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We define shell � in a network as the set of nodes at distance � with respect to a given node and define r�

as the fraction of nodes outside shell �. In a transport process, information or disease usually diffuses from a
random node and reach nodes shell after shell. Thus, understanding the shell structure is crucial for the study
of the transport property of networks. We study the statistical properties of the shells of a randomly chosen
node. For a randomly connected network with given degree distribution, we derive analytically the degree
distribution and average degree of the nodes residing outside shell � as a function of r�. Further, we find that
r� follows an iterative functional form r�=��r�−1�, where � is expressed in terms of the generating function of
the original degree distribution of the network. Our results can explain the power-law distribution of the
number of nodes B� found in shells with � larger than the network diameter d, which is the average distance
between all pairs of nodes. For real-world networks the theoretical prediction of r� deviates from the empirical
r�. We introduce a network correlation function c�r���r� /��r�−1� to characterize the correlations in the
network, where r� is the empirical value and ��r�−1� is the theoretical prediction. c�r��=1 indicates perfect
agreement between empirical results and theory. We apply c�r�� to several model and real-world networks. We
find that the networks fall into two distinct classes: �i� a class of poorly connected networks with c�r���1,
where a larger �smaller� fraction of nodes resides outside �inside� distance � from a given node than in
randomly connected networks with the same degree distributions. Examples include the Watts-Strogatz model
and networks characterizing human collaborations such as citation networks and the actor collaboration net-
work; �ii� a class of well-connected networks with c�r���1. Examples include the Barabási-Albert model and
the autonomous system Internet network.
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I. INTRODUCTION AND RECENT WORK

Many complex systems can be described by networks in
which the nodes are the elements of the system and the links
characterize the interactions between the elements. One of
the most common ways to characterize a network is to de-
termine its degree distribution. A classical example of a net-
work is the Erdős-Rényi �ER� �1,2� model, in which the links
are randomly assigned to randomly selected pairs of nodes.
The degree distribution of the ER model is characterized by
a Poisson distribution

P�k� =
�k�k

k!
e−�k�, �1�

where �k� is the average degree of the network. Another
simple model is a random regular �RR� graph in which each
node has exactly �k�=� links, thus P�k�=��k−��. The
Watts-Strogatz model �WS� �3� is also well studied, where a
random fraction � of links from a regular lattice with �k�
=� are rewired and connect any pair of nodes. Changing �
from 0 to 1, the WS network interpolates between a regular
lattice and an ER graph. In the last decade, it has been real-
ized that many social, computer, and biological networks can
be approximated by scale-free �SF� models with a broad de-
gree distribution characterized by a power law

P�k� � k−�, �2�

with a lower and upper cutoff, kmin and kmax �4–9�. A para-
digmatic model that explains the abundance of SF networks

in nature is the preferential attachment model of Barabási
and Albert �BA� �4�.

The degree distribution is not sufficient to characterize the
topology of a network. Given a degree distribution, a net-
work can have very different properties such as clustering
and degree-degree correlation. For example, the network of
movie actors �4� in which two actors are linked if they play
in the same movie, although characterized by a power-law
degree distribution, has higher clustering coefficient com-
pared to the SF network generated by the Molloy-Reed al-
gorithm �10� with the same degree distribution.

Besides the degree distribution and clustering coefficient,
a network is also characterized by the average distance be-
tween all pairs of nodes, which we refer to as the network
diameter d �11�. The diameter d depends sensitively on the
network topology. Random networks with a given degree
distribution can be “small worlds” �2�,

d � ln N , �3�

or “ultrasmall worlds” �8�,

d � ln�ln N� . �4�

Another important characteristic of a network is the struc-
ture of its shells, where shell � is defined as the set of nodes
that are at distance � from a randomly chosen root node �12�.
The shell structure of a network is important for understand-
ing the transport properties of the network such as the epi-
demic spread �13,14�, information diffusion and synchroni-
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zation processes �15,16�, where the information or virus
spread from a randomly chosen root and reach nodes shell
after shell. The structure of the shells is related to both the
degree distribution and the network diameter. The shell
structure of SF networks has been recently studied in Ref.
�12�, which have introduced a new term “network tomogra-
phy” referring to various properties of shells such as the
number of nodes and open links in shell �, the degree distri-
bution, and the average degree of the nodes in the exterior of
shell �.

Many real and model networks have fractal properties
while others do not �17�. Recently, Ref. �18� reported a
power-law distribution of number of nodes B� in shell
��d from a randomly chosen root. They found that a large
class of models and real networks, although not fractals on
all scales, exhibits fractal properties in boundary shells with
��d. Here we will develop a theory to explain these find-
ings.

II. GOALS OF THIS WORK

In this paper, we extend the study of network tomography
describing the shell structure in a randomly connected net-
work with an arbitrary degree distribution using generating
functions. Following Ref. �12�, we denote the fraction of
nodes at distance larger than � as

r� � 1 −
1

N
	
m=0

�

Bm �5�

and the nodes at distances larger than � as the exterior E� of
shell �. Similarly, we define the “r exterior,” Er, as the rN
nodes with the largest distances from a given root node. To
this end, we list all the nodes in ascending order of their
distances from the root node. In this list, the nodes with the
same distance are positioned at random. The last rN nodes in
this list which have the largest distance to the root are called
Er. Notice that Er=E� if r=r�. Introducing r as a continuous
variable is a different step compared to Ref. �12�, which
allows us to apply the apparatus of generating functions to
study network tomography.

The behavior of B� for ��d can be approximated by a
branching process �19,20�. In shells with ��d, the network
will show different topological characteristics compared to
shells with ��d. This is due to the high probability to find
high degree nodes �“hubs”� in shells with ��d, so there is a
depletion of high degree nodes in the degree distribution in
E� with ��d. Indeed, the average degree of the nodes in
shells with ��d is greater than the average degree in the
shells with ��d �12,18�.

Here, we develop a theory to explain the behavior of the
degree distribution Pr�k� in Er and the behavior of the aver-
age degree �k�r�� as a function of r in a randomly connected
network with a given degree distribution. Further, we derive
analytically r� as a function of r�−1, r�=��r�−1�, where � can
be expressed in terms of generating functions �20� of the
degree distribution of the network. Using these derived ana-
lytical expressions, we explain the power-law distribution
P�B���B�

−2 for ��d found in �18�. Further, based on our

approach, we introduce the network correlation function
c�r��=r� /��r�−1� to characterize the correlations in the net-
work. We apply this measure to several model and real-world
networks. We find that the networks fall into two distinct
classes: �i� a class of poorly connected networks with c�r��
�1, where the network is less compact than its randomly
connected counterpart with the same degree distribution; �ii�
a class of well-connected networks with c�r���1, in which
case the network is more compact than its randomly con-
nected counterpart.

In a network with c�r���1, more nodes reside in the ex-
terior of shell � than in its randomly connected counterpart.
Hence, the fraction of nodes residing inside and on shell �,
1−r�, is smaller than that of its randomly connected coun-
terpart. Thus, the network is less compact than a randomly
connected network with the same degree distribution, and we
call it poorly connected. The poorly connected networks
have high redundancy of their connections and high cluster-
ing than their randomly connected counterpart. The well-
connected networks are on the opposite side.

In this paper we study RR, ER, SF, WS, and BA models,
as well as several real networks including the actor collabo-
ration network �Actor� �4�, high energy physics citations net-
work �HEP� �21�, the Supreme Court citation network �SCC�
�22�, and autonomous system �AS� Internet network
�DIMES� �23�. As we will show below, WS, Actor, HEP, and
SCC belong to the class of poorly connected networks
�c�r���1�, while the BA model and DIMES network belong
to the class of well-connected networks �c�r���1�.

The paper is organized as follows. In Sec. III, we derive
analytically the degree distribution and average degree of
nodes in Er and test our theory on ER and SF networks. In
Sec. IV, we derive analytically a deterministic iterative func-
tional form for r�. In Sec. V, we apply our theory to explain
the power-law distribution of number of nodes in shells. In
Sec. VI, we introduce the network correlation function and
apply it to different networks. Finally, we present a summary
in Sec. VII.

III. DEGREE DISTRIBUTION OF NODES IN THE r
EXTERIOR Er

A. Generating function for P(k)

In this section, we define the generating functions for the
degree distribution which will be used extensively in our
derivations. The generating function of a given degree distri-
bution P�k� is defined as �19,20,24,25�

G0�x� � 	
k=0

	

P�k�xk. �6�

It follows from Eq. �6� that the average degree of the net-
work �k�=G0��1�. Following a randomly chosen link, the
probability of reaching a node with k outgoing links �the
degree of the node is k+1� is

P̃�k� = �k + 1�P�k + 1�/	
k=0

	

��k + 1�P�k + 1�� . �7�

Notice that
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k=0

	

�k + 1�xkP�k + 1� = 	
k=1

	

kxk−1P�k� = G0��x�

and

	
k=0

	

�k + 1�P�k + 1� = G0��1� = �k� ,

where �k� is the average degree of the network. Thus the
generating function for the distribution of outgoing links

P̃�k� is

G1�x� = 	
k=0

	

P̃�k�xk = G0��x�/�k� . �8�

The average number of outgoing links, also called the
branching factor of the network, is

k̃ � 	
k=0

	

kP̃�k� = G1��1� = G0��1�/G0��1� = 	
k=0

	
k�k + 1�P�k + 1�

�k�

=
�k2� − �k�

�k�
. �9�

For ER networks, G0�x� and G1�x� have the same simple
form �19�,

G0�x� = G1�x� = e�k��x−1�, �10�

and k̃= �k�.

B. Branching process

In this section, we introduce a modified branching process
as a model for a randomly connected network which is the
basis of our analysis. For a randomly connected network,
loops can be neglected and the construction of a network can
be approximated by a branching process �19,20,24,25�. In
such a process, an outgoing link, no matter at which shell �

from the root node it starts, has the same probability P̃�k� to
reach a node with k outgoing links in shell �+1. This as-
sumption is very good when � is small and the preferential
selection of the nodes with large degree �hubs� in shell �
does not significantly deplete the probability of finding high
degree nodes in the further out shells. However, for ��d,
the probability of finding hubs decreases significantly and so
does the average degree �k� �12,18�. Another limitation of the
branching process as a model of a network is that it approxi-
mates a network as a tree without loops, while in a network
loops are likely to form for ��d. In order to find an ap-
proach that works well for all values of �, we follow Ref.
�12� and introduce a modified branching process that takes
into account the depletion of large degree nodes and the for-
mation of loops.

At the beginning of the process, we have N separate nodes
and each node has k open links, where k is a random variable
with a distribution P�k�. We start to build the network from a
randomly selected node �root�. At each time step, we ran-
domly select an open link from shell � of the aggregate �root
and all nodes already connected to the root� and connect this

open link to another open link. There are three possible ways
to select another open link �see Fig. 1�, which can belong to
�i� a free node not yet connecting to the aggregate, �ii� a node
in shell �+1, and �iii� a node in shell �.

When all the open links from shell � are connected, we
will then start to connect open links from shell �+1. By
doing this, the aggregate keeps growing shell after shell until
all open links are connected. In cases �ii� and �iii�, there are
chances to create multiple links �two and more links connect-
ing a pair of nodes� and self-loops �one link with two ends
connected to the same node�. For a large network with a

finite branching factor k̃, such events occur with negligible
probability.

We denote by r�r�t� �26� the fraction of distant nodes
not connected to the aggregate at step t. These nodes consti-
tute the r exterior Er. At the beginning of the growth process,
before we start to build the first shell, r�0�= �N−1� /N
1. At
the end of the growth process, r�t�=r	, where r	 is the frac-
tion of nodes that are not connected to the aggregate when
the building process is finished, i.e., when all open links in
the aggregate are used.

C. Degree distribution and average degree of nodes in the r
exterior Er

Nodes with high degree have higher probability to be con-
nected to the aggregate than those with low degree. During
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(ii)
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(i)

SHELL (l+1)

SHELL (l)

ROOT

FIG. 1. �Color online� Schematic illustration of how a randomly
connected network with a given degree distribution is built. It be-
gins from a randomly chosen node �root� shown in red at the center
of the figure. This schematic illustration shows the network during
the building of shell �+1. We do not start to build shell �+1 until
shell � is completed. All the nodes which are already included in
shell �+1 are shown in blue, while the free nodes not yet connected
in shell �+1 are shown in purple. At a certain time step, in order to
connect an open link from shell � to another open link, we must
consider three scenarios: �i� connecting to an open link taken from
a free node; �ii� connecting to an open link from shell �+1; �iii�
connecting to another open link from shell �. This way the aggre-
gate keeps growing shell after shell until all the open links are
connected. Note that in scenarios �ii� and �iii� there is a chance to
create multiple links �two or more links connecting a pair of nodes�
and self-loops �one link with two ends connected to the same node�.
For a large network with a finite k̃, such events occur with a negli-
gible probability. Note that this figure illustrates the modified
branching process we use to build a randomly connected network in
our analytical studies. It is not the way we build the model networks
used in the numerical simulations.
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the growth process, as more and more nodes are connected to
the aggregate, the degree distribution of the remaining nodes
changes. In this section, we will present and solve the differ-
ential equations describing these changes.

Let Ar�k� be the number of nodes with degree k in the r
exterior Er at time t. The probability to have a node with
degree k in Er is given by �27�

Pr�k� =
Ar�k�
rN

. �11�

When we connect an open link from the aggregate to a free
node �case �i��, Ar�k� changes as

Ar−1/N�k� = Ar�k� −
Pr�k�k
�k�r��

, �12�

where �k�r��=	Pr�k�k is the average degree of nodes in Er.
In the limit of N→	, Eq. �12� can be presented in terms of
the derivative of Ar�k� with respect to r,

dAr�k�
dr


 N�Ar�k� − Ar−1/N�k�� = N
Pr�k�k
�k�r��

. �13�

Differentiating Eq. �11� with respect to r and using Eq. �13�,
we obtain

− r
dPr�k�

dr
= Pr�k� −

kPr�k�
�k�r��

, �14�

which is rigorous for N→	.
In order to solve Eq. �14�, we make the substitution

f � G0
−1�r� . �15�

We find by direct differentiation that

Pf�k� = P1�k�
fk

G0�f�
, �16�

and

�k�f�� =
fG0��f�
G0�f�

�17�

is the solution satisfying Eq. �14�. Notice that P1�k�� P�k�.
Equations �16� and �17� are, respectively, the degree dis-

tribution and the average degree in Er as functions of f . Once
we know the explicit functional form for G0�x�, we can in-
vert G0�x� to find f =G0

−1�r� and find analytically both Pr�k�
and �k�r��:

Pr�k� = P�k�
�G0

−1�r��k

r
, �18�

�k�r�� =
G0

−1�r�G0�„G0
−1�r�…

r
. �19�

In a network with minimum degree kmin
2, we find by Tay-
lor expansion that

�k�r�� = kmin +
P�kmin + 1�
P�kmin�1+� r� + O�r2�� , �20�

where ��1 /kmin.

For ER networks, using Eqs. �10� and �17�, we find

�k�r�� = ln r + �k� , �21�

where r	�r�1. The value of r	 is presented in Eq. �33�.
Note that r	�0 for ER networks. Equation �16� can be re-
written as

Pr�k� = P�k�
�ln r/�k� + 1�k

r
= e−�k�r�� �k�r��k

k!
, �22�

which implies that the degree distribution in the distant
nodes remains a Poisson distribution but with a smaller av-
erage degree �k�r��.

Next, we test our theory numerically for ER networks
with N=106 nodes and different values of �k�. To obtain
Pr�k�, we start from a randomly chosen root node and find
the nodes in Er and their degree distribution Pr�k�. This pro-
cess is repeated many times for different roots and different
network realizations. The results are shown in Fig. 2�a�. The
symbols are the simulation results of the degree distribution
in Er for r=1, 0.5, and 0.05. The analytical results �full lines�
are computed using Eq. �22�. As can be seen, the theory

0 5 10 15 20 25 30
k

0

0.1

0.2

P
r(k

)

r=1
r=0.5
r=0.05

ER
<k>=6

(a) ER

10
0

10
1

10
2

10
3

k

10
-6

10
-4

10
-2

10
0

P
r(k

) r=1
r=0.5
r=0.1

(b) SF
λ=3.5

FIG. 2. �Color online� Comparison between the simulation re-
sult and the theoretical prediction for the degree distribution, Pr�k�,
in Er. �a� ER network with N=106, �k�=6 and r=1, 0.5, and 0.05.
The simulation results �symbols� agree very well with the theoreti-
cal predictions �lines� of Eq. �22�. �b� SF network with �=3.5,
kmin=2 and N=106, Pr�k� with r=1, 0.5, and 0.1. The simulation
results shown by symbols fit well with the theoretical predictions of
Eq. �16�. For a SF network, we compute Eq. �16� numerically using
the P�k� obtained from the generated network.
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agrees very well with the simulation results for both r=0.5
and 0.05. We compared our theory with the simulations also
for other values of r and �k� and the agreement is also excel-
lent.

For SF networks, G0�x� and G1�x� cannot be expressed as
elementary functions �19�. But for a given P�k�, they can be
written as power series of x and one can compute the expres-
sions in Eqs. �16� and �17� numerically. In order to reduce
the systematic errors caused by estimating P�k�, we write
G0�x� and G1�x� based on the P�k� obtained from the simu-
lation results instead of using its theoretical form.

We built SF networks using the Molloy-Reed algorithm
�10�. In Fig. 2�b�, the symbols represent the simulation re-
sults for Pr�k� obtained for Er of SF network with �=3.5 and
r=1, 0.5, and 0.1. The lines are the numerical results calcu-
lated from Eq. �16�. Good agreement between the simulation
results and the theoretical predictions can be seen in Fig.
2�b�. Other values of r and � have also been tested with good
agreement.

In Fig. 3�a�, we show the average degree �k�r�� in Er as a
function of r for ER networks with different values of �k�.
Lines representing Eq. �21� agree very well with the numeri-
cal results �symbols� even for very small r. We note that Fig.

3�a� shows different value of lower limit cutoff r	 for r,
when �k�r�� is very small. As mentioned before, r	 is the
fraction of nodes which are not connected to the aggregate at
the end of the process. In the next section, we will present an
equation for r	.

In Fig. 3�b�, we present the numerical results of Eq. �17�
for SF networks with different values of �. For a given Er,
�k�r�� is computed from the simulated network and the re-
sults are averaged over many realizations. Good agreement
between the theory �lines� and the simulation results �sym-
bols� can be seen.

IV. ITERATIVE FUNCTIONAL FORM OF r�, THE
FRACTION OF NODES OUTSIDE SHELL �

In this section, we will derive a recursive relation between
r� of two successive shells of a randomly connected network,
which is the main result of this paper. Let L�t� be the number
of open links belonging to the aggregate at step t and
�t��L�t� /N. The number of open links belonging to shell �
of the aggregate is defined as L��t� and ��t��L��t� /N. After
we finish building shell � and just before we start to build
shell �+1, all the open links in the aggregate belong to nodes
in shell �, so at t= t�, we have ��t�=�t� �28�. In the pro-
cess of building shell �+1, ��t� decreases to 0.

Next we show that both �t� and ��t� can be expressed
as functions of r. In analogy with Eq. �9�, we define the
branching factor of nodes in the r exterior Er as

k̃�r� =
�k2�r�� − �k�r��

�k�r��
=

	
k=0

	

k2Pr�k�

�k�r��
− 1. �23�

Using Eqs. �17� and �23�, k̃�r� can be rewritten as a function
of f as

k̃�f� =
fG0��f�
G0��f�

. �24�

Appendix A shows that �r� and ��r� obey differential
equations

d�r�
dr

= − k̃�r� + 1 +
2�r�
r�k�r��

, �25�

d��r�
dr

= 1 +
�r�

r�k�r��
+

��r�
r�k�r��

. �26�

Equations �25� and �26� govern the growth of the aggre-
gate. To solve them, we make the same substitution
f =G0

−1�r� �Eq. �15�� as before. The general form of the solu-
tion for Eq. �25� is

�f� = − G0��f�f + C1f2, �27�

where C1 is a constant. At time t=0, r= f =1, and �1�=0.
With this initial condition, we obtain C1=G0��1�= �k�. Using
Eq. �27�, the general solution of Eq. �26� is

��f� = G0��1�f2 + C2f , �28�

where C2 is a constant. When r=r�, the building of shell � is
finished. At that time, all the open links of the aggregate
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FIG. 3. �Color online� Comparison between the simulation re-
sult and the theoretical prediction for average degree �k�r�� of the
nodes in Er. �a� Four ER networks with different values of �k� and
�b� four SF networks with kmin=2 and different values of �. The
symbols represent the simulation results for ER and SF networks of
size N=106. The lines in �a� represent Eq. �21�. The lines in �b� are
the numerical results of Eq. �17� using the degree distribution ob-
tained from the networks.

STRUCTURE OF SHELLS IN COMPLEX NETWORKS PHYSICAL REVIEW E 80, 036105 �2009�

036105-5



belong to shell �, �r� �r=r�
=��r� �r=r�

. If we denote
f��G0

−1�r��, C2=−G0��f��. Thus, the solutions of the differ-
ential equations Eqs. �25� and �26� are

�f� = G0��1�f2 − G0��f�f , �29�

��f� = G0��1�f2 − G0��f��f . �30�

When all open links in the aggregate are used, =0, the
corresponding f = f	 gives the fraction of nodes r	=G0�f	�
which do not belong to the aggregate when the building pro-
cess is finished. The value of f	 must satisfy Eq. �29� with
�f	�=0,

f	 = G0��f	�/G0��1� � G1�f	� , �31�

and from Eq. �15�

r	 = G0�f	� . �32�

For ER network, f	 can be solved numerically from

f	 = e�k��f	−1�. �33�

Using Eqs. �32� and �10�, one can see that r	= f	 for ER
network.

Equations �31� and �32� imply that there may exist a cer-
tain fraction of distant links and nodes not connected to the
aggregate when the building process is finished. These re-
sults are consistent with previous work �25�. Further discus-
sions on Eq. �31� are in Sec. V A and Appendix B.

When ��f�=0, the construction of shell �+1 is com-
pleted, r=r�+1 and f = f�+1. Then from Eq. �30�, we obtain

f�+1 = G0��f��/G0��1� = G1�f�� , �34�

which leads to a deterministic iterative functional form for
r�,

r�+1 = G0�f�+1� = G0„G1�G0
−1�r���… � ��r�� . �35�

Equation �35� allows us to make a deterministic prediction of
r�+1 once we know r�.

This result is different from a similar well-known result
�20� based on the physical meaning of the generating func-
tion G0�r�, which gives a fraction of nodes in set B not
directly connected to nodes in a randomly selected set A of
fraction 1−r. The difference with Eq. �35� is that for the
physical meaning of generating function set A is selected
randomly, not by constructing shells around a root �as in the
modified branching process�. Moreover, set B may even
overlap with set A in the modified branching process.

To test our theory, we use RR networks, where
P�k�=��k−��, G0�x�=x�, and G1�x�=x�−1, then Eq. �35� re-
duces to

r�+1 = r�
�−1, �36�

which is shown as lines in Fig. 4�a�. The symbols in Fig. 4�a�
are the simulation results for RR networks with different
values of �. To obtain the simulation results, at each realiza-
tion a random root is chosen and a full set of r� is computed.
The results obtained for many realizations are plotted as a
scatter plot. Due to the homogeneity of RR network, r� can
only take on discrete values. The agreement between the

simulation results and Eq. �36� is excellent and the scattering
almost cannot be observed �29�.

For ER networks, Eq. �35� yields
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FIG. 4. �Color online� Comparison between the simulation re-
sult and the theoretical prediction. For a randomly chosen root in
the network, the fraction of nodes r�+1 in E�+1 as a function of the
fraction of nodes r� in E� for �a� three RR networks of size
N=105 with different �. The red lines represent the theoretical pre-
diction of Eq. �36�. �b� Four ER networks of size N=105 with
different �k�. The red lines represent the theoretical predictions of
Eq. �37�. �c� Five SF networks of size N=105 with different values
of �. The red lines shown are the numerical results of Eq. �35� using
the degree distribution obtained from the simulation. For �
2.5,
the agreement between the theory �Eq. �35�� and the simulation
results is perfect. �d� A SF network of size N=105 with �=2.2,
which allows MLS during its construction. Simulation results of SF
networks with MLS show excellent agreement with the theory �full
line�.
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r�+1 = e�k��r�−1�, �37�

which is valid for all ��1. We test Eq. �37� for ER network
with different values of �k� and the results are shown in Fig.
4�b�. The agreement between the theoretical predictions
�lines� and the simulation results is excellent.

For SF networks, Eq. �35� can be solved numerically us-
ing the values of P�k� from the generated SF network. The
lines shown in Fig. 4�c� represent the numerical solutions of
the theory �Eq. �35��. The symbols are the simulation results
for the generated SF networks. For �
2.5, a good agree-
ment between theory and simulation results can be seen.
Note that for the very small value of �=2.2, the simulation
results deviate slightly from the theory due to high probabil-
ity of creating multiple links and self-loops �MLS� in the
hubs of the randomly connected network �30� �created by
cases �ii� and �iii� in Fig. 1�. We test Eq. �35� for a SF
network of �=2.2 allowing MLS during its construction. The
results are shown in Fig. 4�d� as a log-linear plot. The agree-
ment between the theory and the simulation results for a SF
network with �=2.2 in the presence of MLS is very good.
This shows that SF networks built by the Molloy-Reed algo-
rithm without MLS deviate from randomly connected net-
works for very small values of �. We will further discuss this
deviation in Sec. VI.

V. DERIVATION OF THE POWER-LAW DISTRIBUTION
OF B� FOR �šd

Recently, a broad power-law distribution of the number of
nodes at shell � ���d�, B�, has been reported �18�. This
power-law distribution exists in many model and real net-
works and is characterized by a universal form P�B���B�

−2

�see Fig. 5�. In this section, we will explain the origin of this
universal power-law distribution based on Eq. �35� for ran-
domly connected networks with various degree distributions.

For the purpose of clarity, we use m instead of � for shells
with ��d and n instead of � for ��d. For the entire range
of shell indices, � will be used.

A. Derivation of P(Bm) for m�d

For infinitely large networks, we can neglect loops for
��d and approximate the forming of a network as a branch-
ing process �19,20,24�. It has been reported �19,24� that for
shell m �with m�d�, the generating function for the number
of nodes, Bm, in the shell m is

G̃m�x� = G0„G1�. . .�G1�x���… = G0„G1
m−1�x�… , �38�

where G1(G1� . . . �)�G1
m−1�x� is the result of applying G1�x�,

m−1 times and P�Bm� is the coefficient of xBm in the Taylor

expansion of G̃m�x� around x=0. The average number of

nodes in shell m is k̃m �19�. It is possible to show that G1
m�x�

converges to a function of the form �(�1−x�k̃m) for large m
�24�, where ��x� satisfies the Poincaré functional relation

G1„��y�… = ��yk̃� , �39�

where y�1−x. The functional form of ��y� can be uniquely
determined from Eq. �39�.

It is known that ��y� has an asymptotic functional form,
��y�= f	+ay−�+o�y−��, where a is a constant �24�. Expand-
ing both sides of Eq. �39�, we obtain

G1�f	� + G1��f	�ay−� = f	 + ak̃−�y−� + o�y−�� . �40�

Since G1�f	�= f	, we find

� = − ln G1��f	�/ln k̃ . �41�

The numerical solution of G1�f	�= f	 depends on different
scenarios �see Appendix B� as

f	��0 for P�k = 1� � 0

=0 for P�k = 1� = 0.
 �42�

The solution for � is �see Appendix B�

���0 for P�k = 1� � 0 or P�k = 2� � 0

=	 for P�k = 1� = 0 and P�k = 2� = 0.


Applying Tauberian-type theorems �24,31� to ��y�, which
has a power-law behavior for y→	, it has been found �31�
that the Taylor expansion coefficient of G̃m�x�, P�Bm� be-

haves as Bm
� with an exponential cutoff at Bm

� � k̃m and some
quasiperiodic modulations with period 1 as a function of
logk̃ Bm �24,31�, where

� = �� − 1 for P�k = 1� � 0

2� − 1 for P�k = 1� = 0 and P�k = 2� � 0

	 for P�k = 1� = 0 and P�k = 2� = 0.
�

Thus, the probability distribution of the number of nodes in
the shell m has a power-law tail for small values of Bm �18�,

P�Bm� � Bm
� , �43�

if P�k=1�+ P�k=2��0.
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FIG. 5. �Color online� Demonstration of four networks having
the same exponent of the cumulative distribution function of the
number of nodes B� in shell � ���d�. The four networks are �i� an
ER network with �k�=4, N=106, and d
10.0, �ii� a SF network
with �=2.5, N=106, and d
4.7, �iii� the HEP network
�d
4.2�, and �iv� the DIMES network �d
3.3�. Note that slope −1
of the cumulative distribution function implies P�B���B�

−2, which
holds for all four examples, as well as for many other networks
studied �18�.
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The above considerations are correct only for m�d,
where the depletion of nodes with large degree is insignifi-
cant. For ��d, we must consider the changing of Pr�k�.

B. P(Bn) for n�d

For the whole range of �, using Eq. �35�, we can write the
relation between rn for n�d and rm for m�d as

rn = G0�G1�G0
−1�G0�G1�G0

−1 . . . �rm� . . .�����

= G0„G1
n−m�G0

−1�rm��… = G0„G1
n−m�fm�… . �44�

Applying the same considerations as for Bm, we obtain

G1
n−m�fm� = f	 + ak̃−��n−m��1 − fm�−� + 0„k̃��n−m��1 − fm�−�

… .

�45�

Using

1 − fm = 1 − G0
−1�rm� = 1 − G0

−1�1 − �1 − rm�� , �46�

we can write a Taylor expansion for z�1−rm as

1 − fm = 1 − G0
−1�1 − z� 
 1 − �1 − z�G0

−1���1�� = z/�k� .

�47�

Thus, we obtain

G1
n−m�fm� 
 f	 + a� k̃n−m

�k�
�1 − rm��−�

. �48�

Applying G0 on both sides of Eq. �48� and using the Taylor
expansion, we obtain

rn = G0�f	� + G0��f	�� +
G0��f	�

2
�2 . . . , �49�

where ��a�k̃n−m / �k��−��1−rm�−�. If P�k=1��0, as dis-
cussed in Eq. �42� and Appendix B, f	 is nonzero, G0��f	�
= �k�G1�f	�= �k�f	 is also nonzero, thus we can ignore the �2

term and keep the leading nonzero term �. If P�k=1�=0 and
P�k=2��0, both G1�f	� and f	 are zero, G0��f	�= �k�G1��0�
=2P�k=2��0 and then

G0��f	�
2 �2 is the leading nonzero term.

Thus,

rn − r	 
 af	

k̃��n−m�

�k�−�−1 �1 − rm�−� 
 �1 − rm�−�−1, P�k = 1�

� 0, �50�

rn − r	 
 P�2�a2� k̃n−m�1 − rm�
�k�

�−2�


 �1 − rm�−�−1, P�k

= 1� = 0, P�k = 2� � 0. �51�

Since B� increases exponentially with � for ��d and de-
creases even faster than exponentially for ��d �19�, we can
make approximations rn�Bn+1 /N and 1−rm�Bm /N for n
�d and m�d, respectively. Using P�Bn+1�dBn+1
= P�Bm�dBm and Eqs. �43�, �50�, and �51�, we obtain

P�Bn+1� � Bn+1
−1−�/��+1�−1/��+1� = Bn+1

−2 , �52�

which is valid for n�d.

The power-law distribution shown by Eq. �52� is valid for
randomly connected networks, which have nodes with de-
gree k=1 or k=2. Our derivations employ the fact that the
initial shells of the network may grow slowly due to the
presence of low-degree nodes of degree 1 and 2. This feature
creates a broad power-law distribution of B� in the initial
shells. Symmetrically, the peripheral shells of the network
shrink slowly due to the presence of low-degree nodes. The
symmetry of these two processes, described by the same
Poincaré map, leads to the simple and elegant result of Eq.
�52�. The same symmetry is present in the real-world net-
works with low-degree nodes. The low-degree nodes form
many dead ends of the same typical structure. A sequence of
slowly growing shells starting from such dead ends in initial
shells is described by the same Poincaré map as the sequence
of peripheral shells converging to dead ends. That is why Eq.
�52� holds for real-world networks and models, provided
they have low-degree nodes of k=1 and k=2.

VI. NETWORK CORRELATION FUNCTION c(r)

In this section we will compare various models and real-
world networks with the randomly connected networks with
same degree distributions and present a network characteris-
tic, the network correlation function c�r� analogous to the
density correlation function in statistical mechanics �32�. For
a randomly connected network, c�r�=1, as for the density
correlation function in the ideal gas, while for the nonran-
dom networks the deviation of c�r� from unity characterizes
their correlations on different distances from the root.

A. SF networks with ��3

Our theory crucially depends on the existence of the

branching factor k̃. So we can expect significant deviations
from our theory in the behavior of the SF networks with �

�3 for which k̃ diverges for N→	. However, for a fixed N,
the degree distribution is truncated by the natural cutoff

kmax�N1/��−1�, so that k̃ still exists. Hence, we hypothesize
that our theory remains valid even for ��3 for randomly
connected networks �with MLS� �see Fig. 6�. Another prob-
lem is that our algorithm of constructing randomly connected
networks leads to formation of MLS. The MLS is typically
forbidden in the construction algorithm of the networks char-
acterizing complex systems. In order to construct a network
without MLS, one imposes significant correlations in net-
work structure of a dissortative nature with greater probabil-
ity of hubs to be connected to small degree nodes than in a
randomly connected network �30�. Thus, we can predict that
SF networks with ��3 which do not include MLS must
significantly deviate from the prediction of our theory.

In order to characterize this deviation we define a corre-
lation function

c�r�� � r�/��r�−1� , �53�

where r�−1 and r� characterize two successive shells of a
network under investigation while ��r�−1� is the prediction
�Eq. �35�� of r� based on our theory for a randomly con-
nected network. Accordingly, we compute c�r�� for several
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networks with N=106 nodes with �=2.5 and �=2.2, for the
randomly connected case and for the case in which MLS are
not allowed. We find in Fig. 6 that for randomly connected
networks c�r�� is always close to 1 with the expected random
deviations for r�→0 and r�→1 caused by random fluctua-
tions in the small first �r�→1� and last �r�→0� shells. In
contrast, c�r�� is uniformly smaller than 1 for the networks
without MLS. For �=2.5 the deviations are small because
the typical number of MLS that would randomly form still
constitutes a negligible fraction of links. For �=2.2 the de-
viations are significant because in this case the chance of
formation of MLS is much higher. In both cases, the devia-
tions are increasing with the maximal degree of the network,
which can randomly fluctuate around its average value
kminN

1/��−1�����−2� / ��−1�� �33�. The value of c�1 for
these networks indicates the fact that due to the absence of
MLS more nodes are attached to the next shells compared to
randomly connected networks. Accordingly, for such net-
works, the fraction of nodes not included into shell �+1 is
smaller than that in randomly connected networks. Thus, SF
networks for ��3 are dissortative, which means that the
degree of a node is anticorrelated with the average degree of

its neighbors. Moreover, these anticorrelations are barely vis-
ible for ��2.5 and increase with the decrease in �. There-
fore c�r���1 can be associated with the network dissorta-
tiveness.

B. Global calculation of correlations

The network building process described in Sec. II corre-
sponds to a randomly connected network for a given P�k�.
However, real-world and model networks do not always fol-
low the behavior described by our theory. The correlation
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function c�r�� constructed in the previous section �Eq. �53��
can be used to detect nonrandomness in the network connec-
tions.

For a given degree distribution, we define poorly con-
nected networks as those in which c�r���1. Conversely, we
define well-connected networks as those in which c�r���1.
The motivation for this definition is that if c�r���1, it means
that the number of nodes in shell �, B�, which is

B� = N�r�−1 − r�� = N�r�−1 − c�r����r�−1�� , �54�

is smaller than N�r�−1−��r�−1��, the value expected for a
randomly connected network with the same degree distribu-
tion. Therefore in a poorly connected network information or
virus spreads slower than in a randomly connected network
in accordance with the meaning of the term poorly con-
nected. Conversely, in well-connected networks information
spreads faster than in randomly connected networks with the
same degree distribution. Poorly connected networks usually
contain cliques of fully connected nodes. In a clique, the
majority of links connect back to the already connected
nodes in shell �. So the new shell �+1 grows slower than for
a randomly connected network with the same degree distri-
bution.

As an example, we analyze the WS model characterized
by high clustering. In this case the number of links which
can be used to build the next shell of neighbors is much
smaller than in a randomly connected network with the same
degree distribution. Thus we can expect c�1 for a small
fraction � of rewired links �see Fig. 7�a��, while for �→1,
c�r��→1.

Further, we find that the networks characterizing human
collaborations are usually poorly connected �see Fig. 7�b��. A
typical example of such a network is the actor network,
where a link between two actors indicates that they play in
the same movie at least once. So all the actors played in the
same movie form a fully connected subset of the network
�“clique”�. As a result, the majority of their links are not used
to attract new actors but circle back to the previously ac-
quainted actors. The same is correct for the Supreme Court
citation network �SCC� and high energy physics citations
�HEP� networks in Fig. 7�b�. Actor, HEP, and SCC networks
all contain a large amount of highly interconnected cliques.
As we see these cliques manifest themselves in c�1. In
contrast the DIMES network �23� is designed to be well con-
nected and as a result it has c�1.

Another example of a well-connected network is the BA
model, in which c�r�� linearly goes to zero for r�→0 � Fig.
7�c��. In the BA model a new node, which has exactly kmin
open links, randomly attaches its links to the previously ex-
isting nodes with probabilities proportional to their current
degrees. �MLS are forbidden.� One can see that for kmin
2,
c�r���1 for all r� except in a small vicinity of r�=1. This
fact is associated with the dissortative nature of the BA
model, in which small degree nodes that are created at the
late stages of the network construction are connected with
very high probability to the hubs that are created at the early
stages. Thus as soon as the hubs are reached during shell
construction, the rest of the nodes can be reached much
faster than in a randomly connected network.

The small region of c�r���1 for r�→1 can be associated
with the fact that the hubs, which are created at the early
stages of the BA network construction, are not necessarily
directly connected to each other as it would be in randomly
connected networks. Thus initial shells of the BA model cor-
responding to large r� grow slower than they would grow in
the randomly connected network. The effect is especially
strong for kmin=1 in which the BA network is a tree, and the
distance between certain hubs can be quite large. Thus BA
with kmin=1 gives an example of a network with poor con-
nectivity between the hubs �large r�→1� and good connec-
tivity among the low-degree nodes �r�→0� which are di-
rectly connected to the hubs. In a network in which long
connected chains of low-degree nodes are abundant, we will
have poor connectivity �c�r���1� for r�→0. In general, the
behavior of c�r�� for r�→1 characterizes the connectivity
among the hubs, while the behavior of c�r�� for r�→0 char-
acterizes the connectivity among the low-degree nodes.

VII. SUMMARY

In this paper, we derive analytical relations describing
shell properties of a randomly connected network. In particu-
lar, we expand the results of Ref. �12� on the network tomog-
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raphy using the apparatus of the generating functions. We
find how the degree distribution is depleted as we approach
the boundaries of the network which consist of the r fraction
of the most distant node from a root node. We find an explicit
analytical expression for the degree distribution as a function
of r �Eqs. �16� and �17��. We also derive an explicit analyti-
cal relation between the values of r for two successive shells
� and �+1 �Eq. �35��. Using this equation we construct a
correlation function c�r� �Eq. �53�� of the network which
characterizes the quality of the network connectedness. We
apply this measure for several model and real networks. We
find that human collaboration networks are usually poorly
connected compared to the random networks with the same
degree distribution. The same is true for the WS small-world
model. In contrast, we find that the Internet is a well-
connected network. The same is true for the BA model. Thus
our results indicate that the WS model and the BA model
correctly reproduce an essential feature of the real-world
models they were designed to mimic, namely, social net-
works and the Internet, respectively. Finally we apply Eq.
�35� to derive the power-law distribution of the number of
nodes in the shells with ��d �18�.
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APPENDIX A: DIFFERENTIAL EQUATIONS FOR �(r)
AND ��(r)

In this appendix, we derive the differential equations �Eq.
�25�� for �t� and ��t�. At time t, the total number of open
links in the r exterior Er of the unconnected nodes is
rN�k�r��. At step t, we connect one open link from the ag-
gregate to another open link. There is a probability

r�t��k�r�t���
r�t��k�r�t��� + �t�

that it will be connected to a free node. Thus,

Nr�t + 1� = Nr�t� −
r�t��k�r�t���

r�t��k�r�t��� + �t�
. �A1�

To derive the differential equations for �t�, we need to con-
sider all three different scenarios which we illustrated in Fig.
1. If we connect an open link from the aggregate to a node
which is not yet connected to the aggregate �scenario �i� in

Fig. 1�, on average �t� will increase by k̃�r�t�� /N. If we
connect the open link from the aggregate to another open
link either from shell � or shell �+1 �scenarios �iii� and �ii�
in Fig. 1�, �t� will decrease by 1 /N. Because we connect

links at random, the probability of scenario �i� is

r�t��k�r�t���
r�t��k�r�t��� + �t�

and the probability of scenarios �ii� or �iii� is

�t�
r�t��k�r�t��� + �t�

.

Thus, we can write down the evolution of �t� as

�t + 1� = �t� −
1

N
+

k̃�r�t��
N

r�t��k�r�t���
r�t��k�r�t��� + �t�

−
1

N

�t�
r�t��k�r�t��� + �t�

. �A2�

For N→	, Eqs. �A1� and �A2� lead, respectively, to

dr�t�
dt

= −
1

N

r�t��k�r�t���
r�t��k�r�t��� + �t�

�A3�

and

d�t�
dt

= −
1

N
+

k̃�r�t��
N

r�t��k�r�t���
r�t��k�r�t��� + �t�

−
1

N

�t�
r�t��k�r�t��� + �t�

. �A4�

Dividing Eq. �A4� by Eq. �A3� we obtain the differential
equation for  as a function of r,

d�r�
dr

= − k̃�r� + 1 +
2�r�
r�k�r��

. �A5�

��t� behaves similarly to �t� except that we only need
to consider the effect of scenario �iii� of Fig. 1. Accordingly,
the evolution of � can be written as

��t + 1� = ��t� −
1

N
−

1

N

��t�
r�t��k�r�t��� + �t�

, �A6�

which for N→	 is

d��t�
dt

= −
1

N
−

1

N

��t�
r�t��k�r�t��� + �t�

. �A7�

Dividing Eq. �A7� by Eq. �A3�, we get

d��r�
dr

= 1 +
�r�

r�k�r��
+

��r�
r�k�r��

. �A8�

APPENDIX B: SOLUTION OF G1(f�)= f� AND

�=−ln G1�(f�) Õ ln k̃

The numerical solutions of G1�f	�= f	 can be illustrated
by a simple example. Suppose we have three simple net-
works A, B, and C. In network A, all the nodes can only have
degree 1, 2, and 3. In network B, the degree can be 2, 3, and
4. In network C, the degree can be 3, 4, and 5. For all three
examples, the probability of each degree is 1/3. We can write
G0 and G1 for three networks as
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G0,A�x� =
1

3
x +

1

3
x2 +

1

3
x3, �B1�

G0,B�x� =
1

3
x2 +

1

3
x3 +

1

3
x4, �B2�

G0,C�x� =
1

3
x3 +

1

3
x4 +

1

3
x5. �B3�

The average degrees �k�=G0��1� of A, B, and C are 2, 3, and
4, respectively. Using the above expressions for G0 we can
construct the expressions for G1�x�:

G1,A�x� =
1

6
+

1

3
x +

1

2
x2, �B4�

G1,B�x� =
2

9
x +

1

3
x2 +

4

9
x3, �B5�

G1,C�x� =
1

4
x2 +

1

3
x3 +

5

12
x4. �B6�

The branching factors k̃=G1��1� of A, B, and C are 2/3, 20/9,
and 19/6, respectively. The numerical solutions of G1�f	�
= f	 for networks A and B are shown in Figs. 8�a� and 8�b�,
where we plot the functions y= f and y=G1�f� on the same
plot. From Fig. 8, we can see that there is a nonzero f	

=1 /3 for network A and f	=0 for network B. For network C,
we also have f	=0. Whether we can have a nonzero f	 de-
pends on the first term of G1�x�, which depends on P�k=1�,
the probability of having nodes with degree 1. If P�k=1�

�0, we can have f	�0, if P�k=1�=0, f	=0. Using Eq.
�41�, we can calculate �A=ln�3 /2� / ln�4 /3�
1.41,
�B=ln�9 /2� / ln�20 /9�
1.88, and �C=	. It is clear that net-
works A and B have finite �, while for network C,
G1��0�=0 thus �c=	. In order to have finite �, P�k=2�
+ P�k=1� must be greater than 0. If P�k=2�= P�k=1�=0
�called the Böttcher case �24��, then �=	, which indicates
that ��y� has an exponential singularity. For the Böttcher
case, the distribution of B� is not described by a power law,
i.e., there are no fractal boundaries.

APPENDIX C: AVERAGE NUMBER OF NODES IN SHELL
�, ŠB�‹

The number of nodes in shell � can be expressed as a
function of r� as

B� = N�r�−1 − r�� . �C1�

From Eqs. �35� and �C1�, with initial condition r=rm, one
can calculate B� for all �
m and find �B��.

For finite networks, the relative error in determining B�+�

��=1,2 ,3. . .� decreases as 1 /�N. For a randomly connected
network, �B�� can be calculated as �B��=N����r�−2��
− ���r�−1���. Note that ���r�������r���, except for the case
of RR network. Thus, simply applying Eq. �C1� and Eq. �35�
in which r� is replaced by �r�� will not give a good approxi-
mation of �B�� for networks with inhomogeneous degree.

In order to find angle �B�� as a function of �, we need to
find the probability density function P�B�� for a sufficiently
large �, where r� can be regarding as a continuous variable.
Then we can find P�r��= P���r�−1��, using recursive P�rn�.
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