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The purpose of this talk is to present a brief overview of our group's recent research 
into dynamic mechanisms of disorderly growth, an exciting new branch of condensed 
matter physics in which the methods and concepts of modern statistical mechanics are 
proving to be useful. Our strategy has been to focus on attempting to understand a single 
model system - diffusion limited aggregation (DLA). This philosophy was the guiding 
principle for years of research in phase transitions and critical phenomena. For example, 
by focusing on the Ising model, steady progress was made over a period of six decades 
and eventually led to understanding a wide range of critical point phenomena, since even 
systems for which the Ising model was not appropriate turned out to be described by 
variants of the Ising model (such as the X Y  and Heisenberg models). So also, we are 
optimistic that whatever we may learn in trying to "understand" DLA will lead to generic 
information helpful in understanding general aspects of dynamic mechanisms underlying 
disorderly growth. 

1. Growth probabilities: simulations of DLA clusters 

Like the Ising model, the rule defining DLA is simple [1]. At time 1, we 
place in the center of a computer screen a white pixel, and release a random 
walk from a large circle surrounding the white pixel. The four perimeter sites 
have an equal a priori probability Pi to be stepped on by the random walk. 
Accordingly, we write 
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Fig. 1. Off-lattice DLA cluster of 105 sites, indicating some of the "necks" that serve to delineate 
"voids." After ref. [ 17 ]. 

1 (i 1,. ,4).  (1) Pi = ~ = .. 

The rule is that  when the random walker steps on a perimeter site, it sticks 
irreversibly. This forms a cluster of  mass M -- 2, with Np -- 6 perimeter sites, 
henceforth called growth sites. Now the probabilities are not  all identical: each 
of  the growth sites of  the two tips has growth probability Pmax ~ 0.22, while 
each of  the four growth sites on the sides has growth probability Pmin ~- 0.14. 

Just because the third particle is m o r e  l ikely to stick at the tip does not mean 
that the next particle will stick on the tip. Indeed, the most that one can say 
about the cluster is to specify the growth  site probabil i ty  distr ibution (GSPD),  
i.e., the set of  numbers, 

{Pi}, i =  1 , . . . ,Np ,  (2) 

where Pi is the probability that  perimeter site ("growth site") i is the next 
to grow, and Np is the total number  of  perimeter sites (Np = 4, 6 for the 
cases M = 1, 2). The recognition that  the set of  {Pi} gives us essentially the 
m a x i m u m  amount  of  informat ion we can have about the system is connected 
to the fact that  t remendous at tent ion has been paid to these Pi. 

I f  the DLA growth rule is i terated 105 times, then we obtain a large cluster 
(fig. 1 ) characterized by a range of  growth probabilities that spans several 
orders o f  magni tude - from the tips to the i]ords - so that  histograms of  these 
growth probabilities typically use a logarithmic scale for the abscissa (fig. 2). 
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Fig. 2. The  h i s togram N ( - l n p )  for 3D DLA.  The  quant i ty  N ( - l n p ) d l n p  is the  average 
n u m b e r  o f  growth sites with growth probabil i t ies  p~ such  tha t  - l n p  < - l n p  I < - l n p  + d l n p .  
Here,  we display da ta  for 50 off-lattice clusters o f  mas s  15 015. 

Diffusion limited aggregation (DLA) has become important for describing 
a wealth of  diverse physical and chemical phenomena [2]. Recently, several 
phenomena of  biological interest have also attracted the attention of DLA afi- 
cionados. These include the growth of  bacterial colonies [3], the retinal vas- 
culature [4], and neuronal outgrowth [5]. The last example is particularly 
intriguing since if evolution chose DLA as the morphology for the nerve cell, 
then perhaps we can understand "why" this choice was made. What evolution- 
ary advantage does a DLA morphology convey? Can we use the answer to this 
question to better design the next generation of computers? Already we ap- 
preciate that a fractal object is the most efficient way to obtain a great deal of 
intercell "connectivity" with a minimum of "cell volume," so one immediate 
question is "which" fractal did evolution select, and why? 

We will save time and space by resisting the temptation at this point to "pull 
out the family photo album" to show lots of  realizations. Instead, we may refer 
the interested reader (and their non-specialist colleagues) to the album 'Les 
Formes Fractales' (and its English translation 'Fractal Forms') prepared in 
connection with a hands-on exhibition of the same name that is currently on 
view at the Palais de la Drcouverte in Paris [6]. 

As with many models in statistical mechanics, the theoretical challenge is 
as important as the experimental realizations in "hooking" theorists. And as 
with many statistical mechanical models, the defining rule in DLA is simple 
even though the consequences of  that rule are extremely rich. Understanding 
how such a rich consequence can follow from such a simple rule is indeed an 
irresistible challenge. 
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In the case of  DLA, this challenge is enhanced by the fact that - unlike 
other models with simple rules (such as the Ising model) - in DLA there is 
no Boltzmann factor so we can more easily explain and understand since one 
does not have to know any physics beforehand. Indeed, it initially surprises 
almost everyone who sees DLA develop in real time on a computer screen 
that a complex outcome (at the global level of  a "form") seems to bear no 
obvious relation to the details of  the simple rule that produced this form - at 
least, I have known no one who predicted exactly the "form" of  DLA from 
knowledge only of  the rule. 

Despite remarkable recent progress [7-14],  no genuine understanding of  
DLA has emerged. There have been attempts to measure and understand 
the distribution o f  pi ,  and its lower cutoff Pmin, as well as to understand the 
the discovery of  a "phase transition" in the behavior of  the moments of  the 
distribution, and the connection between multifractality and multiscaling [8- 
14]. However, the issue is still far from being settled. 

For example, the mass dependence Of Pmin is important in establishing the 
nature of  the phase transition. There are suggestions of exponential [10], 

Pmin "~ exp (-AMX), (3) 

power law [ 11 ] 

Pmin (L )  "~ M - s ,  (4)  

and an "intermediate" behavior [ 12 ] 

Pmin (L) ~ M -  log~ (1Ogpmin "~ -- (log M )  2 ). (5) 

Each of  these forms can be related to a possible fjord structure: 

(a) The exponential form [10] corresponds to narrow necks (of length M# 
with fl > 0). 

(b) The power law form [ 11 ] corresponds to wedge type fjords. 
(c) The "intermediate" behavior [12] can be explained in terms of a struc- 

tural model of  DLA, which has self-similar voids connected by necks, as 
explained in the next section [ 12,13 ]. 

The scaling form of the complete growth site probability distribution {Pi} is 
also of  interest. Trunfio and Alstrom [ 10 ], Mandelbrot and Evertsz [ 10 ] and 
Schwarzer et al [ 12 ] proposed different types of  possible behavior. 



258 H.E. Stanley et al. / Diffusion limited aggregation 

25 

20 

15 

Y 
10 

i , , i 

o 

o 

o 

ooo ° °  jooo° ° 

, o 
0 25 50  75 1 0 0 1 2 5 1 5 0  o 

lnZ'lS( i )  o 
o 

o 

o o 

o 
o 

o 
o 

o o 

o o o 

I I r 

101 10 2 lO s 10 4 10 5 

M 

Fig. 3. Quenched average -(lnpmin ) of the minimum growth probability Pmin in 19 2D off-lattice 
DLA clusters as a function of the cluster mass M, where 10 < M < 21 000. Note the up- 
ward curvature in the log-log representation, which indicates that Pmin decays faster than any 
power-law as function of M. The inset shows the same quantity, but plotted vs (In M)2.15; Pmin 
displays straight-line behavior from M '-~ 90 up to the maximum M = 21 000, so the functional 
dependence of Pmin on M can be written as lnpmi n ~ In 2"15 M. The error on the exponent 2.15 
is about 4-0.2. 

2. The "void-neck" model of DLA structure 

Our own group's numerical results (e.g., fig. 3) support possibility (c), and 
may provide a clue for the underlying puzzle of  understanding DLA struc- 
ture [12]. Specifically, we have proposed a "void-neck" model of  DLA [12] 
in order to explain the result (5). The void-neck model states that each fjord 
is characterized by a hierarchy of voids separated from each other by narrow 
"necks" or "gateways." The key feature of  the model are (i) the distribution of  
voids must be self-similar, and (ii) the voids are separated by necks ("chan- 
nels," or "gateways"); a random walker can pass from one void to the next 
only by passing through a gateway. 

What is the evidence supporting the void-neck model of  DLA growth dy- 
namics? 

( 1 ) First, we note that if necks "dominate", then (3) would have to be satisfied. 
The numerics rule this out. 

(2) Second, we note that if self-similar voids dominate, then (4) would have 
to be satisfied. Again, the numerics rule this out. 

(3) Photos of  large DLA clusters reveal the presence of  such voids and necks 
(fig. 1 ). Moreover, when the DLA mass is doubled, we find that outer 
branches "grow together" to form new necks (enclosing larger and larger 
voids). 
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(4) The void-neck model can be solved under the approximation that the voids 
are strictly self-similar and the gates are narrow. The solution demonstrates 
that logpmin c~ (log M )  2. 

(5) The void-neck model is consistent with a recent calculation [ 14 ] suggesting 
that DLA structures can be partitioned into two zones: 

(a) An inner finished zone, typically with r ~< Rg (where Rg is the radius 
of  gyration), for which the growth is essentially "finished" in the sense 
that it is overwhelmingly improbable that future growth will take place. 

(b) An outer unfinished zone (typically r _> Rg) in which the growth is 
unfinished. 

Thus future growth will almost certainly take place in the region r > Rg. 
1 Now 2Rg ~ ½L, where L is the spanning diameter. Hence only about 

the total "projected area" of  DLA is finished, the rest of the DLA being 
unfinished. We suggest that the finished region will be created from the 
unfinished region by tips in the unfinished region growing into juxtaposi- 
tion (thereby forming voids). The growth of  DLA is fixed by the growth 
probabilities, which are of  course largest on the tips. 

Indeed, two tips will grow closer and closer until their growth probabili- 
ties become so small that no further narrowing will occur. This observed phe- 
nomenon can be perhaps better understood if one notes that the growth prob- 
abilities {Pi} of a given DLA cluster are identical to normalized values of  the 
electric field {El} on the surface of  a charged conductor whose shape is identi- 
cal to the given DLA cluster. Thus as two arms of  the DLA "conductor" grow 
closer to each other, the electric field at their surface must become smaller 
(since Ei oc V~bi, where ~ - constant on the surface of  the conductor). That 
Ei is smaller for two arms that are close together can be graphically demon- 
strated by stretching a drumhead with a pair of open scissors. 

(1) If  the opening is big, the tips of  the scissors are well-separated and the 
field on the surface is big (we see that the gradient of the altitude of  the 
drumhead is large between the tips of the scissors). 

(2) On the other hand, if the scissor tips are close together, the field is small 
(we see that the gradient of  the altitude of  the drumhead is small between 
the scissor tips). 

3. Exactly-solvable deterministic model of DLA 

Lee et al. [13] developed a hierarchy of  deterministic fractal models de- 
signed to capture some of  the essentials in the structure of DLA. These mod- 
els, whose key ingredients are narrow necks and self-similar voids, are gener- 
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Fig. 4. Construction of a deterministic hierarchical model for DLA. (a) The generator and the 
first generation of the model; (b) the second generation; and (c) the third generation. After 
ref. [13]. 

alizations of  the model presented in refs. [ 12,13 ]. We find an analytic solu- 
tion of the growth site probability distributions for the entire family of models. 
This distribution is found to have the same form as that of DLA clusters re- 
cently measured by Schwarzer et al. [ 12], n (a, M )  ,,~ e x p [ - A a  r (In M )  -~ ], 
where n(a,M) da is the number of  growth sites with a < - l n p i / l n M  < 

+ da. The two exponents (7 = 2 + 0.3, 6 = 1.3 + 0.3) found numerically 
by Schwarzer et al. [12] to characterize the distribution, are found analyti- 
cally by Lee et al. [ 13 ] to be 2 and 1, respectively. It is possible that the form 
of the distribution and the exponents are determined only by the presence of  
the necks and self-similar voids, independent of  further details of  models. The 
agreement between the distribution (and its exponents) of DLA and the mod- 
els provides further support for the void-neck description of  the structure of  
DLA. 

The model is defined as follows. The first generation (fig. 4a), consists of  
three wedges, is the generator of  the model. In order to get the next generation, 
we replace every wedge in the first generation with the generator (fig. 4b). 
The third generation is obtained by replacing every wedge in the second gen- 
eration with the generator (fig. 4c). In general, one can obtain generation n 
by replacing all the wedges of  the generation n - 1 with the generator. 

In order to obtain the growth site probability distribution n (a, M) ,  Lee et 
al. [ 13 ] expand the distribution, using the Cauchy identity, in terms of Gauss 
polynomials. Each distribution for one Gauss polynomial "marginally" over- 
laps with all the other terms. This fact permits the re-summation of  the expan- 
sion to get a closed form for n (c~, M) .  Due to the "marginal" overlap, one can- 
not obtain the exact amplitudes for the distribution, but we find approximate 
values, which are in good agreement with exact numerical data. 
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One interesting point to emerge is that the distribution is the same (except 
amplitudes) for the entire family of  models studied in ref. [13]. Since the 
common ingredient for the entire family is a hierarchy of  self-similar "voids" 
separated by narrow necks, it is possible that the form of n (~, M )  obtained 
here is just a consequence of  the void-neck feature, and is independent of  
further details of  a model. 

4. Scaling properties of the perimeter of DLA: the "glove" algorithm 

Almost all the sites of  a fractal lie on its surface. This simple observation 
explains why fractals are of  great importance in a wide range of  disciplines. 
In biology, matter exchange takes place across membranes and often requires 
large contact areas of  the participating systems: oxygen diffuses into the blood 
in lung tissue and trees absorb nutrients through their widely branched root 
network. In chemistry, reaction rates depend on the surface that the reacting 
species expose to each other; the surface of  a catalyst plays a central role in 
catalytically controlled reactions; important for applications is also the use of  
porous media as electrodes for batteries. 

Very recently, Schwarzer et al. [15] introduced a "glove" algorithm and 
used it to carry out a systematic study of  various properties of  the DLA and 
percolation perimeters. They developed an algorithm - the "glove" method - 
which can be applied to study topological properties of any fractal (or self- 
affine) surface. In particular, the glove method can be used to determine: 

(i) the total perimeter of  a fractal, the set of  all nearest neighbor sites of  the 
fractal, and a generalization thereof to neighboring sites of  higher order 
- here Schwarzer et al. find a scaling relation which also suggests a novel 
method for the determination of  the fractal dimension of  an object; 

(ii) the accessible perimeter of  a fractal, which is the set of  the perimeter sites 
that can be reached from the exterior of  the object, and a generalization 
thereof to neighbor sites of  higher order - this quantity has been studied 
experimentally on porous media and fresh fractures, and theoretically on 
percolation dusters. 

(iii) the "lagoon"-size distribution, where "lagoons" are generalizations of  the 
notion of  voids to the case of  loopless fractals and describe the regions 
of  a fractal inaccessible to probes with a given particle size. The glove 
algorithm also enables one to identify unambiguously "necks" in a fractal 
structure. 
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Fig. 5. (a) To illustrate the construction of the g-perimeter we show the object and the 
g-perimeters with 1 ~ g ~< 3. Sites belonging to the investigated object are displayed in black 
and bear the label 0. Other numbers denote the order of the g-perimeter. (b) Lagoons are 
constructed by placing flexible gloves, one lattice unit thick, on the object. The gloves cannot 
penetrate through narrow openings. In our example, the 2-glove has "sealed" all openings, and 
we identify the enclosed space as lagoons (grey sites). After ref. [15 ]. 

4. I. Determination o f  the g-perimeter 

We begin by representing the investigated object in discretized form on a 
lattice and label its sites with the index 0 (black sites in fig. 5 ). In the first step, 
we find all the nearest-neighbor sites of  the object and label them g = 1, as 
shown in fig. 5a. Those sites that are nearest neighbors of sites with g = 1 and 
not already labeled are identified as g = 2 sites. We repeat the procedure and 
obtain g values for all sites surrounding the object (see fig. 6). The number g 
associated with every lattice site is called the topological distance of  the site to 
the object. We will use the term "g-perimeter" to refer to the set of sites with 
label g. Schwarzer et al. [15] argued that H (M, g ), the number of  sites of  the 
g-perimeter, should obey a scaling law of the form I-I (M,  g )/g ~ f (g / M  1~dr ), 

where f ( u )  ~ u -df for u ~ 0 and f ( u )  ~ const, for u ~ ~ .  Simulations 
of  21 2D off-lattice DLA clusters (and also 50 2D percolation hulls) support 
this relation. 

4.2. The g-gloves 

Next we describe the procedure to determine the "g-gloves" of the object. 
In the first step, instead of  labeling all the neighbor sites, we place a flexible 
"glove," one lattice unit thick, on the object. In general, since gloves cannot 
penetrate through the narrowest openings (less or equal to v ~  lattice constants 
wide), they cannot cover the object completely. The second glove is placed 
on the union of object and 1-glove. We iterate the covering process to obtain 
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Fig. 6. Large off-lattice DLA cluster with 50 000 sites, covered by a series o f  successive gloves 
(£ = 1,2 ,3  . . . .  ). 

g-gloves up to any desired order. Fig. 5b illustrates the glove algorithm by 
showing the gloves of order g = 1,2, 3 for a small DLA cluster. Note that the 
l-glove penetrates the "fjords" of the object but the 2-glove cannot. Unlike the 
g-perimeter, the g-glove comprises only those sites that can be reached from 
the exterior without stepping on any other site of  the g-perimeter, and so forms 
a connected subset of  the g-perimeter. Like the g-perimeter, the subsequent 
gloves explore fewer and fewer details of  the surface of the object. The g- 
perimeter and the g-glove are identical for large g (greater than the "radius" 
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of the largest "largoon", see below). 

4.3. Necks and lagoons 

Significantly, the glove algorithm can be used to extend to the case ofloopless 
fractals the notion of voids as empty spaces in multiply connected fractals. 
Imagine, e.g., a circle with a small opening of width w = 2£0, a simple example 
of a loopless object. Cover the surface with gloves, one after the other. When 
the number of gloves reaches £o, the glove cannot penetrate into the opening. 
We denote by "lagoon" the set of points left in the interior - now inaccessible 
from the exterior. The number of enclosed sites is the lagoon size s. The sites, 
where glove £0 touches itself, identify a "neck." Note that there exists a one- 
to-one correspondence of lagoons and necks, so that each lagoon has a unique 
neck width w given by w = 2£0. For the object in fig. 5b, all the necks of 
lagoons have width w = 4. Schwarzer et al. [ 15 ] found that the lagoon size 
distribution in DLA is consistent with a self-similar structure of the aggregate, 
but that even for large lagoons the most probable width of the necks that 
separate the lagoons from the exterior is very small. 

5. Multifractal scaling of 3D DLA 

In a recent work [16], the multifractal spectrum of the growth probability 
of 3D off-lattice DLA was studied. The results indicate that, in contrast to 2D 
DLA, there appears to be no phase transition in the multifractal spectrum. 
Why? In both 2D and 3D, "necks" are created by side branches in DLA that 
grow closer and closer until their growth probabilities become so small that 
no further narrowing occurs. However, in 3D, even if there are points where 
tips from different branches of the aggregate come close or meet, there is no 
significant screening of growth due to this configuration, because no volume 
is cut off from the exterior and particles can enter the cluster from a direction 
perpendicular to the loop. Simply stated, one cannot cut off a volume with 
branches in the same way one can cut off an area. Thus we interpret the 
apparent absence of a phase transition for 3D as the effect of the topological 
differences between 2 and 3 dimensions. We further note that as d increases, 
df becomes closer to d - 1; the higher d is, the less dense the clusters are, 
since p (R)  ,,~ R df-d. Thus it is tempting to conjecture that d = 2 is a "lower 
critical dimension" in the sense that there is a phase transition for d = 2 but 
power-law scaling for all d > 2. 

In sum, for 3D, even when tips from different branches are close, there is 
no significant screening of growth, since particles can enter from directions 
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perpendicular to the loop, suggesting a power-law dependence of Pmin on the 
mass M of the cluster. Thus the apparent absence of  a phase transition in 3D 
DLA can be interpreted as due to the topological difference between 2 and 3 
dimensions. We have calculated the {Pi} for 50 off-lattice 3D DLA clusters, 
and compared our analysis to the 2D case which is believed to undergo a phase 
transition. We find the 3D case is quite different. Specifically, we find 

(i) the local slopes z ( q , M )  - 0 l n Z / O  l n M  do not diverge for q < 0 as they 
do in 2D (here Z denotes the qth moment of  the distribution {Pi}), 

(ii) The Legendre transform function fL(Ot) = qa - z (where a - 0 r io  q) has 
no systematic mass dependence, as it has in 2D, and 

(iii) Pmin has a power-law singularity in M, following eq. (4), in contrast to 
the 2D case, where Pmin vanishes much faster, according to (5). 

6. Multiscaling 

However complex the above picture of DLA may seem already, there are 
even richer scaling features in this growth paradigm: DLA also exhibits mul- 
tiscaling. 

To see what this means, let us first introduce the annular mass PA (X, M ) ,  

where PA (X, M) dx is the number of  sites in the annulus [x, x + dx ] in a clus- 
ter of  mass M. We define xi - r i /R  as the distance of  a cluster site i from the 
seed, normalized by the radius of  gyration R of the cluster (see figs. 7,8 ). The 
conventional mass density p (r) is related to PA (X, M) by PA (X, M )  d x  --  

2rcrp (r, M )  dr. Let us next introduce the set of  fractal dimensions D (x) char- 
acterizing the mass distribution within each annulus x. In conventional scal- 
ing, D (x) = df is independent of  x. In DLA, however, calculations suggest 
that D (x )  depends on x.  Such calculations also support the following multi- 
scaling ansatz [ 14 ], 

pA (X, M )  ~ rn(X) C (x  ), (6) 

where C (x) is a "cut-off function" to ensure that PA = 0 outside the cluster. 
The connection to the usual fractal dimension is that dr, the fractal dimension 
of  the entire cluster, is equal to the maximum of D (x),  since asymptotically 
only sites in the annuli with D (x) = df contribute to the total mass of the 
cluster. 

To gain insight into the conditions under which multiscaling arises, consider 
the joint distribution function N (c~, x ,  M ) ,  where N (c~, x, M )  da dx is the 
number of growth sites in the annulus [x, x + dx ] and with a values in the 
interval [a, a + da  ]. The distribution N (c~, x, M )  contains all the information 
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Fig. 7. A DLA configuration with the shaded region corresponding to a shell characterized by 
a value x = r/R. 

of n (a, M) ,  since n (a, M )  (cf. section 2) can be recovered by integration of  
N ( a ,  x, M )  with respect to x, 

f d x N ( a , x , M )  
n ( a , M )  - f dx  d a N ( a , x , M ) "  

(7) 

However, N ( a ,  x, M )  provides additional information about the location of  
growth sites with a specific a value which is not contained in n ( a , M ) .  A 
reasonable approximation to N ( a ,  x, M )  is a Gaussian in x, namely 

M f(a) ( [ x - x ( a , M ) ]  2 )  
exp ( 8 ) N ( a , x , M )  = v/27c¢2(a,M) ~2-~- ,~-~ , 

with mean square width ~2 (a, M )  and center ~ (a, M) .  The function £ (a, M )  
appears to converge for large M to a limit ~ ( a )  [14]. 

Since the growth sites of DLA are associated with cluster sites, we expect 
that PA (X, M )  is proportional to the the density profile of  growth sites, which 
follows from (8) by integration over a, i.e., 

p A ( X , M )  ~ / d a N ( a , x , M ) .  (9) 
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Fig. 8. Nineteen superpos~d 2D off-lattice DLA clusters. Three subsets of the growth sites are 
colored according to their a values. Red denotes the range 0.4 < a < 0.8, green 0.8 < a < 1.2, 
white 3.8 < a < 4.2. Note that  large a values correspond to sites with small growth probabilities. 
We see that growth sites with specific values of a are located in approximate annuli characterized 
by different average positions k (c~, M )  (where x =_ t / R )  and different widths ~(a,  M) .  

There are three distinct possibilities for the functional dependence of the 
width ~ (a, M) .  We discuss these and their implications next. 

Case (i): "constant width" ~ (a, M )  = A (a)  
A constant width corresponds to having both the average location ~ (a) of  

the a-sites and the width of  the growth zone not mass dependent. This implies 
that both length scales are proportional to the cluster radius R. Substituting 
(8) into (9) and performing a steepest descent of  the resulting integral, leads 
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to the cluster density profile 

pA ( X , M )  "~ rdfC (x  ). (10) 

Since the exponent df is the fractal dimension of  the cluster, in case (i) con- 
ventional scaling arises. 

Case Oi): "'strong localization" ~ ( ~, M )  = A ( a ) M - Y  
In this case a similar analysis to that of  case (i) reveals that the annular 

density displays multiscaling, 

pA ( X , M )  ,,~ r f ( a * ( x ) ) C ( x ) ,  (11) 

where a* (x) is the inverse function o f ~ ( a )  and f is from eq. (8). The form 
in (11 ) is not altogether surprising. Because in this case the width of  the 
distribution N ( a , x , M )  for fixed a tends to zero as M - ,  ~ ,  in this limit 
almost all the sites with a specific c~-value are located at distance ~ (a)  from 
the cluster seed. That is why we refer to case (ii) as "strong localization." 
Conversely, a specific location x singles out an a value a* (x).  From f (a)  
we then obtain the fractal dimension of  the set of  these a* (x)-sites. Eq. (11 ) 
can now be understood as the conventional relationship between mass and 
extension of a fractal object. 

Case (iii): "'weak localization" ~ ( a, M ) = A ( a ) / (In M ) 1/2 
The logarithmic factor in ~ (x, M )  in case (iii) changes the exponential term 

of eq. (8) into a power law, which gives rise to qualitatively new scaling phe- 
nomena. As in case (ii), the exponent D ( x )  is x-dependent so that multi- 
scaling arises [14]. While in case (ii) only the typical a-values (namely those 
for which the average location )2(a) = x)  enter D ( x ) ,  in case (iii) we ob- 
serve contributions from other c~ values. Thus, we refer to case (iii) as a case 
of  "weak localization." There is still some localization since the width is still 
vanishing with increasing mass. 

Thus, like the distribution of  growth probabilities, the adequate description 
of  the mass distribution within a DLA cluster also requires a continuum of 
scaling indices. Cases (ii) and (iii), which are characterized by two differ- 
ently scaling lengths )2 (a)  and ~ (a, M )  in the distribution N (a, x, M) ,  dis- 
play multiscaling features, while the single length scale case (i) does not show 
multiscaling. 

The preceding discussion of multiscaling in DLA refers to ongoing work. 
The present results do not allow a final, unequivocal distinction among cases 
( i)-( i i i ) .  However, preliminary evidence supports case (iii) [14]. 
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We note that the multiscaling of  the density profile of  the cluster is intricately 
related to the "multifractal" properties of  the {Pi}, where multifractality means 
that the function f (a)  extends over a range of  different a values. In cases 
where the localization of  a-sites is described by two distinct length scales - as 
in the weak and strong localization cases - multifractality of  the {Pi} leads to 
multiscaling of  PA (X, M ). 

7. Summary 

In summary, we have (i) one "firm" numerical result, 1Ogpmin "~ (log M)2, 
given by eq. (5). We have also (ii) an analytic argument that this behavior 
follows from a void-neck model of  DLA structure in which there exist self- 
similar voids separated by necks whose width does not scale. We also have 
(iii) a plausibility argument that the tips of  DLA grow together until they 
are separated by a distance which is typically a few pixels, as well as visual 
evidence supporting this picture, and (iv) some understanding of  why 3D is 
different from 2D in terms of  the inability of  the necks in 3D to cut off a 
volume of  space. There are many open questions, however. These include the 
question of  the distribution of  neck sizes [ 15 ], whether larger 3D clusters will 
show a phase transition [9], the connection of  DLA structure to the lack of  
self-similarity recently reported by B.B. Mandelbrot [19], and the nature of  
the DLA "skeleton" [ 20 ]. 

Acknowledgements 

We are grateful to A. Bunde and H.E. Roman for collaboration on the key 
formative stages of  this project in 2D (which are reviewed in ref. [18]),  to 
P. Meakin for collaboration on the 3D extensions, and to A. Aharony, P. 
Alstrom, A.-L. Barab~isi, R. Blumenfeld, T.C. Halsey, A.B. Harris, G. Huber, 
T. Nagatani, L. Pietronero, D. Stauffer, P. Trunfio, and T. Vicsek for helpful 
discussions and to NSF and KBN grant 1293/P3/93 for financial support. 

References 

[1] T.A. Witten and L. Sander, Phys. Rev. Lett. 47 (1981) 1400. 
[2] P. Meakin, in: Phase Transitions and Critical Phenomena, Vol. 12, C. Domb and J.L. 

Lebowitz, eds. (Academic, Orlando, 1988); 
J. Feder, Fractals (Pergamon, New York, 1988); 
H.E. Stanley and N. Ostrowsky, eds., Random Fluctuations and Pattern Growth: 



270 H.E. Stanley et al. / Diffusion limited aggregation 

Experiments and Models (Kluwer Academic Publishers, Dordrecht, 1988); 
T. Vicsek, Fractal Growth Phenomena (World, Singapore, 1989); 
H.E. Stanley and N. Ostrowsky, eds., Correlations and Connectivity: Geometric Aspects 
of Physics, Chemistry and Biology, Proc. 1990 Carg~se NATO ASI, Series E: Applied 
Sciences, Vol. 188 (Kluwer, Dordrecht, 1990); 
A. Bunde and S. Havlin, eds., Fractals and Disordered Systems (Springer, Heidelberg 
1991); 
H. Takayasu, Fractals in the Physical Sciences (Manchester Univ. Press, Manchester, 
1990). 

[3] H. Fujikawa and M. Matsushita, J. Phys. Soc. Jpn. 58 (1989) 3875. 
[4] F. Family, B.R. Masters and D.E. Platt, Physica D 38 (1989) 98; 

C. Amitrano, A. Coniglio, P. Meakin and M. Zannetti, Fractals 1 (1993). 
[5] F. Caserta, H.E. Stanley, W. Eldred, G. Daccord, R. Hausman and J. Nittmann, Phys. 

Rev. Lett. 64 (1990) 95; 
H.E. Stanley, F. Caserta, W. Eldred, G. Daccord, R. Hausman and J. Nittmann, Bull. Am. 
Phys. Soc. 34 (1989) 716; 
F. Caserta, R.E. Hausman, W.D. Eldred, H.E. Stanley and C. Kimmel, Neurosci. Lett. 
136 (1992) 198; 
F. Caserta, W.D. Eldred, E. Fernandez, R.E. Hausman, L.R. Stanford, S.V. Buldyrev, 
S. Schwarzer and H.E. Stanley, Determination of fractal dimension of physiologically 
characterized neurons in two and three dimensions, J. Neurosci. Methods, submitted. 

[6] E. Guyon and H.E. Stanley, Les Formes Fractales (Palais de la D6couverte, Paris, 1991 ); 
Fractal Forms (Elsevier, Amsterdam 1991) [English Translation]; 
D. Stauffer and H.E. Stanley, From Newton to Mandelbrot: A Primer in Modern 
Theoretical Physics (Springer, Heidelberg, 1990); 
B.B. Mandelbrot and C.J.G. Evertsz, Nature 348 (1990) 143. 

[7] L. Pietronero, A. Erzan and C.J.G. Evertsz, Phys. Rev. Lett. 61 (1988) 861; 
L.A. Turkevich and H. Scher, Phys. Rev. Lett. 55 (1985) 1026; 
A. Coniglio, in: On Growth and Form: Fractal and Non-Fractal Patterns in Physics, H.E. 
Stanley and N. Ostrowsky, eds. (Nijhoff, Dordrecht, 1985)p. 101; 
G. Parisi and Y.C. Zhang, J. Stat. Phys. 41 (1985) l; 
Y. Hayakawa, S. Sato and M. Matsushita, Phys. Rev. A 36 (1987) 1963; 
T.C. Halsey, Phys. Rev. Lett. 59 (1987) 2067. 

[8] P. Meakin, H.E. Stanley, A. Coniglio and T.A. Witten, Phys. Rev. A 32 (1985) 2364; 
T.C. Halsey, P. Meakin and I. Procaccia, Phys. Rev. Lett. 56 (1986) 854; 
C. Amitrano, A. Coniglio and F. di Liberto, Phys. Rev. Lett. 57 (1986) 1016; 
P. Meakin, A. Coniglio, H.E. Stanley and T.A. Witten, Phys. Rev. A 34 (1986) 3325. 

[9] J. Lee and H.E. Stanley, Phys. Rev. Lett. 61 (1988) 2945; 
J. Lee, P. Alstrom and H.E. Stanley, Phys. Rev. A 39 (1989) 6545; 
B. Fourcade and A.M.S. Tremblay, Phys. Rev. Lett. 64 (1990) 1842. 

[10] R. Blumenfeld and A. Aharony, Phys. Rev. Lett. 62 (1989) 2977; 
P. Trunfio and P. Alstrom, Phys. Rev. B 41 (1990) 896; 
B. Mandelbrot and C.J.G. Evertsz, Physica A 177 ( 1991 ) 386; 
C.J.G. Evertsz, P.W. Jones and B.B. Mandelbrot, J. Phys. A 24 (1991) 1889; 
B.B. Mandelbrot, Physica A 168 (1990) 95; 
B.B. Mandelbrot, C.J.G. Evertsz and Y. Hayakawa, Phys. Rev. A 42 (1990) 4528; 
C.J.G. Evertsz and B.B. Mandelbrot, Physica A 185 (1992) 77; 
C.J.G. Evertsz and B.B. Mandelbrot, J. Phys. A 25 (1992) 1981; 
C.J.G. Evertsz, B.B. Mandelbrot and L. Woog, Phys. Rev. A 45 (1992) 5798. 

[11] A.B. Harris and M. Cohen, Phys. Rev. A 41 (1990) 971; 
A.L. Barab~isi and T. Vicsek, J. Phys. A 23 (1990) L729; 
R. Ball and R. Blumenfeld, Phys. Rev. A 44 (1991) 828. 



H.E. Stanley et al. / Diffusion limited aggregation 271 

[ 12] S. Schwarzer, J. Lee, A. Bunde, S. Havlin, H.E. Roman and H.E. Stanley, Phys. Rev. Lett. 
65 (1990) 603; 
S. Schwarzer, J. Lee, S. Havlin, H.E. Stanley, P. Meakin, Phys. Rev. A 43 (1991) 1134; 
M. Wolf, Phys. Rev. A 43 (1991) 5504; Phys. Rev. A 47 (1993) 1448. 

[13] J. Lee, S. Havlin, H.E. Stanley and J.E. Kiefer, Phys. Rev. A 42 (1990) 4832; 
J. Lee, S. Havlin and H.E. Stanley, Phys. Rev. A 45 (1992) 1035. 

[14] A. Coniglio and M. Zannetti, Physica A 163 (1990) 325; 
C. Amitrano, A. Coniglio, P. Meakin and M. Zannetti, Phys. Rev. B 44 (1991 ) 4974; 
P. Ossadnik, Physica A 195 (1993) 319; 
J. Lee, A. Coniglio, S. Schwarzer and H.E. Stanley, Phys. Rev. E 48 (1993) 1305. 

[15] S. Schwarzer, S. Havlin and H.E. Stanley, Phys. Rev. E 49 (1994) 1181. 
[16] S. Schwarzer, M. Wolf, S. Havlin, P. Meakin and H.E. Stanley, Phys. Rev. A 46 (1992) 

R3016; 
S. Schwarzer, S. Havlin and H.E. Stanley, Physica A 191 (1992) 117. 

[17] C. Amitrano, P. Meakin and H.E. Stanley, Phys. Rev. A 40 (1989) 1713. 
[18] H.E. Stanley, A. Bunde, S. Havlin, J. Lee, E. Roman and S. Schwarzer, Physica A 168 

(1990) 23; 
S. Havlin, A. Bunde, E. Eisenberg, J. Lee, H.E. Roman, S. Schwarzer and H.E. Stanley, 
Physica A 194 (1993) 288. 

[19] B.B. Mandelbrot, Physica A 191 (1992) 95. 
[20] S. Schwarzer, P. Ossadnik, S. Havlin and H.E. Stanley, to be published; 

S. Schwarzer, Ph.D. Thesis, Boston University (1993) 


