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Abstract

The robustness of complex networks against node failure and malicious attack has been of interest for
decades, while most of the research has focused on random attack or hub-targeted attack. In many
real-world scenarios, however, attacks are neither random nor hub-targeted, but localized, where a
group of neighboring nodes in a network are attacked and fail. In this paper we develop a percolation
framework to analytically and numerically study the robustness of complex networks against such
localized attack. In particular, we investigate this robustness in Erd6s—Rényi networks, random-reg-
ular networks, and scale-free networks. Our results provide insight into how to better protect net-
works, enhance cybersecurity, and facilitate the design of more robust infrastructures.

The functioning of complex networks such as the internet, airline routes, and social networks is crucially
dependent upon the interconnections between network nodes. These interconnections are such that when some
nodes in the network fail, others connected through them to the network will also be disabled and the entire
network may collapse. In order to understand network robustness and design resilient complex systems, one
needs to know whether a complex network can continue to function after a fraction of its nodes have been
removed either through node failure or malicious attack [1-21]. This question is dealt within percolation theory
[21-24] in which the percolation phase transition occurs at some critical occupation probability p.. Above p., a
giant component, defined as a cluster whose size is proportional to that of the entire network, exists; below p. the
giant component is absent and the entire network collapses. Only nodes in the giant component continue to
function after the node-removal process.

The robustness of complex networks under attack is dependent upon the structure of the underlying
network and the nature of the attack. Previous research has focused on two types of initial attack: random attack
and hub-targeted attack. In a random attack each node in the network is attacked with the same probability [1—
3,8,10,21].Inahub-targeted attack the probability that high-degree nodes will be attacked is higher than that
forlow-degree nodes [1, 3,4, 7, 12]. Animportant feature of the network structure is its degree distribution, P(k),
which describes the probability that a node has a specific degree k. Networks with different degree distributions
behave very differently under different types of attack. For instance, the internet, which shows a power law degree
distribution, is extremely robust against random attack but vulnerable to hub-targeted attack [ 1, 4].

However these two types of attack—random attack and hub-targeted attack—do not adequately describe
many real-world scenarios in which complex networks suffer from damage thatis localized, i.e., anode s
affected, then its neighbors, and then their neighbors, and so on (see figure 1). Examples include the effects of
earthquakes, floods, or military attacks on infrastructure networks and the effects of a computer virus or
malware on computer networks. Recent occurrences of the latter include attacks carried out by cybercriminals
who create a ‘botnet’, a cluster of neighboring ‘zombie computers’ in a computer network and, by using them,
are able to damage the entire network. An understanding of the effect of this kind of attack on the functioning of
anetwork is still lacking.

Here we will analyze the robustness of complex networks sustaining this kind of localized attack in order to
determine how much damage a network can sustain before it collapses, i.e., to find the percolation threshold p..
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Figure 1. Schematic illustration of the localized attack process. (a) A fraction1 — p of the nodes are chosen to be removed, starting
from the root node, its nearest neighbors, next nearest neighbors, and so on (yellow represents the root node, red the other nodes to be
removed). (b) Remove the chosen nodes and the links. An attacked ‘hole’ centered around the root node is formed. (¢) Only nodes in
the giant component (largest cluster) keep functioning and are left in the network. (d) Localized attack on regular lattice (here, square
lattice). For a regular lattice with N — co, one needs to attack all nodes in order to collapse the network, i.e., p. — 0.

We also want to predict the fraction of nodes that keep functioning after an initial attack of a fractionof 1 — p
nodes, i.e., the relative size of the giant component (the order parameter), B,. Note that localized attack has been
studied only on specific network structures [25] or on interdependent spatially embedded networks [26], buta
general theoretical formalism for studying localized attacks on complex networks is currently missing.

Here we develop a mathematical framework for studying localized attacks on complex networks with
arbitrary degree distribution and we find exact solutions for percolation properties such as the critical threshold
p.and the relative size of the giant component B,,. In particular, we apply our framework to study and compare
the robustness of three types of random networks, (i) ErdGs—Rényi (ER) networks with a Poissonian degree
distribution (P (k) = e~®(k)*/k!) [27], (ii) random-regular (RR) networks with a Kronecker delta degree
distribution (P (k) = 8y x,), and (iii) scale-free (SF) networks with a power law degree distribution (P (k) ~ k™)
[5]. We find that the effect of alocalized attack on an ER network is identical to that of a random attack. For an
RR network, we find that the p. of alocalized attack is always smaller (i.e., more robust) than that of a random
attack. However, the robustness of a SF network against localized attack is found to be critically dependent upon
the power law exponent A. Surprisingly, a critical exponent A, exists such thatwhen 4 < A, for localized attack
the network is significantly more vulnerable compared to random attack, with p_being larger. While for 1 > A,
the opposite is true.

Consider arandom network with a degree distribution P(k), which indicates the probability that a node in
the network has k neighbors. The generating function of the degree distribution is defined as
Gy(x) = Z];";O P (k)x* [28,29]. We start from a randomly chosen ‘root’ node. All nodes in the random network
are listed in ascending order of their distances from this root node (see figure 1(a)). The shell /is defined as the set
of nodes that are at distance [ from the root node [30-32]. Within the same shell, all nodes are at the same
distance from the root node and are positioned randomly.

We initiate the localized attack process by removing the root node, then the nodes in the first shell, and so on.
We remove nodes in the ascending order of their distances from the root node. Within the same shell we remove
nodes randomly and, after nodes in shell / are fully removed, we begin removing nodes in shell/ + 1. We
continue the localized attack process until a fractionl — p of nodes in the entire network are removed. Thus a
‘hole’ of attacked nodes forms around the root node. The remaining p fraction of nodes in the network are those
at greater distances from the root node (see figure 1(b)). After the initial removal of 1 — p fraction of the
network nodes and all links connected to them, the remaining network fragments into connected clusters. As in
percolation theory [22, 23], only nodes in the giant component (the largest cluster) are still functional. Nodes
belonging to other small clusters are considered non-functional and are also removed (see figure 1(c)). Note that
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Figure 2. Percolation transitions for (a) an ER network and (b) an RR network under localized attack (LA) and random attack (RA),
with network size N = 10°, average degree (k) = 4 in ER network, and ko = 4 in RR network. Theoretical results (solid lines) and
simulations (symbols) agree well with each other. Note that the effect of localized attack and random attack on an ER network (see (a))
areidentical (here, p = 1 / (k) = 0.25), while an RR network (see (b)) is more robust against localized attack compared to random
attack. The value of p fits very well the prediction of equation (4).

forlocalized attack on a regular lattice, as the number of network nodes N — oo, p — 0,ie.,one has to attack
order of N nodes in the regular lattice in order to collapse the lattice (see figure 1(d)).

We find that the generating function of the degree distribution of the remaining network after the localized
attack is (see supplementary information)

Pix) = L Go(f) .
G§ (x) GO(f)GO[f+ e x=1| (1)

where p is the fraction of unremoved nodes and f = G, ' (p). The critical probability p. where the network
collapses and the size of the giant component P, (p) for p > p can be derived analytically from equation (1). The

generating function of the cluster sizes in the remaining network is Hf (x) = xG{ (H{ (x) ), where HY (x)
satisfies the transcendental equation HY (x) = xGf (Hf (x)) and Gf (x) = G (x)/G,’ (1) [28]. By combining
equation (1) and the criterion for the network to collapse [2,3],G,” (1) = 1, we find that p, satisfies

Gi(Gi'(r)) = Go (D). 2)

The size of the giant component S(p) as a fraction of the remaining network satisfies
S(p) =1- G (HP (1)), (3)

where H (1) satisfies Hf (1) = G (HP (1) ). The relative size of the giant component as a fraction of the original
networkis B, (p) = pS (p).

We apply the above mathematical framework to three types of complex networks: ER networks, RR
networks, and SF networks, and compare the results of a localized attack with those of a random attack.

For an ER network with an average degree (k), the degree distribution follows a Poissonian distribution
P (k) = e~ (k)*/k! and the corresponding generating function of degree distribution is G (x) = (&=,
From equation (1) we have G{ (x) = e?®?*=1 which is the same as the generating function of the degree
distribution for the remaining network after a random attack. Thus the effect of alocalized attack is exactly the
same as that of a random attack on an ER network (see figure 2(a)), and the critical thresholdis p = 1 / (k). The

size of the giant component By, (p) satisfies P, (p) = p(1 — e~ ¥&(P)), Tn an RR network each node is connected

to ko other nodes randomly and the generating function of the degree distribution is G, (x) = x*°. Using
equation (2) we find that the critical threshold for alocalized attack on an RR network is

ko

n = (k- 1), @

Note that for an RR network under random attack the critical thresholdis p. = (ko — 1)~ Thus, forky > 2,
pcunder localized attack is always smaller than p. under random attack (see figure 2(b)). This means thatan RR
network is more resilient against localized attack than against random attack. When ko > 1, random and
localized attacks have the same critical threshold (p = 1 / (ko — 1)), since in this limit every node is a neighbor of

the root node and there is no difference between random and localized attacks. Since limy,,p = €7* ~ 0.135
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Figure 3. Percolation properties for a SF network under localized attack (LA) and random attack (RA). Solid lines are from theory
(equation (1)) and symbols represent simulation results with N = 10°, m =2,and (k) = 3. (a) Critical threshold p. as a function of
degree exponent 1. When /1,0—> 0, the SF network converges to an RR network with kg = (k) = 3,50 p (RA) — 1/(ko—1) =05
and p (LA) = (ko — 1) k-2 = 0.125, as confirmed in simulations. Note thatfor2 < A < 3, p — 0 in the thermodynamic limit

(N — o0) for random attack [2]. (b) When 4 < A, the SF network is more vulnerable to localized attack compared to random attack.
(c) When 1 = 4, p. forlocalized attack and for random attack are equal. (d) When 2 > A, the SF network is more robust against
localized attack compared to random attack.

andlimy,_, .y = 0, one can see that p for alocalized attack on an RR network is always within the range (0, e?)
forallky > 2.For p > p,from equation (3), the relative size of the giant component R, (p) satisfies

ko-1 ko-1

(b= Be(p) )" = pio = (p = Re(p)) © = p'Fi". )

For a SF network the degree distribution is P (k) ~ k™ (m < k < M), where m and M are the lower and
upper bounds of the degree, respectively, and A is the power law exponent. The critical threshold p. and the size
of the giant component B, (p) are solved numerically by using the theoretical framework developed in
equation (1) (see figure 3). We find that the degree heterogeneity plays an important role in the robustness of SF
networks against localized attack. The critical threshold p. and the size of the giant component B, (p) for the
percolation transition of the SF network under localized attack depends on 4. We find that in a SF network there
is a critical value 4. below which alocalized attack is significantly more severe than a random attack, but when
A > A.arandom attack is more severe. Indeed, as seen in figure 3(a), for A < A, p. for alocalized attack is
significantly higher than for a random attack. As A increases and the network becomes less heterogeneous, p.
decreases and the network becomes more robust against localized attacks. The specific value of . depends on
other parameters, such as m, M, and (k). In figures 3(b)—(d), we plot the size of the giant component B, (p) as a
function of p and compare the results of a localized attack with those of a random attack. One intuitive
explanation for the dependence of network robustness on 4 is that, on the one hand, there is a higher probability
that higher degree nodes will be within the attacked hole, which accelerates the fragmentation of the SF network;
on the other, only nodes on the surface of the attacked hole are connected to the remaining network and
contribute to its breakdown, which mitigates the fragmentation process. The total impact of the localized attack
is the result of the competition between these two effects. As A increases and the SF network becomes less
heterogeneous, the first effect becomes less dominant and the network becomes more robust. Our analytical
analysis shows that for an ER network these two effects always compensate each other and yield equal effects
from both localized attack and random attack. For an RR network, on the other hand, the degrees are all the
same and therefore only the second effect exists, and the underlying network becomes more robust against
localized attack than against random attack.




10P Publishing

New]. Phys. 17 (2015) 023049 S Shao etal

We also investigate the robustness of real-world networks against localized attack and random attack using a
peer-to-peer computer network [33] and a global airline route network [34]. The real-world data proves the
feasibility of our model, as shown in supplementary information.

To conclude, we have developed a mathematical framework for studying the percolation of localized attacks
on complex networks with an arbitrary degree distribution. Using generating function methods, we have solved
exactly for the percolation properties of random networks under localized node removal. Our results show that
the effects of localized attack and random attack on an ER network are identical. While a RR network is more
robust against localized attack than against random attack, the robustness of a SF network depends on the
heterogeneity of the degree distribution. When 4 < A, the SF network is found to be significantly more
vulnerable with respect to localized attack compared to random attack. When A > A, the opposite is true. Our
results can provide insight into understanding the robustness of complex systems and facilitate the design of
resilient infrastructures.
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