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We report a theoretical and numerical study of diffusion in two dimensions in the presence of
quenched random bias fields. The local bias field is taken to be the gradient of a random scalar
potential ¥'(i,j). We consider the special case V(i,j) =V (i) + V2(j), where the gradients of V,
and V; are chosen to be randomly =+ € with 0 <e=1. We find that asymptotically (z— oo)
the mean-square displacement grows with the time ¢ as (In¢)* just as in the one-dimensional

Sinai model.

Perhaps the simplest example of diffusion in a nonuni-
form medium is the model studied by Sinai.! Sinai con-
sidered the motion of a diffusing particle on a one-di-
mensional lattice, where the motion of the particle is
discretized in both time and space. At each site i in the
lattice there is a randomly chosen ‘“bias field” ¢;, with
—1=<g¢=<+1. A value of ¢; > 0 indicates a bias to the
right, while ¢; <O indicates a bias to the left. Thus if
(i — j) denotes the transition probability per unit time
from site i to j,

1+6
oli—i+1)= 26’,
(1)
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[— [ —]) =-=-————
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Sinai showed that if {In(1+¢;)/(1 —¢;)) =0, then the
mean-square displacement of the diffusing particle (x2),
behaves as

Here the overbar denotes averaging over walks and the
brackets denote averaging over configurations of the bias
fields ¢;. These bias fields may be chosen according to any
probability distribution function which satisfies the above
condition. In particular, we may choose the probability
distribution function P(e) =% 8(e—€p)+ +8(e+ep).
Thus each ¢; takes values = ¢p with equal probability,
with 0 <€y =<1. An example of such a configuration is
shown in Fig. 1. The limit éo— O represents a uniform
medium, in which one finds the usual diffusion law

(x2)~t. 3)

The master equation for the probability density p(i,t)
of a diffusing particle on a one-dimensional lattice is

pli,t+1)
=o(i—1,0)0(i—1—)+p(i+1,N0+1—i). (4)
Substituting the transition probabilities from Eq. (1) and

(xD,~Unt)*. 2) rearranging yields
J
plit+1)—pG,0) =+ {lpG+1,0) —pG,001 —[pG,0) —pGi— 1,001 — 3 [pGi +1,0) €41 —pG — 1,)€i-1] . (5)

This is a discretization of the equivalent Fokker-Planck
equation,

dp _pd’ _ d
pr Ddx2 e (pF) , )

where F is a continuous local drift force which corre-

40

r
sponds to the discrete bias fields ¢;, and the diffusion con-

stant D=} .

The one-dimensional Sinai model has been well stud-
jed.! =% Several investigators have also studied models of
diffusion in two dimensions with quenched random bias
fields. The two-dimensional problem is fundamentally
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FIG. 1. A one-dimensional lattice with local bias fields ¢; in-
dicated by arrows. A right arrow indicates ¢; = + &o; a left arrow
indicates ¢; = — ¢.

more complicated, because walkers may circumvent bar-
riers and wells instead of going through them. Marinari
et al.” introduced a two-dimensional model of diffusion
with tunable random bias fields. To each site on a square
lattice they assigned four random variables Q;, and then
defined #;, the transition probability in each direction j, as

Q¥
- - )
MEI(QM)

Here Q; are random variables in the range 0<Q; <1,
and K is an adjustable parameter which tunes between the
simple random walk (K=0) and the deterministic walk
(K— ). In the latter case, at each site one direction J
will have n; =1, and the walk is therefore deterministic.
Marinari et al.” carried out numerical simulations which
showed that for K =1 and 2 there is normal diffusion with
(xD~1t, and for K =7, anomalous diffusion with {(x2)
~1%5, For even higher K, the results appeared to be con-
sistent with the one-dimension Sinai-model result {x2)
~(nz)* Thus they suggested that this two-dimen-
sional model obeyed the same scaling law as the one-
dimensional model. However, the authors warned that
the calculations were not conclusive and that analytic in-
vestigation was necessary.

Fisher® and Luck® argued that these results were
perhaps not entirely correct. They showed that two is the
upper critical dimension for random walks in the presence
of a nonsingular spatially random bias field, or drift force.
That is, above two dimensions, they predicted convergence
to normal diffusive behavior, (x%)~t. In two dimensions
they predicted universal logarithmic corrections. These
conclusions were based on a renormalization-group expan-
sion about the limit of weak disorder. Fisher noted that
these results might not be valid in the limit of a singular
distribution of hopping probabilities, which could, in prin-
ciple, explain the discrepancy between the theoretical pre-
dictions and the numerical simulations of Marinari et al.”’
discussed above.

Later, Fisher e a extended these calculations to
consider spatially random drift forces of different types.
They found a variety of different behaviors. For a purely
transverse, or divergence-free drift force, they found
superdiffusive behavior,

(xD~tUne) V2, ®8)

For a purely longitudinal, or curl-free drift force, they
predicted subdiffusive behavior, and conjectured that it
might take the form

(x5 ~texpl—c(lnt) ("=2/(=D] )

Here c is a universal constant, and 7 is the order of the un-
known next term in the recursion relation calculated in

7

1 10

Ref. 10. They predicted that if the drift force has in-
dependent divergence-free and curl-free parts, then the
behavior would be diffusive with logarithmic corrections.
They found subdiffusive behavior if the two components of
the force are parallel and perpendicular to the gradients of
a scalar potential.

An example of diffusion with a divergence-free drift
force is the diffusion of light particles in an incompressible
fluid which flows through a disordered porous medium.!!
Diffusion with a curl-free drift force is perhaps more com-
mon in nature; an example is diffusion of a particle on a
rough surface in the presence of gravity or the diffusion of
a charged particle in a disordered electric potential.

The situation in more than one dimension is less clear
than the one-dimensional case, where the Sinai result is
exact and its generalizations can be obtained.!? Exactly
soluble models may therefore play an important role in
understanding the origin of the physical behaviors that
may be encountered in higher dimensions.

Here we introduce a model of diffusion in two dimen-
sions on a discrete lattice in the presence of a random po-
tential ¥'(i,j) which has the symmetry

V3G, j))=v,@)+V,(). (10)

V1(i) is a one-dimensional random potential with gra-
dients ¢; randomly distributed according to

Ple)=%16(e—e)+ 16(e+e), 0=<e=<1. (11)

That is, the gradients of V(i) take on the values =+ ¢
with equal probability. ¥,(j) is equivalently constructed.

(a)

2c,

FIG. 2. (a) A realization of the one-dimensional random po-
tential ¥1(i). (b) A realization of the two-dimensional random
potential V'(i,j) =V (i) +V1(j), shown as a contour map. Lo-
cal maxima are marked by a plus sign and local minima by a
square. The maxima and minima lie in rows and columns. A
saddle point occurs where contour lines cross. Saddle points are
found at the intersection of a row of maxima (minima) with a
column of minima (maxima).
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A typical realization of ¥'1(i) is shown in Fig. 2(a), and a
typical realization of the two-dimensional potential V' (i, j)
is shown in Fig. 2(b) as a contour map. This potential,
visualized as a surface, has several unusual properties.
Because the local gradient is everywhere = ¢, even and
odd values of V(i,j)/€o fall in a checkerboard pattern.
Local maxima fall in unevenly spaced rows and columns,
as do local minima. A saddle point is found at each inter-
section of a row of maxima with a column of minima, and
at each intersection of a row of minima with a column of
maxima. Because of the way in which the surface is con-
structed, the spacing m between a row of minima and a
row of maxima is randomly distributed according to the
probability distribution P(m) = (3 )™.
A diffusing particle on this surface is assigned the tran-
J
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sition probabilities
w0, j— kD= {1+VG,[)—V(k,D}, (12)

where (i,j) and (k,l) are nearest-neighbor sites. The
particle has a nonzero ‘“‘staying probability” «(i,j— i,j)
when the sum of the transition probabilities to the
nearest-neighbor sites is less than unity.

Note that the limit o =0 corresponds to the simple ran-
dom walk. In the limit €o=1, all “uphill” steps are for-
bidden and all “downhill” steps have equal probability.
Thus a diffusing particle will inevitably become per-
manently trapped in a local minimum.

The master equation describing the evolution of the
probability density p(i,j) according to Eq. (12) is

pr+1G,J) -(E)p,(k,l) T+v,D—vG, D +p,G,5) [1 _<k>:1> T0+va, ) —V(k,I)]] , (13)

where the sums on (k,/) are over nearest neighbors of (i,j). The first term on the right-hand side represents the inflow of
particles from nearest-neighbor sites, while the second term represents the particles that stayed at (i,;) from time ¢ to
t +1. Rearrangement yields

PG D =p G D=t T D =p P+ T lo: ke ,D+o G 1 py— vl (14)

() 2

Thus in two dimensions we again find a discretized version
of the Fokker-Planck equation for diffusion with drift
force F,

2 - pv?p—v- (Fp). 1s)
Here D= 3 is the diffusion constant, and F= — 5 VV is
the local drift force. In higher dimensions d, D =2 " @+n
and F=—(2~9)vy. 13

To prove that {(x 2~ (Inz)*, we first carry out a separa-
tion of variables for Eq. (15). The calculation may be
carried out in either the discretized or the continuum
language. For convenience we employ the continuum no]-

2 d2P2 dp:

dy?

d291
dx?

dpz dpl
—+p,— =D
P1 di P2 di

P2 +p —p2

dx

Dividing both sides by p;p, and further rearrangement
yields the separated equations

dpl _ d(p1F|)

dp)
— =] s
dx

dt dx?
dp> dp, d(poF,)
— =D ——
dt dy? dy
Thus, the two dimensions in the problem have been decou-

pled; both p; and p, obey the one-dimensional Fokker-
Planck equation, Eq. (6). Therefore, we conclude that

(D ={xD~nt)*. (21)

Thus the mean-square displacement {x2+y2)~ (Int)*,
and we see that this two-dimensional system has the same
scaling behavior as the original one-dimensional Sinai
model.

(20)

——Fitp——

T
tation. Recall that the two-dimensional potential V(x,y)
has the symmetry V(x,y) =V ;(x)+V,(y). The drift
force F may be written as

F=F,(x)x+F,(y)y, (16)
where
1 dVi 1 dV»
Fix)=—+ %71 -1472
1(x) 4 dr Fy(y) 2 dy a7

The probability density p(x,y) may be written as
p(x,y) =p1(x)p2(y) . 18)
Substituting Egs. (16) and (18) into Eq. (15) we find

dF,

eyt p,—2t 19
2, Fte g (19)

dp; dF ]
—P1 .

dx

Monte Carlo simulations were carried out to confirm
this result. Realizations of the potential ¥ (i,j) such as
the one shown in Fig. 2(b) were generated, and then ran-
dom walkers were released and allowed to diffuse accord-
ing to Eq. (1). The system size was chosen to be large
enough so that no walker reached the system boundaries.
This process was carried out for different values of p. In
each simulation 600 configurations of V(i,j) were gen-
erated, and on each configuration 512 walks of 100000
steps each were carried out. Thus the total number of
walks generated for each value of ¢ is 512x600
=307 200.

Figure 3 shows the mean-square displacement {x 2+ y 2)
vs (Int)* for €9=0.7 and €p=0.9. In the latter case, con-
vergence to a straight line clearly occurs. In the former,
the numerical evidence as it stands does not permit an
unambiguous conclusion. However, it is possible to see
convergence of higher moments of the displacement. Fig-
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FIG. 3. Simulation results for the mean-square displacement
x7+yD vs (Inz)*. Shown is eo=0.7 (curve a) and €o=0.9
(curve b). The predicted convergence to linear behavior is ob-
served.

o 5000

ure 4(a) shows the square of the characteristic length for
several different momentsg /of the displacement for € =0.5.
Plotted is {(x24+y2)7% "% vs (Int)* for g=2, 4, and 6.
Convergence to the expected linear behavior is found for
g =4 and 6, but not for g =2, in good agreement with the
previous findings. Note that all the figures are biased to
the hypothesis of a (Inz)* behavior. This result is expect-
ed since it was shown'# that for the one-dimensional Sinai
model (without correlation), all moments scale as
(x9)'/4~]n*. This method of studying moments is quite
sensitive to deviations from the expected behavior. We
have also replotted the identical set of data on double-
logarithmic scale to test for possible power-law behavior.
The results are shown in Fig. 4(b) and clearly do not sup-
port a power-law behavior.

The results of Marinari et al. 7 leading to Sinai-type be-
havior of the mean-square displacement at large K are in
contradiction with the results of Fisher et al.'® This con-
tradiction arises because the model studied in Ref. 7 falls
into the class of models discussed in Ref. 10. In the
present article we have presented a model that has exactly
a Sinai-type behavior, although we assume curl-free
forces. The difference between our results and the results
of Ref. 10 is due to the long-range correlations between
the local fields in our model, as opposed to the short-range
correlations appearing in Ref. 10.

In summary, we have studied diffusion in two dimen-
sions in the presence of a disordered potential ¥ (x,y) with
the symmetry V(x,y) =V (x)+V,(y). Here V;(x) and
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FIG. 4. (a) Simulation results with € =0.5 for several dif-
ferent moments of the displacement {(x 2+ y2)¢ %% vs (Int)*,
for g =6 (top curve), g =4 (middle curve), and g =2 (bottom
curve). Convergence to the expected linear behavior is faster for
higher values of g. (b) Same calculations plotted on double log-
arithmic paper.
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V,(y) are random one-dimensional surfaces. In the
discretized version of the problem, diffusion proceeds ac-
cording to Eq. (12), while in the continuum version, it is
governed by the Fokker-Planck equation, Eq. (15). The
mean-square displacement ((x*+y?)) scales as (Inz)*.
Hence this model represents a two-dimensional analog of
the one-dimensional Sinai model.
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