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We study the multifractal (MF) properties of the set of growth probabilities {p,} for 3D 

off-lattice diffusion-limited aggregation (DLA). We find that: (i) the {p,} display MF scaling 

for all moments-in contrast to 2D DLA, where one observes a “phase transition” in the MF 

spectrum for negative moments; (ii) multifractality is also displayed by the p, located in a shell 

of reduced radius x E r/R,, where R, is the radius of gyration of the cluster and r the radius of 

the shell; (iii) the average value a_ of a = -In p/In M in a shell of reduced radius n in a 

cluster of mass M is a function that does not depend on the cluster mass but only on x. 

The multifractal (MF) formalism has proven to be a valuable tool in the 
study of numerous systems of statistical mechanics (for reviews, see, e.g., ref. 
[l]). In diffusion-limited aggregation (DLA) the set of growth probabilities 
{pi} forms an MF. For 2D DLA, the {pi} have been studied extensively [2]; it 
was found numerically that a “phase transition” in the MF spectrum occurs [3], 
manifesting itself in a breakdown of power-law scaling with cluster mass M for 
negative moments of the distribution of the {pi}. 

In the present study, we address the MF spectrum of 3D DLA [4]. 
Specifically, we study the distribution NM(a, x). Here, q = -In pjlln M #‘, 
x = r/R is the ratio of the distance of a growth site from the seed of the 
cluster, gand R, the radius of gyration of the cluster [5]; and N,,,,(cu, x) dx da is 
the number of growth sites with values of q in the interval (Y < q < (Y + da and 
x < xi < x + dx averaged over an ensemble of clusters of mass M. 

In a recent work [6] the integrated distribution, 

(1) 

xl Note that in the literature a is sometimes defined with respect to linear size L, i.e., 
cy = -In p/In L. Similarly, In N,(a) is sometimes resealed with respect to In L (and not In M as in 

this work). For comparisons to such work, our values for a and f(a) must be multiplied by d,. 
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was studied. The MF spectra &r(a) = In NM(~) /In N, for an ensemble of 50 3D 
off-lattice DLA clusters in the mass range 165 < M < 15 015 are displayed in 
fig. 1. Here, N, is the average number of growth sites with pi > 0 (“active” 
growth sites). We observe that f&u!) tends towards a limiting distribution f(o) 
for large M. Furthermore, the maximum value q,,,, for which f(a) is defined, is 
finite. Thus, from the definition of CY we conclude that the smallest growth 
probability pmin scales as a power-law of M, pmin - Mpclmax #'. 

In contrast, in 2D DLA a breakdown of power-law scaling of pmin was 
observed [3,7]. Ref. [8] suggests a picture for the structure of 2D DLA that 
regards the cluster as a succession of self-similar “voids”, separated by narrow 
“necks”, whose widths scale slower than the linear size of the associated 
“void”. In both 2D and 3D, necks are created by side branches of the cluster 
that grow closer until their growth probabilities become so small that no 
further narrowing occurs. The significant difference between 2D and 3D that 
causes the peculiar scaling behavior of pmin in 2D in the “void’‘-“neck” picture 
is that in 3D two branches cannot cut off a volume in the same way they can 
cut off an area in 2D and thus cannot impede growth as strongly as in 2D. 

We now consider the normalized distributions Y~~((Y, x), 

IZ~((Y, X) = NM(+ x)l c da NM(a, x) . 
J 
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Fig. 1. f,(a) - In N,((~)/ln N, for 3D DLA (from ref. [6]). Data are obtained by averaging over 
a set of 50 off-lattice 3D DLA clusters with M = 165 (m), 435 (O), 1117 (V), 2892 (A), 7502 (Cl), 

15015 (0). The data shows a tendency to converge for large M. More evidence for the absence of a 

phase transition in the MF spectrum of 3D DLA is given in ref. [6]. 

#* In ref. [6], (I_ was determined more precisely by studying explicitly the mass dependence of 

p,,.. There it was found that (Y,,, = 4.3 5 0.2. 
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We obtain the histogram N,,,,(a, x) by counting the growth sites in a shell 
around the cluster seed with radius r = xR, and small finite width Ax = 0.1. 
Two questions are addressed: (i) what is the behavior of n,(cu, x) when x is 
fixed and M varies, and (ii) what is the nature of the x-dependence of n,(a, x) 
at fixed M? 

(i) fixed x, varying M. In fig. 2 we show In n,(cu, x)lln M for the shell x = 0.4 
and 435 < M < 15 015. We observe a convergence towards a limit function, 
which is related to the MF spectrum of the {pi} in the considered shell #3. We 
observe similar behavior for other values of x. 

(ii) Jixed M, varying x. In fig. 3 we display nM(~, x) for M = 15015 and 
several x, 0.2 < x < 2.0. It is clear that the distribution depends on the location 
of the investigated shell. For shells in the interior of the cluster (small x), LY is 
shifted to larger values (smaller pi) due to the screening effects of the exterior 
parts of the cluster. 

Since the structure in the interior of the DLA cluster will undergo only very 
few changes as growth proceeds, we argue that the shape of n,(a, x) deep in 
the cluster is determined by the “frozen” structure and is only weakly 
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Fig. 2. In n,(cr, x)/In A4 for x = 0.4. Data are averaged over 6 ensembles of 50 clusters with 

M = 435 (D), 1117 (O), 2892 (V), 7502 (A), 10330 (O), 15015 (0). Observe that for large M the 

data collapses to a common form. Other values of x yield similar plots, but more asymmetric 

distributions due to the existence of a minimum value of (I [9]. 

*3 Note that the p, in one shell are not normalized and thus do not constitute a measure. Proper 

normalization would effect a shift of the n,(a, x) curves in fig. 2 to the left. Furthermore, the 

general relation of the logarithm of a normalized distribution n(o) as in figs. 2,3 and 5 to f(a) is 
f(a) = In m(a)lln M + 1. 
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Fig. 3. n,,,(Ly, x) for M = 15 015 and varying x. We display x = 0.2 (0), 0.4 (O), 0.6 (A), 0.8 (V), 
1.0 (O), 1.2 (a), 1.4 (A). Distributions in the interior of the cluster display larger values of a 

(smaller p,). 

dependent on x. We test this argument by first calculating the average value 
CL,,(X) in shells with reduced radius x and clusters of mass 435 < A4 < 15 015 
(fig. 4). The average (Ye, apparently converges to a monotonously decreas- 
ing, mass-independent function of x. Now we shift the I~~((Y, x) by (Y,,(X) to 
smaller values of (Y. The result is displayed in fig. 5. We observe a good data 
collapse for the right-hand side of the distributions. The collapse for the 

Fig. 4. a,,(x) as a function of x. Different symbols denote averages over cluster ensembles of 

different M. Here, M = 435 (M), 1117 (O), 2892 (V), 7502 (A), 10330 (Cl), 15015 (0). The last 4 

data points for each x lie very close, indicating a scaling behavior (Y,,(X) independent of M. 
However, the functional form of q(x) remains unclear. 
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Fig. 5. n,(a, x) vs. a - o,,(x) for M = 15 015. Here, the numerical value of a__(x) is used to shift 

the n,(a, x) to obtain a “data collapse”. The symbols denote the distributions for x = 0.2 (0), 0.4 

(Cl), 0.6 (A), 0.8 (V), 1.0 (0) 1.2 (N), 1.4 (A). 

left-hand side becomes worse as x increases due to the existence of a minimum 
value of (Y [9]. 

In summary, we find MF scaling in a geometric cut through the aggregate. 
We also observe (i) a common shape of the distributions n,(a, x) for small 
x -the “frozen” part of the cluster - and (ii) the existence of a mass-indepen- 
dent function a,,(x) describing the average growth probability at different 
locations in the cluster. 

Thus, the scaling properties of 3D DLA can be adequately described in the 
framework of the MF formalism, in contrast to 2D DLA, where the MF 
spectrum is more complicated. 
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