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Abstract. It is shown that thermally driven magnetic critical phenomena just above and just 
below the percolation limit can be usefully analysed using scaling theory; a further assump- 
tion concerning cluster connectivity provides quantitative predictions for critical exponents 
and scaling functions that should be experimentally testable. In particular, reasonable 
agreement is found with recent experimental results of Birgeneau, Cowley, Shirane and 
Guggenheim on the quasi-two-dimensional random magnet Rb,Mn,Mg, -,F4. 

The hypotheses of scaling and universality have provided a useful framework within 
which to describe thermally-driven phase transitions occurring in a wide variety of 
physical systems. It is therefore of some interest to study situations in which these 
hypotheses may be expected to change form or cease to be valid. The percolation limit 
is one such situation (figure l(a)). Here we consider the ‘quenched site percolation 
problem’ (for terminology, see Shante and Kirkpatrick (1971)) in which a fraction p of 
the sites in a lattice are randomly occupied by magnetic moments. For p = 1, the scaling 
and universality hypotheses are valid (figure l(b)); for p 6 1, there is evidence that the 
scaling hypothesis continues to be valid, at least sufficiently close to the ‘critical line’ 
T,(p)ll (Stoll and Schneider 1976). However, for p 5 pc-where p ,  denotes the percola- 
tion threshold-no phase transition can exist since the system breaks up into isolated 
finite clusters that cannot sustain long-range order. Thus, at p ,  the scaling and universality 
hypotheses will almost certainly need modification. 

The change in ‘connectivity of occupied lattice sites’ as p -+ p ,  bears many formal 
similarities to the change in the ‘connectivity of magnetically correlated spins’ that 
occurs in thermally driven phase transitions as T -+ T, (Kasteleyn and Fortuin 1969). 
In particular, one can define critical exponents for the relevant quantities that are singular 
at the percolation threshold p , .  One finds that these exponents depend on lattice dimen- 
sionality d but not on details of lattice geometry (‘universality’) and that the exponents 
are related to  one another through a variety of equalities, each involving three different 
exponents (‘three-exponent scaling laws’). 

The percolation problem (figure l(a)) corresponds to the path T = 0, p -+ p ,  of 
figure l(b). Moreover, the point p = p ,  is thought to be the point at which the critical 
line q(p) touches the T = 0 axis. Hence, it follows that at the point Q (p = p, ,  T = 0) 
the system is undergoing a thermally driven phase transition if approached along the 
‘f Work supported by the NSF and AFOSR. 
11 The presence of Griffiths singularities (Griffiths 1969) for all T < T,(p = 1) will be assumed, provisionally, 
not to disrupt the asymptotic behaviour of the usual magnetic singularities near T ( p ) .  
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Figure 1. Schematic representations of (a)  the pure percolation problem, (b)  phenomena 
anticipated for thermally driven phase transitions near the percolation threshold, and (c) the 
phase diagram near the point Q ( p  = p c ,  T = 0), indicating the coexistence surface (shown 
shaded) and the critical line T(p), which together serve to define the strong, weak and 
independent scaling directions corresponding to the scaling powers b,, bw and bi, respectively. 

path p = p , ,  T + 0 and a lattice-connectivity driven percolation transition if approached 
along the path T = 0, p + p , .  One might therefore anticipate novel phenomena to occur 
near the point Q. In particular, since both thermally driven phase transitions and the 
percolation transition are described by homogeneous functions, one might anticipate 
the possibility that the point Q will have scaling properties analogous to those at higher- 
order critical points (Riedel 1972, Hankey et al 1973). 

The purpose of this work is to present a scaling treatment of the point Q (p = p , ,  
T = 0) and, further, to explore the consequences of an additional assumption concerning 
cluster connectivity that provides quantitative predictions for scaling powers, and hence 
for critical exponents and scaling functions. Independently, Stauffer (1975) has proposed 
a scaling hypothesis for the point Q, and his work has been extended by Lubensky (1976). 
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Both authors limit their discussion to the region p 2 p, and both make the assumption 
that the two-exponent equality dv = 2 - t( is valid. The treatment presented below does 
not assume dv = 2 - LX, and applies straightforwardly for p 6 p, as well as for p 2 p,. 
It leads to reasonably good agreement with the data on the quasi-two-dimensional 
magnet Rb,MnpMgl -pF,(Birgeneau et a1 1976),in contrast to the Stauffer and Lubensky 
theories. 

Scaling Theory. We begin by considering the phase diagram shown in figure 1. 
To define the scaling axes, we identify ‘strong’, ‘weak’ and ‘independent’ directions, as 
shown in figure l(c) (Griffiths and Wheeler 1970). The scaling hypothesis for the two- 
spin correlation function C, = ( s ~ s , ) ~  is that there exist four numbers b,, b,, bi and br 
such that, sufficiently near the critical point, C, is a generalized homogeneous function 
(GHF) in all four of its arguments: 

C,(AbsH, AbwT, Ab’Ap, Abrr) = AC,(H, T, Ap, r), (1) 
where Ap p - p,. Henceforth, we set H = 0 for the sake of simplicity; scaling expres- 
sions for H # 0 are readily obtained following the same steps that lead to the H = 0 
expressions below. From (1) it follows that the spatial Fourier transform of C, is a 
GHF with scaling power 1 + db, (Hankey and Stanley 1972) 

S(AbwT, AbiAp, A-brq) = A’+dbrS(T, Ap, q) (24  
and that the inverse correlation length 

IC ( j r 2 C 2 ( r )  dr/{ C,(r) dr)- l” 

is a GHF with scaling power - b,: 
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Figure 2. Scaling functions predicted by equation (3) for (a) the inverse correlation length ti, 
and (b)  the structure factor S. The singular behaviour shown breaks down when the magnetic 
correlations exceed in range the characteristic size of the finite clusters; this occurs at the 
temperature FT,x T;/(A~I)*-’*~. 

On setting A = 1 Ap 1 -  ‘Ibi in (2a) and (2b), we obtain the scaling functions for the structure 
factor (figure 2(4) 
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and inverse correlation length (figure 2(b)) 

Here T = T/I Ap I b w i b i  denotes the temperature scaled with respect to Ap. 
Ansatz. To make quantitative predictions, one needs numerical values for the scaling 
powers b,. The scaling hypothesis itself cannot predict values of the scaling powers, 
and therefore additional assumptions are necessary. We shall see that the bx can be 
evaluated (and that the results lead to plausible predictions‘) by assuming that, at per- 
colation, magnetic correlations spread through the incipient ‘infinite cluster’ along a path 
that is a self-avoiding walk (SAW). This Ansatz is consistent with statements in the litera- 
ture of the sort that, at percolation, ‘SAWS represent the most economical way the fluid 
can spread across the medium’ (Shante and Kirkpatrick 1971). In fact, an SAW model has 
been proposed by Birgeneau et a1 (1976) to describe the temperature dependence of K 
in Rb,MnpMg, -pF4. 

We summarize below the evidence that persuades us of the plausibility of the Ansatz 
for a two-dimensional system. Even if the Ansatz itself is not valid, the arguments pre- 
sented below suggest that its predictions are a good first approximation toward a quan- 
titative description of thermally driven phase transitions near the percolation threshold. 

(a) Intuitive argument. That order propagates along paths that are SAWS in the 
p ‘v p ,  clusters is at least plausible on examination of computer simulations of finite 
clusters (c.f. figure 3). The main feature characterizing the large clusters (which dominate 
the critical scattering) is that they have a high degree of ‘ramification’ or ‘stringiness’. 

Figure 3. Computer-generated picture of the diluted square lattice for p = 053 (p, 2 0.59). 
Here the plus symbol represents the presence of a magnetic site. All sites belonging to 
clusters of less than 5 sites have been eliminated as an aid to recognizing the shape of the 
larger clusters, which dominate the scattering. Note that most paths along which order can 
propagate between two distant points in the same cluster are SAWS, thereby supporting the 
plausibility of the Ansatz presented in the text. 
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Moreover, if one examines the possible paths along which correlations might spread 
from one point in a large cluster to another distant point in the same cluster, one is 
persuaded that the overwhelming majority of such paths are SAWS. The fact that small 
‘clumps’ of spins which are highly connected do appear does not vitiate the above 
conclusion, for the spins in the clumps should order at a relatively large temperature and 
hence play the role of ‘renormalized’ spins in the critical region. 

(b) Features of cluster connectivity. If the clusters at percolation had the full con- 
nectivity of a two-dimensional lattice, tXen one would expect that 

N ,  <: (44 

with effective dimensionality? d, = 2, while if the clusters were highly ramified (as is an 
SAW), one would expect d, -= 2. As p -+ p, ,  N ,  w Ip - p,l-yp and 5 ,  - Ip - p ,  I-”p; 

hence the effective dimensionality of the percolation clusters is given in terms of the 
critical exponents of the percolation problem as 

The effective dimensionality d,, as determined by standard methods, is indeed substan- 
tially lower than two: 

dp = Y,/V,. (4b) 

(i) Series expansions (Dunn et a1 1975) find 
d, = 1.78 & 0.04. 

d, = 1.78 0.02 
(ii) Monte Carlo simulations (Mandelbrot 1976) find 

( 5 4  

(iii) Numerical studies on clusters of all sizes on a square lattice (p, = 0.59) show that, 
when p = 0.55, the number of spins in a cluster is roughly proportional to the RMS 
diameter of that cluster raised to the power 1.76 (Leath 1976). 

(c) Features of SAW connectivity. The SAW problem corresponds to the n = 0 limit 
of t h e o r  model (de Gennes 1972). For d = 2, the critical exponent qo = 2 - yo/vo 
is approximately f; the subscript zero denotes the n = 0 limit. Hence the effective 
dimensionality of an ‘n = 0 lattice’ (i.e. a lattice on which only SAW paths have non-zero 
weight) is 

The agreement between ( 5 )  and (6) supports the Ansatz. 

(d )  Connection with other treatments of the problem. Features of the SAW problem 
arise in the treatment of the randomly dilute ferromagnet both by series methods and by 
renormalization group methods. The largest power of p in each term of the high-tempera- 
ture series expansion for the randomly dilute ferromagnet is equal to the corresponding 
coefficient in the series expansion for the n = 0 model. Although the largest power of 
p dominates only in the ‘unphysical’ domain p > 1, this result is nevertheless intriguing. 
Similarly, one of the fixed points predicted by the renormalization group analysis of the 
same model (Aharony et a1 1976) is the II = 0 fixed point. The n = 0 fixed point is in a 
physically inaccessible region for p N 1, but for p = p ,  this fixed point could become 
accessible. That the n = 0 model arises in these other treatments of the same problem 
suggests that SAWS may play some role in the actual behaviour. 

do = 1.78. (6) 

The ‘effective dimensionality’ defined here is almost certainly the ‘fractal dimensionality’ treated by Mandel- 
brot (1975). 
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p < p , .  From this Ansatz (independent of scaling) we can describe the crossover 
c u r v e @ )  (defined to be the temperature below which the spins belonging to a charac- 
teristic finite cluster are essentially ordered). As T + T;(P) along a path such as path A 
in figure l(b), the RMS diameter of the SAW that describes the propagation of order among 
the spins in the cluster approaches the RMS diameter of the cluster itself. The former quan- 
tity is proportional to Lvo where L is the number of links in an SAW, while the latter is 
proportional to 5,. Hence 

LV0 N tp* (7) 
For d = 2, vo ‘v 0.75 (Domb 1969). To relate Ap to T, we note that tp - Ip - p ,  I - v p ,  and 
since magnetic correlations spread along an SAW with a one-dimensional connectivity, 
L - T-’ for n > 1 and L N exp(J/kT) for n = 1 (Stanley 1969). Therefore, for n # 1, 
the line T;(P) is parametrized by the equation 

T;  (PI I AP IQ,  ( 8 4  

with 9 = vp/vo. 
If, moreover, scaling holds at the point Q, then 

9 = b,/bi = vp/vo. (W 
We can go further, since in the present theory bi and b, are the same as for the pure percola- 
tion problem (the T = 0 axis). Since bi is the scaling power of the non-ordering field 
(Ap) in the percolation problem, and vp = - b,/bi, equation (8b) identifies b, as the scaling 
power of the non-ordering field ( T )  in the n = 0 problem. Thus, behaviour near point Q 
is a mixture of thermally driven and geometrically driven phenomena, with the thermally 
driven phenomena being described quantitatively by the scaling power b, of the non- 
ordering field in the SAW problem, and the geometrically driven phenomena being de- 
scribed by the scaling power bi of the non-ordering field in the percolation problem. 

From the estimates for percolation and SAW exponents, it is straightforward to obtain 
numerical values for all the scaling powers b,; to two significant figures we find 

b, = 8.5, b, = 6.0, bi = 3.5 and b, = -4.5. (9) 
From (9) we readily obtain numerical predictions for the critical exponents characteriz- 
ing point Q (c.f. table l), including the quantities that appear in the scaling functions of 
equation (3) (c.f. figure 2). 

Certain of the predictions can be subjected to checks. Firstly, the theory predicts 
that the length scaling powers of the percolation and the n = 0 problems be identical, 
and in fact they are. According to the best numerical estimates of equations (5) and (6) 
above: b, = - l/(d - 2 + q) ,  where qp = 2 - d, and v0  = 2 - do. Secondly, the scaling 
powers for the ‘ordering field’ are predicted to be identical for both problems, which they 
are to within the errors inherent in the numerical methods used for their evaluation. 
Thirdly, although, as discussed by Birgeneau et a1 (1976),.explicit comparison with their 
experiments on Rb,Mn,Mg, -,F4 is complicated by several factors, including finite 
size and spin-space crossover (n = 3 + n = 1) effects, their experiments nevertheless 
do favour the SAW Ansatz over the alternative theories. In particular, they have shown 
that for p = 0.56 the inverse correlation length follows the power law K - t;0.7s*0.01, 
where tl is the one-dimensional longitudinal correlation length including the anisotropy 
explicitly. However, a more exhaustive experimental test of the present approach will 
have to await new experiments on a system with p very close to p ,  and with minimal 
anisotropy effects. 
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Table 1. Critical exponents predicted by scaling theory for the point Q (p = pc ,  T = 0) of figure 1. The expo- 
nents are given their usual names, with an additional bar to denote the fact that they refer to a competing 
higher-order point Q, and with a subscript to denote the path of approach to the point Q: w denotes a 'weak' 
direction (a curve that always remains above the curve T = l A p l b )  and i denotes an 'independent' direction 
(a path of approach that always remains below the curve T = 1 Ap 1 @). The general scaling expressions hold 
independent of the Ansatz. Comparison between the numerical predictions and experimental data is discussed 
in the text. 

~~ ~~ 

Exponent General scaling expression 

~~ 

Numerical value 
predicted by Ansatz Numerical value 0 
for d = 2 predicted if 4 = 2 
(c.f. equation(9)) (Stauffer 1975) 

Numerical value 
predicted if 4 = 1.1 
(Lubensky 1976) 

1.7 2 
1.3 1.3 
0.75 0.65 
2.3 2.3 
1.3 1.15 
0.86 086 
0.5 043 

1.1 
1.3 
1.2 
2.3 
2.1 
086 
078 

0 These exponents are defined with respect to the scaling axes introduced by Stauffer. 

p 2 p, .  Now consider path B of figure l(b) for which p 2 p , .  In addition to the finite 
clusters, a small fraction Pp of the sites belong to an infinite cluster; the structure factor 
now displays an additional sharp central peak (c.f. figure l(b)). The finite clusters above 
p ,  are analogous to the finite clusters below p , ,  and therefore the p 6 p ,  arguments also 
hold for p 2 p,.  However, the infinite cluster gives rise to two-dimensional long-range 
order at some temperature T,(p). To describe the behaviour in the infinite cluster, we 
first consider T % T,(p): at sufficiently large T, the correlations will not be two-dimen- 
sional in nature because the correlation length 5, will not be sufficiently large to recog- 
nize the fact that the infinite cluster has true two-dimensional connectivity. In fact, at 
high temperature, the magnetic correlations spread along the zig-zag paths with essen- 
tially one-dimensional correlations. At some temperature Tz(p), 5, becomes comparable 
to l(p), the node-to-node distance? (measured along the zig-zag path connecting them), 
and the system begins to display two-dimensional correlations (Lubensky 1976, de 
Gennes 1976). Thus T:(p) is a crossover temperature between SAW behaviour and two- 
dimensional behaviour in theinfinitelattice. For T > Tz(p), 5, - 1/T. As T -, Tz(p)from 
above, the correlation length 5, approaches l(p) and we have l (p )  - l/T:(p). The p -  
dependence of l(p) is obtained from the fact that for T > T z ( p )  the correlations spread 
alongpathsthataresaws,andhence,inanalogyto(7), [l(p)]"O - tp,wheretp - Ip -p , I - vp  
is the distance between nodes 'as the crow flies'. If we assume that tp t,, then 

Cdmparing (8) and (lo), the above assumption implies that T,"(p) has the same Ap- 
dependence, and hence the same shape as T,"(p). The same assumptions show that T,(p)  
is also described by the crossover exponent v,/v,. 

The results presented here have been tested by comparison with existing numerical 
calculations and with experimental data on thermally driven phase transitions near the 

t A node is a point in the lattice having three. or more independent paths to infinity. 
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percolation threshold. Further, it would be desirable (i) to test other exponent predictions 
of the theory (table I), (ii) to check the scaling function predictions that follow from (1) 
(c.f., for example, equation (3) and figure 2), (iii) to see whether there is evidence favouring 
the Ansatz for d # 2 (for d = 3, the predictions are 4 = 1.58, vw-= 0.6 and y, = 1.2), 
(iv) to test the predictions concerning the shapes of the curves T,@), T ; @ )  and Tg@). 

In summary, then, the scaling theory should be valid if Q is like other higher-order 
critical points. A further assumption concerning cluster connectivity near the percola- 
tion threshold leads to quantitative predictions for both critical exponents and scaling 
functions. The crossover exponent is predicted to take the same value for all n > 1, 
which is rather different from the situation for p = 1 where critical phenomena depend 
strongly upon n ;  on the other hand, the behaviour for n = 1 is drastically different from 
that for n > 1, so that spin-dimensionality crossover effects may be expected to play a 
significant role near the percolation threshold. 

The authors wish to thank Drs P W Anderson, T S Chang, R A Cowley, M E Fisher 
and G F Tuthill for useful discussions, P C Hohenberg and D Stauffer for a critical 
reading of the manuscript, and T C Lubensky for communicating his results prior to 
publication. 
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