(a)). The shell l is defined as the set
of nodes that are at distance l from the root node [30–32].Within the same shell, all nodes are at the same
distance from the root node and are positioned randomly.

We initiate the localized attack process by removing the root node, then the nodes in the first shell, and so on.
We remove nodes in the ascending order of their distances from the root node.Within the same shell we remove
nodes randomly and, after nodes in shell l are fully removed, we begin removing nodes in shell +l 1.We
continue the localized attack process until a fraction − p1 of nodes in the entire network are removed. Thus a
‘hole’ of attacked nodes forms around the root node. The remaining p fraction of nodes in the network are those
at greater distances from the root node (see figure 1(b)). After the initial removal of − p1 fraction of the
network nodes and all links connected to them, the remaining network fragments into connected clusters. As in
percolation theory [22, 23], only nodes in the giant component (the largest cluster) are still functional. Nodes
belonging to other small clusters are considered non-functional and are also removed (see figure 1(c)). Note that

Figure 1. Schematic illustration of the localized attack process. (a) A fraction − p1 of the nodes are chosen to be removed, starting
from the root node, its nearest neighbors, next nearest neighbors, and so on (yellow represents the root node, red the other nodes to be
removed). (b) Remove the chosen nodes and the links. An attacked ‘hole’ centered around the root node is formed. (c)Only nodes in
the giant component (largest cluster) keep functioning and are left in the network. (d) Localized attack on regular lattice (here, square
lattice). For a regular latticewith → ∞N , one needs to attack all nodes in order to collapse the network, i.e., →p 0c .
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for localized attack on a regular lattice, as the number of network nodes → ∞N , →p 0c , i.e., one has to attack
order ofN nodes in the regular lattice in order to collapse the lattice (seefigure 1(d)).

Wefind that the generating function of the degree distribution of the remaining network after the localized
attack is (see supplementary information)

= + ′
′ −G x
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where p is the fraction of unremoved nodes and ≡ −f G p( )0
1 . The critical probability pc where the network

collapses and the size of the giant component ∞P p( ) for >p pc can be derived analytically from equation (1). The
generating function of the cluster sizes in the remaining network is =H x xG H x( ) ( ( ))p p p

0 0 1 , whereH x( )p
1

satisfies the transcendental equation =H x xG H x( ) ( ( ))p p p
1 1 1 and = ′ ′G x G x G( ) ( ) (1)p p p

1 0 0 [28]. By combining
equation (1) and the criterion for the network to collapse [2, 3], =′G (1) 1p

1 , wefind that pc satisfies

″ = ′−( )( )G G p G (1). (2)0 0
1

c 0

The size of the giant component S(p) as a fraction of the remaining network satisfies

= − ( )S p G H( ) 1 (1) , (3)p p
0 1

whereH (1)p
1 satisfies =H G H(1) ( (1))p p p

1 1 1 . The relative size of the giant component as a fraction of the original
network is =∞P p pS p( ) ( ).

We apply the abovemathematical framework to three types of complex networks: ER networks, RR
networks, and SF networks, and compare the results of a localized attackwith those of a randomattack.

For an ERnetworkwith an average degree〈 〉k , the degree distribution follows a Poissonian distribution
= 〈 〉−〈 〉P k k k( ) e !k k and the corresponding generating function of degree distribution is = 〈 〉 −G x( ) e k x

0
( 1).

From equation (1) we have = 〈 〉 −G x( ) ep p k x
0

( 1), which is the same as the generating function of the degree
distribution for the remaining network after a randomattack. Thus the effect of a localized attack is exactly the
same as that of a random attack on an ERnetwork (see figure 2(a)), and the critical threshold is = 〈 〉p k1c . The

size of the giant component ∞P p( ) satisfies = −∞ −〈 〉 ∞P p p( ) (1 e )k P p( ) . In an RRnetwork each node is connected
to k0 other nodes randomly and the generating function of the degree distribution is =G x x( ) k

0
0. Using

equation (2)we find that the critical threshold for a localized attack on anRRnetwork is

= − − −( )p k 1 . (4)c 0

k
k

0
0 2

Note that for an RRnetwork under randomattack the critical threshold is = − −p k( 1)c 0
1. Thus, for >k 20 ,

pc under localized attack is always smaller than pc under randomattack (see figure 2(b)). Thismeans that an RR
network ismore resilient against localized attack than against randomattack.When ≫k 10 , random and
localized attacks have the same critical threshold ( = −p k1 ( 1)c 0 ), since in this limit every node is a neighbor of

the root node and there is no difference between randomand localized attacks. Since = ≈→ −plim e 0.135k 2 c
2

0

Figure 2.Percolation transitions for (a) an ERnetwork and (b) anRRnetwork under localized attack (LA) and randomattack (RA),
with network size =N 106, average degree〈 〉 =k 4 in ER network, and =k 40 in RRnetwork. Theoretical results (solid lines) and
simulations (symbols) agree well with each other. Note that the effect of localized attack and random attack on an ERnetwork (see (a))
are identical (here, = 〈 〉 =p k1 0.25c ), while an RRnetwork (see (b)) ismore robust against localized attack compared to random
attack. The value of pc fits verywell the prediction of equation (4).

3

New J. Phys. 17 (2015) 023049 S Shao et al



and =→∞plim 0k c0 , one can see that pc for a localized attack on anRRnetwork is alwayswithin the range −(0, e )2

for all >k 20 . For >p pc, from equation (3), the relative size of the giant component ∞P p( ) satisfies

− − = − −∞ ∞
− −( ) ( )p P p p p P p p( ) ( ) . (5)k
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For a SF network the degree distribution is ∼ λ−P k k( ) ( ⩽ ⩽m k M ), wherem andM are the lower and
upper bounds of the degree, respectively, and λ is the power law exponent. The critical threshold pc and the size
of the giant component ∞P p( ) are solved numerically by using the theoretical framework developed in
equation (1) (see figure 3).Wefind that the degree heterogeneity plays an important role in the robustness of SF
networks against localized attack. The critical threshold pc and the size of the giant component ∞P p( ) for the
percolation transition of the SF network under localized attack depends on λ.Wefind that in a SF network there
is a critical value λc belowwhich a localized attack is significantlymore severe than a randomattack, butwhen
λ λ> c a randomattack ismore severe. Indeed, as seen in figure 3(a), for λ λ< c, pc for a localized attack is
significantly higher than for a randomattack. As λ increases and the network becomes less heterogeneous, pc
decreases and the network becomesmore robust against localized attacks. The specific value of λc depends on
other parameters, such asm,M, and〈 〉k . Infigures 3(b)–(d), we plot the size of the giant component ∞P p( ) as a
function of p and compare the results of a localized attackwith those of a random attack.One intuitive
explanation for the dependence of network robustness on λ is that, on the one hand, there is a higher probability
that higher degree nodes will bewithin the attacked hole, which accelerates the fragmentation of the SF network;
on the other, only nodes on the surface of the attacked hole are connected to the remaining network and
contribute to its breakdown, whichmitigates the fragmentation process. The total impact of the localized attack
is the result of the competition between these two effects. As λ increases and the SF network becomes less
heterogeneous, the first effect becomes less dominant and the network becomesmore robust. Our analytical
analysis shows that for an ERnetwork these two effects always compensate each other and yield equal effects
fromboth localized attack and randomattack. For an RRnetwork, on the other hand, the degrees are all the
same and therefore only the second effect exists, and the underlying network becomesmore robust against
localized attack than against randomattack.

Figure 3.Percolation properties for a SF network under localized attack (LA) and random attack (RA). Solid lines are from theory
(equation (1)) and symbols represent simulation results with =N 106,m=2, and〈 〉 =k 3. (a) Critical threshold pc as a function of
degree exponent λ.When λ → ∞, the SF network converges to anRRnetworkwith = 〈 〉 =k k 30 , so → − =p k(RA) 1 ( 1) 0.5c 0

and → − =− −p k(LA) ( 1) 0.125c 0

k
k

0
0 2 , as confirmed in simulations. Note that for λ< ⩽2 3, →p 0c in the thermodynamic limit

( → ∞N ) for random attack [2]. (b)When λ λ< c, the SF network ismore vulnerable to localized attack compared to random attack.
(c)When λ λ= c, pc for localized attack and for random attack are equal. (d)When λ λ> c, the SF network ismore robust against
localized attack compared to randomattack.
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Wealso investigate the robustness of real-world networks against localized attack and random attack using a
peer-to-peer computer network [33] and a global airline route network [34]. The real-world data proves the
feasibility of ourmodel, as shown in supplementary information.

To conclude, we have developed amathematical framework for studying the percolation of localized attacks
on complex networks with an arbitrary degree distribution. Using generating functionmethods, we have solved
exactly for the percolation properties of randomnetworks under localized node removal. Our results show that
the effects of localized attack and randomattack on an ERnetwork are identical.While a RRnetwork ismore
robust against localized attack than against randomattack, the robustness of a SF network depends on the
heterogeneity of the degree distribution.When λ λ< c, the SF network is found to be significantlymore
vulnerable with respect to localized attack compared to randomattack.When λ λ> c, the opposite is true. Our
results can provide insight into understanding the robustness of complex systems and facilitate the design of
resilient infrastructures.
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