
1Scientific RepoRts | 7:44669 | DOI: 10.1038/srep44669

www.nature.com/scientificreports

Social contagions on 
interdependent lattice networks
Panpan Shu1, Lei Gao2, Pengcheng Zhao3, Wei Wang2,4,5 & H. Eugene Stanley5

Although an increasing amount of research is being done on the dynamical processes on interdependent 
spatial networks, knowledge of how interdependent spatial networks influence the dynamics of 
social contagion in them is sparse. Here we present a novel non-Markovian social contagion model on 
interdependent spatial networks composed of two identical two-dimensional lattices. We compare the 
dynamics of social contagion on networks with different fractions of dependency links and find that 
the density of final recovered nodes increases as the number of dependency links is increased. We use a 
finite-size analysis method to identify the type of phase transition in the giant connected components 
(GCC) of the final adopted nodes and find that as we increase the fraction of dependency links, the 
phase transition switches from second-order to first-order. In strong interdependent spatial networks 
with abundant dependency links, increasing the fraction of initial adopted nodes can induce the 
switch from a first-order to second-order phase transition associated with social contagion dynamics. 
In networks with a small number of dependency links, the phase transition remains second-order. In 
addition, both the second-order and first-order phase transition points can be decreased by increasing 
the fraction of dependency links or the number of initially-adopted nodes.

Real-world networks are often interdependent and embedded in physical space1–4. For example, the world-wide 
seaport network is strongly coupled to the world-wide airport network, and both are spatially embedded5. The 
nodes in a communications network are strongly coupled to the nodes in the power grid network and both are 
spatially embedded2. The Internet is a network of routers connected by wires in which the routers are grouped as 
autonomous systems (AS), and at this level the Internet itself can be seen as a set of interconnected AS embedded 
in physical space1.

We know that these interdependent spatial networks can significantly influence the dynamical processes in 
them3,4,6–10. The percolation transition can change from discontinuous to continuous when the distance in space 
between the interdependent nodes is reduced11, and the system can collapse in an abrupt transition when the 
fraction of dependency links increases to a certain value12. The universal propagation features of cascading over-
loads, which are characterized by a finite linear propagation velocity, exist on spatially embedded networks13. In 
particular, a localized attack can cause substantially more damage to spatially embedded systems with depend-
encies than an equivalent random attack14. Spatial networks are typically described as lattices15,16. Studies of the 
dynamics in interdependent lattices have found that asymmetric coupling between interdependent lattices greatly 
promotes collective cooperation17, and the transmission of disease in interconnected lattices differs as infection 
rates differ18. Recent works demonstrated a change in the type of phase transition on related social dynamics in 
interdependent multilayer networks19–22. Systematic computations revealed that in networks with interdependent 
links so that the failure of one node causes the immediate failures of all nodes connected to it by such links, both 
first- and second-order phase transitions and the crossover between the two can arise when the coupling strength 
is changed23. The results of ref. 24 demonstrated that these phenomena can occur in the more general setting 
where no interdependent links are present.

Social contagions25–30, which include the adoption of social innovations31–33, healthy behaviors34, and the 
diffusion of microfinance35, are another typical dynamical process. Research results show that multiple confir-
mations of the credibility and legitimacy of a piece of news or a new trend are ubiquitous in social contagions, 
and the probability that an individual will adopt a new social behavior depends upon previous contacts, i.e., the 
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social reinforcement effect34,36–39. A classical model for describing the reinforcement effect in social contagions 
is the threshold model40 in which an individual adopts the social behavior only if the number or fraction of its 
neighbors who have already adopted the behavior exceeds an adoption threshold. Using this threshold model, 
network characteristics affecting social contagion such as the clustering coefficient41, community structure42,43, 
and multiplexity44–46 have been explored, but the existing studies paid little attention to the dynamics of social 
contagion on interdependent spatial networks.

Here we numerically study social contagion on interdependent spatial networks using a novel non-Markovian 
social contagion model. A node adopts a new behavior if the cumulative pieces of information received from 
adopted neighbors in the same lattice exceeds an adoption threshold, or if its dependency node becomes adopted. 
We compare the dynamics of social contagion in networks when we vary the fraction of dependency links and 
find that the density of final recovered nodes increases greatly in networks when the number of dependency 
links is high. We also find that the fraction of dependency links can change the type of the phase transition. 
We use a finite-size analysis method47 to identify the type of phase transition and find that the phase transition 
is second-order when the fraction of dependency links is small and first-order when the fraction is large. In 

Figure 1. Illustration of the social contagion on the interdependent spatial network. (a) Interdependent 
spatial network composed of two 2-dimensional periodic square lattices A and B, where a node Ai in lattice A 
is randomly interconnected with a node Bj in lattice B. (b) Connected propagation with T =  3: In lattice A, the 
node Ai becomes adopted after exposing three times to the social behavior from its adopted neighbors. Here ti, tj 
and tk are any three different time steps of the dynamics confined with ti <  tj <  tk. (c) Dependency propagation: 
At some step the node Bj becomes adopted, and then the corresponding dependency node Ai adopts the social 
behavior.

Figure 2. Spatio-temporal pattern of the dynamical process and time evolution of the population densities 
on interdependent spatial networks. The paraments are chosen as N =  104, p =  0.9, ρ0 =  0.1, λ =  0.8, µ =  0.5, 
and T =  3. The colors green, red and blue represent susceptible, adopted and recovered states, respectively.
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Figure 3. Comparison of the average outbreak size R and the giant connected components of recovered 
nodes G1 among different interdependent spatial networks. (a) RA and RB vs. λ for p =  0.1 (solid and empty 
circles) and p =  0.9 (solid and empty squares). (b) GA

1 and GB
1 vs. λ for p =  0.1 (solid and empty circles) and 

p =  0.9 (solid and empty squares). The parameters are chosen as L =  100, ρ0 =  0.1 and µ =  0.5. The results are 
averaged over 102 ×  104 independent realizations in 102 different configurations of dependency links.

Figure 4. For ρ0 =  0.1, the finite-size effects on interdependent spatial networks with p =  0.1 (a,b) and p =  0.9 
(c,d). (a) RA vs. λ for p =  0.1. (b) GA

1 vs. λ for p =  0.1. (c) RA vs. λ for p =  0.9. (d) GA
1 vs. λ for p =  0.9. The solid 

lines, dash lines, dot lines, dash dot lines and dash dot dot lines respectively represent L =  50, 100, 200, 400 and 
600. We perform 102 ×  104 independent realizations on 102 different networks.
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interdependent spatial networks the fraction of initially-adopted nodes ρ0 may also affect the phase transition. 
Concretely, when we increase ρ0 the type of phase transition does not change in networks with a small fraction of 
dependency links, but changes from first-order to second-order in networks with a large fraction of dependency 
links. The phase transition points decrease when the fraction of dependency links or initially-adopted nodes 
increases.

Results
Non-Markovian social contagion model on interdependent spatial networks. Our spatial net-
work model consists of two identical two-dimensional lattices A and B of linear size L and N =  L ×  L nodes with 
periodic boundaries, as shown in Fig. 1(a). In each lattice, p fraction of nodes are randomly chosen as dependency 
nodes with two types of link, connectivity links (i.e., links between two nodes in the same lattice) and dependency 
links (i.e., links between nodes in lattice A and nodes in lattice B). The remaining 1 −  p fraction of nodes only 
have connectivity links. More details of the interdependent spatial networks can be found in the Method section.

We divide the interdependent network population into three compartments, susceptible (S), adopted (A), 
and recovered (R) nodes. We generalize the cascading threshold model40 to the interdependent spatial network, 
describe the dynamics of social contagion using the susceptible-adopted-recovered (SAR) model, and add social 
reinforcement through considering individual memory. Within the same lattice, nodes can retain their memory 
of previous information received from neighbors and adopt the new behavior if the cumulative pieces of infor-
mation received from their neighbors exceeds an adoption threshold T [see Fig. 1(b)]. We designate this type of 
behavior adoption connected infection. A node can also adopt the new behavior when its corresponding depend-
ency node becomes adopted. We designate this type of behavior adoption dependency infection [see Fig. 1(c)].

The simulations of the social contagion dynamics are implemented by using synchronous updating methods48. 
Initially, ρ0 fraction of nodes are randomly selected to be adopted (i.e., to serve as seeds) in lattice A, and we leave 
all other nodes in the susceptible state. Each node has a record mi of the pieces of received information from its 
neighbors. Initially, mi =  0 for every node. At each time step, each adopted node transmits the behavior infor-
mation to its susceptible neighbors in the same lattice with probability λ through the connectivity links. Once a 

Figure 5. Dependency of the normalized size of giant connected components on p and λ for ρ0 = 0.1. The 
colors represents the normalized size of GCC. (a) GA

1 vs. p and λ. (b) GB
1 vs. p and λ. ps indicates the critical 

fraction of dependency links that separates the second-order phase transition from first-order phase transition. 
p* indicates the critical fraction of dependency links below which the behavior information could not propagate. 
We perform 102 ×  104 independent realizations on 102 different networks.
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susceptible node i is exposed to the information from an adopted neighbor, its mi increases by one. If mi is greater 
than or equal to the adoption threshold T, the susceptible node i will become an adopted node (Here connected 
infection happens). Once node i becomes an adopted one, its susceptible dependency nodes also become adopted 
at the same time (Here dependency infection happens). Infected nodes may also lose interest in the social behav-
ior and become recovered with a probability u. When an adopted node becomes a recovered node it no longer 
takes part in the propagation of the social behavior. The time step is discrete and increases by ∆ t =  1. The dynam-
ics of social contagion evolve until there are no more adopted nodes in the interdependent spatial network. In this 
paper, T is set to 3, unless otherwise specified. Note that our model is similar to the susceptible-infected-recovered 
(SIR) epidemic model49,50 but differs in that we add the memory of received information34–36,47,51,52. Our proposed 
model of social contagion may describe the adoption of real-world social behavior. For example, a couple can dis-
cuss household products they use with their circle of friends. A wife or husband may adopt a new product if many 
of their friends have adopted it, or if either wife or husband adopts it then the other immediately adopts it as well.

Effects of the fraction of dependency links. Figure 2 shows a plot of the spatio-temporal pattern of the 
dynamical process at different stages. At t =  0 each node is either susceptible or adopted. After several steps (e.g., 
t =  8) susceptible, adopted, and recovered nodes can co-exist. As t increases (e.g., t =  15 and t =  30) recovered 
nodes gradually dominate. Figure 2 also shows the time evolution of the population densities in which the density 
of susceptible (recovered) nodes decreases (increases) with time and ultimately reaches some value. The density 
of the adopted individuals decreases initially due to the fact that the number of individuals who newly adopt the 
behavior is less than that of individuals who become recovered. Then it is advanced with the growth of newly 
adopted individual and reaches the maximum value at t ≈  12.

Figure 3 compares the dynamics of social contagion on interdependent spatial networks when p =  0.1 and 
p =  0.9. Figure 3(a) shows that when p =  0.9 the average density of final recovered nodes RA in lattice A grows 
more rapidly than when p =  0.1. When p =  0.9 the behavior information from lattice A can easily propagates to 
lattice B because the abundant dependency links allow nodes in lattice A to adopt behavior through both con-
nected infections from neighbors in the same lattice and dependency infections from the many dependent nodes 
in lattice B. The asymmetry of results in lattice A and B is due to the asymmetry of the initial condition. When 
p =  0.9 the propagation in lattice B is approximately the same as that in lattice A. When p =  0.1 the prevalence in 
lattice B is much lower than in lattice A because there are relatively few dependency links, the propagation from 

Figure 6. For ρ0 =  0.5, the finite-size effects on interdependent spatial networks with p =  0.1 (a,b) and p =  0.9 
(c,d). (a) RA vs. λ for p =  0.1. (b) GA

I  vs. λ for p =  0.1. (c) RA vs. λ for p =  0.9. (d) GA
I  vs. λ for p =  0.9. The solid 

lines, dash lines, dot lines, dash-dot lines and dash-dot-dot lines respectively represent L =  50, 100, 200, 400 and 
600. The results are averaged over 102 ×  104 independent realizations.
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lattice A to lattice B is difficult, and the small number of seeds disallow outbreaks of behavior information in lat-
tice B. Figure 3(b) shows the normalized sizes of the giant connected component (GCC) of final recovered nodes 
GA

1 and GB
1 on lattices A and B, respectively. Note that the trends of the giant connected components versus the 

transmission probability λ are similar to those of the density of final recovered nodes. Unlike when p =  0.1, both 
GA

1 and GB
1 increase abruptly at some λ when p =  0.9. These results indicate that the behaviors of GA

1 and GB
1 ver-

sus λ may be a second-order phase transition when p =  0.1 and a first-order phase transition when p =  0.9.
Figure 4 shows a finite-size analysis47 of lattice A of the type of phase transition described above. The average 

density of recovered nodes RA are nearly the same for different linear size L values, especially when the interde-
pendent network is weak [see Fig. 4(a,c)]. When p =  0.1, the normalized size giant connected component GA

1 for 
different L values begin to converge after λ ≈  0.915 [see Fig. 4(b)], which indicates that the behavior of GCC ver-
sus λ is a second-order phase transition23,24. When p =  0.9, all the curves intersect at one point [see Fig. 4(d)], and 
thus the type of phase transition will become first-order as N →  ∞ 23,24. Here the abundant dependency links 
enable the dependent node Bi of an adopted node Ai to immediately adopt the new behavior. Node Bi transmits 
the information to one of its susceptible neighbors Bu, which becomes adopted when the cumulative pieces of 
received information exceed the adoption threshold and causes the behavior to be adopted by its dependency 
node Au. This phenomenon induces cascading effects in adopting behavior, causes a large number of nodes to 
become adopted simultaneously, and contributes to the appearance of a first-order phase transition. These results 
indicate that the parameter p is a key factor in social contagion on interdependent spatial networks. We also per-
form a finite-size analysis of lattice B and find a similar phenomenon (see the Supplemental Material for details).

Variability methods53,54 can numerically determine the epidemic threshold55,56 in SIR epidemiological models. 
To determine the first-order phase transition point in a complex social contagion process, we calculate the num-
ber of iterations (NOI) required for the dynamical process to reach a steady state16,24,57 and count only the itera-
tions during which at least one new node becomes adopted. For a second-order phase transition, we calculate the 
normalized size of the second giant connected component (SGCC) of the final recovered nodes after the dynam-
ical process is complete16,24,58. In the thermodynamic limit, we obtain the second-order transition point 
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Figure 7. Dependency of the normalized size of giant connected component on parameters ρ0 and λ for 
p = 0.9. The colors represents the normalized size of GCC. (a) GA

I  vs. ρ0 and λ. (b) GB
I vs. ρ0 and λ. ρ S

0  indicates 
the critical fraction of initial adopted nodes that separates the second-order phase transition from first-order 
phase transition. The results are averaged over 102 ×  104 independent realizations.
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λ ≈ .0 903c
II  for p =  0.1 and the first-order transition point λ ≈ .0 509c

I  for p =  0.9 (see the Methods for details). 
We also present some critical phenomena in the Method section.

Figure 5 shows the dependency of GA
1  and GB

1 on different p and λ values. Both GA
1  and GB

1 increase with p 
because many dependency links enhance the ability of the nodes to access the behavior information. Using the 
behavior of GCC versus λ, we divide the λ −  p plane into different regions. Figure 5(a) shows that in lattice A 
there is a critical fraction ps of dependency links that divides the phase diagram into a second-order phase 

Figure 8. For ρ0 =  0.1, the determination of phase transition point on interdependent spatial networks with 
p =  0.1 (a–c) and p =  0.9 (d–f). (a) GA

2 vs. λ for p =  0.1. (b) λG ( )A
1

c
II  vs. N =  L ×  L for p =  0.1. (c) λ λ− L( )c

II
c
II  vs. 

1/L for p =  0.1. (d) NOIA vs. λ for p =  0.1. (e) λNOI ( )A c
I  vs N for p =  0.9. (f) λ λ−L( )c

I
c
I vs. 1/L for p =  0.9. In 

figures (a,d), the solid lines, dash lines, dot lines, dash dot lines and dash dot dot lines respectively represent 
L =  50, 100, 200, 400 and 600. We perform 102 ×  104 independent realizations on 102 different networks.
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transition region (region II) and a first-order phase transition region (region I). In region II most of the behavior 
information in lattice A propagates through contacts between neighbors. The dependency infection from lattice 
B is small because there are few dependency links and there is no abrupt increase of GA

1  with λ. In region I the 
large number of dependency links cause cascading effects in adopting behavior, cause a large number of nodes to 
simultaneously become adopted nodes, and cause a first-order phase transition. In lattice B, the λ −  p plane is 
divided into three different regions in which regions I and II indicate that the behaviors of GCC versus λ are 
first-order and second-order phase transitions, respectively [see Fig. 5(b)]. In contrast to lattice A, when p <  p* 

Figure 9. For ρ0 =  0.5, the determination of phase-transition point on interdependent spatial networks with 
p =  0.1 (a–c) and p =  0.9 (d–f). (a) GA

2 vs. λ for p =  0.1. (b) λG ( )A
1

c
II  vs. N =  L ×  L for p =  0.1. (c) λ λ− L( )c

II
c
II  vs. 

1/L for p =  0.1. (d) GA
2 vs. λ for p =  0.9. (e) λG ( )A

1
c
II  vs. N =  L ×  L for p =  0.9. (f) λ λ− L( )c

II
c
II  vs. 1/L for p =  0.9. 

In figures (a,d), the solid lines, dash lines, dot lines, dash-dot lines and dash-dot-dot lines respectively represent 
L =  50, 100, 200, 400 and 600. The results are averaged over 102 ×  104 independent realizations.



www.nature.com/scientificreports/

9Scientific RepoRts | 7:44669 | DOI: 10.1038/srep44669

there is an additional region III within which the social behavior cannot widely propagate no matter how large the 
λ value. This is because here the few dependency links produce only a few initially-adopted nodes in lattice B, and 
they can not provide sufficient contacts with adopted neighbors for susceptible nodes to adopt the behavior. Note 
that both λc

I and λc
II decrease as p increases, which indicates that the strong interdependent spatial networks are 

promoting the social contagion.

Effects of the fraction of initial seeds. All of the above results depend on the initial condition in which 
there are ρ0 =  0.1 fraction of adopted nodes. Here we further explore the effects of the initial adopted fraction on 
social contagion on interdependent spatial networks.

Figure 6 shows the propagation when there are ρ0 =  0.5 fraction of initially-adopted nodes. Figure 6(a,c) show 
that RA are approximately the same for different L values, especially when p =  0.1. Figure 6(b) shows that GA

1 for 
different L values begin to converge after λ ≈  0.334. Here the large ρ0 value provides many opportunities for sus-
ceptible nodes to receive the information. After receiving sufficient information they become adopted, and this 
eventually induces a second-order phase transition. Figure 6(b) shows that the analogy between ρ0 =  0.5 and 
ρ0 =  0.1 indicates that the type of phase transition does not change with ρ0 when p =  0.1. Note that all curves of GA

1 
also begin to converge after λ ≈  0.25 when p =  0.9, as shown in Fig. 6(d). This is because there are sufficient initial 
seeds to raise the probability of susceptible nodes becoming adopted through connected infection. The cascading 
effects from dependency links are somewhat weakened, and this leads to a second-order phase transition. The 
differences between the behaviors of GA

1 versus λ for ρ0 =  0.5 and ρ0 =  0.1 indicate that the phase transition is no 
longer first-order as ρ0 is increased when p =  0.9. The similar phenomena are also found in lattice B (see the 
Supplemental Material for details). According to the method of determining the second-order phase transition 
point, we obtain λ ≈ .0 29c

II  for p =  0.1 and λ ≈ .0 22c
II  for p =  0.9 in the thermodynamic limit (see the Methods 

for details). Some critical phenomena are presented in the Method section.
Figure 7 shows the dependency of GA

1 and GB
1 on different ρ0 and λ values when p =  0.9. Note that both GA

1 and 
GB

1 increase with ρ0 because there are many initially-adopted nodes to promote the propagation of behavior infor-
mation among neighbors. Figure 7(a) uses the behavior of GCC versus λ to show that the phase diagram is 
divided into two different regions. When ρ ρ< s

0 0 , the cascading effect caused by abundant dependency links 
strongly promotes information propagation and leads to the first-order phase transition region (region I). When 
ρ ρ> s

0 0 , the second-order phase transition region (region II) appears, since the susceptible nodes adopt the 
behavior mainly through connected infection within the same lattice and the cascading effects are weakened. 
These phenomena indicate that on strongly interdependent spatial networks the phase transition changes from 
first-order to second-order as ρ0 is increased. In addition, both the second-order and first-order phase transition 
points decrease with ρ0. This supports the findings shown in Figs 4(d) and 6(d) and indicates the important role 
of the initially-adopted fraction. Figure 7(b) shows that as in lattice A the λ −  ρ0 plane in lattice B is divided into 
two regions in which region I corresponds to the first-order phase transition and region II corresponds to the 
second-order phase transition. The phase transition points also decrease as ρ0 increases.

Discussion
We have studied in detail the social contagion on interdependent spatial networks consisting of two finite lat-
tices that have dependency links. We first propose a non-Markovian social contagion model in which a node 
adopts a new behavior when the cumulative pieces of information received from adopted neighbors in the same 
lattice exceed an adoption threshold, or if its dependency node becomes adopted. The effects of dependency 
links on this social contagion process are studied. Unlike networks with a small fraction p of dependency links, 
networks with abundant dependency links greatly facilitate the propagation of social behavior. We investigate 
the normalized sizes of GCC of final recovered nodes on networks of different linear sizes L and find that the 
phase transition changes from second-order to first-order as p increases. The first-order and second-order phase 
transitions points are determined by calculating the number of iterations and the normalized size of the second 
giant connected component, respectively. Using interdependent spatial networks, we further investigate how the 
fraction of initially-adopted nodes influences the social contagion process. We find that increasing the fraction of 
initially-adopted nodes ρ0 causes the behavior of GCC versus λ to change from a first-order phase transition to 
a second-order phase transition on networks with a large p value. If the p value of the network is small the phase 
transition remains second-order even when there are abundant initial seeds. In addition, both the first-order and 
second-order phase transition points decrease as p or ρ0 increases.

We have numerically studied the dynamics of social contagion on interdependent spatial networks. The results 
show that both the fractions of dependency links and initially-adopted node can influence the type of phase 
transition. Our results extend existing studies of interdependent spatial networks and help us understand phase 
transitions in the social contagion process. The social contagion models including other individual behavior 
mechanisms, e.g., limited contact ability27 or heterogenous adopted threshold28, should be further explored. 
Further theoretical studies of our model are very important and full of challenges since the non-Markovian char-
acter of our model and non-local-tree like structure of the lattice make it extremely difficult to describe the strong 
dynamical correlations among the states of neighbors.

Methods
Generation of the interdependent spatial networks. To establish an interdependent spatial network, 
we first generate two identical lattices A and B with the same linear size L. In each lattice all nodes are arranged 
in a matrix of L ×  L, and each node is connected to its four neighbors in the same lattice via connectivity links. 
We then randomly choose p fraction of nodes in lattice A to be dependency nodes. Once a node Ai in lattice A 
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is chosen as a dependency node, it will be connected to one and only one node Bj randomly selected in lattice B 
via a dependency link [see Fig. 1(a)]. Thus, a dependency link connects two random nodes respectively located 
in lattice A and B with probability p. Each dependency node has only one dependency link. The number of 
dependency links in the interdependent spatial network is determined by the parameter p. For simplicity, the 
interdependent networks with a large p value are defined as the strong interdependent networks, and those with 
a small p value are defined as the weak ones.

Determination of phase transition points. To locate the transition points λ L( )c
II  and λ L( )c

I  as a function 
of the network size N =  L ×  L, we study the location of the peak of SGCC and NOI, respectively. On a network 
with finite size N, NOI reaches its peak at the first-order phase transition point and SGCC reaches its peak at the 
second-order phase transition point24. In the thermodynamic limit (i.e., N →  ∞ ), the critical point λc

II and λc
I 

should fulfill λ λ− ∼ αL L( ) (1/ )c
II

c
II  with α >  0 and λ λ− ∼ βL L( ) (1/ )c

I
c
I  with β >  0, respectively59. Then, from 

the finite-size scaling theory one should obtain the scaling G1 ~ N−δ (with δ >  0) only at the second-order phase 
transition point λc

II, and a power law relation NOI ~ Nγ (with γ >  0) only at the first-order phase transition point 
λc

I.
Figure 8(a) shows that when p =  0.1, the peak of the normalized size of the second giant connected component 

in lattice A (i.e., GA
2) versus λ gradually shifts to the right as L is increased. In Fig. 8(b) we plot GA

1 versus N =  L ×  L 
for fixed λ. We obtain a power law relation ∼ − .G NA

1 0 0528 at λ = .0 903c
II . Then we fit λ λ− L( )c

II
c
II  versus 1/L by 

using the least-squares-fit method in Fig. 8(c). We find that λ λ− ∼ .L L( ) (1/ )c
II

c
II 0 8017. Figure 8(d) shows that 

when p =  0.9, the peak of NOI in lattice A (i.e., NOIA) versus λ gradually shifts to the left as L is increased. In 
Fig. 8(e) we plot NOIA versus N for fixed λ, and obtain a power law relation NOIA ~ N0.2026 at λ = .0 509c

I . We fur-
ther fit λ λ−L( )c

I
c
I  versus 1/L by using the least-squares-fit method in Fig.  8(f ), and find that 

λ λ− ∼ .L L( ) (1/ )c
I

c
I 0 9487.

We perform the similar analyses for ρ0 =  0.5, as shown in Fig. 9. Figure 9(a) shows that when p =  0.1, the peak 
of GA

2 versus λ gradually shifts to the right as L is increased. In Fig. 9(b) we plot GA
1 versus N =  L ×  L for fixed λ. 

We obtain a power law relation ∼ − .G NA
1 0 1004 at λ = .0 29c

II . Then we fit λ λ− L( )c
II

c
II  versus 1/L in Fig. 9(c). We 

find that λ λ− ∼ .L L( ) (1/ )c
II

c
II 1 092. Fig. 9(d) shows that when p =  0.9, the trend of GA

2 versus λ as L is increased 
is similar to that when p =  0.1. In Fig. 9(e) we plot GA

1 versus N =  L ×  L for fixed λ, and obtain a power law relation 
∼ − .G NA

1 0 1372  at λ = .0 22c
II .  We further f it λ λ− L( )c

II
c
II  versus 1/L  in Fig.   9(f ), and find that 

λ λ− ∼ .L L( ) (1/ )c
II

c
II 1 243.
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