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Abstract

Even under healthy, basal conditions, physiologic systems show erratic uctuations resem-
bling those found in dynamical systems driven away from a single equilibrium state. Do such
“nonequilibrium” uctuations simply reect the fact that physiologic systems are being constantly
perturbed by external and intrinsic noise? Or, do these uctuations actually contain useful, “hid-
den” information about the underlying nonequilibrium control mechanisms? We report some
recent attempts to understand the dynamics of complex physiologic uctuations by adapting and
extending concepts and methods developed very recently in statistical physics. Speci�cally, we
focus on interbeat interval variability as an important quantity to help elucidate possibly non-
homeostatic physiologic variability because (i) the heart rate is under direct neuroautonomic
control, (ii) interbeat interval variability is readily measured by noninvasive means, and (iii)
analysis of these heart rate dynamics may provide important practical diagnostic and prognostic
information not obtainable with current approaches. The analytic tools we discuss may be used
on a wider range of physiologic signals. We �rst review recent progress using two analysis
methods – detrended uctuation analysis and wavelets – su�cient for quantifying monofrac-
tal structures. We then describe very recent work that quanti�es multifractal features of in-
terbeat interval series, and the discovery that the multifractal structure of healthy subjects is
di�erent than that of diseased subjects. c© 1999 Published by Elsevier Science B.V. All rights
reserved.

1. Introduction

A central task of statistical physics is to deal with macroscopic phenomena that result
from microscopic interactions among many individual components [1]. This problem,
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which is at the root of many of the contributions to this conference, is a problem on
which much progress has been made in the last third of this century. In particular,
physiologic systems under neuroautonomic regulation [2,3], such as heart rate regu-
lation, are good candidates for such an approach, since (i) the systems often include
multiple components, thus leading to many degrees of freedom, and (ii) the systems
usually are driven by competing forces, e.g., parasympathetic versus sympathetic stim-
uli. Therefore, it seems reasonable to consider the possibility that dynamical systems
under neuroautonomic regulation may exhibit temporal structures that are similar, under
certain conditions, to those found in physical systems. Indeed, new conceptual frame-
works and corresponding methodologies are being developed in order to deal with three
particularly vexing features of physiologic time series.
(i) Nonstationarity. Traditional methods of statistical analysis assume that the sta-

tistical properties of a signal are the same throughout the signal [4]. This is not true
for many signals of interest in physiology – e.g., the statistical properties of the heart
rate change when a subject rises to a standing position. Such nonstationarity problems
arise in other contexts in the discipline of statistical physics, and novel techniques such
as detrended uctuation analysis (DFA) [5] and wavelets [6–8] have been success-
fully developed to study nonstationary signals. Hence we are exploring the degree to
which the solutions found in statistical physics can be usefully applied to physiologic
signals.
(ii) Nonlinearity. Traditional methods of analysis also assume that to a large de-

gree the system can be viewed as linear, so that departures from linearity can be
treated perturbatively. This is not true for most physiologic systems, which are in-
trinsically nonlinear. A salient feature of nonlinear systems is that their components
interact with each other, and therefore their outputs are not proportional to the strength
of the inputs. The �eld of statistical physics has in the past 10 yr focused on non-
linear systems, and has developed a conceptual framework within which a wide range
of nonlinear phenomena can be usefully treated. Hence we are seeking to uncover
which of these methodologies can be usefully applied and carefully adapted to data. In
particular, multifractal methods [9,10] o�er a new and potentially promising avenue
for quantifying features of a range of physiological signals that di�er in health and
disease.
(iii) Nonequilibrium phenomena. From the time of Bernard [11] and Cannon [12],

it has been assumed that physiologic systems possess feedback and control mecha-
nisms that serve to restore an equilibrium-like state when a system is perturbed away
from some set point. Recent research, however, has shown that physiologic systems
are inherently out-of-equilibrium systems [13]. Nonequilibrium statistical mechanics
has made advances in recent years that have yet to be applied in the physiologic
domain.
The statistical methods we are developing are particularly attractive for the analysis

of heart rate time series because they can be reliably applied to complex signals from
stochastic, deterministic, or mixed systems. Further, these techniques are speci�cally
designed to cope with the output of highly nonstationary processes. As such, these
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Fig. 1. Representative complex physiologic uctuations. Cardiac interbeat interval (normal sinus rhythm)
time series of 2000 beats from (a) a healthy subject and (b) a subject with obstructive sleep apnea. Note
the nonstationarity of these time series, which limits the applicability of traditional methods of analysis and
modeling. This �gure is courtesy of J. Mietus.

methods complement approaches derived from the analysis of deterministic systems
which may be less appropriate for nonstationary data [14–16].

2. Information in nonstationarity physiologic signals

A major problem in contemporary physiology (and cardiology in particular) is the
presence of nonstationarity in time series. The signals obtained under constantly varying
conditions raise serious challenges to both technical and theoretical aspects of time
series analyses.
Representative examples of complex dynamical behavior under physiologic and patho-

logic conditions are shown in Fig. 1.Fig. 1a shows a cardiac interbeat time series
– the output of a spatially and temporally integrated neuroautonomic control sys-
tem. The time series shows erratic uctuations and “patchiness”. These uctuations
are usually ignored in conventional medical studies that focus on averaged quanti-
ties. In fact, these uctuations are often labeled as “noise” to distinguish them from
the true “signal” of interest. Generally, in the conventional approach it is assumed
that there is no meaningful structure in apparent noise and, therefore, one does not
expect to gain any understanding about the underlying system through the study of
these nonequilibrium uctuations. However, by adapting and extending methods de-
veloped in modern statistical physics and nonlinear mathematics, we have recently
found that the physiologic uctuations shown in Fig. 1a exhibit unexpected hidden
scaling structure. Furthermore, these patterns change with pathological perturbations
(shown in Fig. 1b). These �ndings raise the possibility that understanding the ori-
gin of such temporal structures and their alterations may (i) elucidate certain basic
features of heart rate control mechanisms, and (ii) have practical value in clinical
monitoring.



312 H.E. Stanley et al. / Physica A 270 (1999) 309–324

Fig. 2. Two heart rates time series with identical values of their means and standard deviations. However,
dramatic di�erences in their dynamics can be easily visualized. Note that the healthy subject shows a complex
type of variability while the subject with heart failure shows a more periodic pattern with an apparent loss
of complexity. This �gure is courtesy of J. Mietus.

3. Limitations of traditional techniques

3.1. Averages, standard deviations and distribution functions

A technique widely used to analyze time series is the study of the moments of the
distribution of measured values. Fig. 2 shows two sequences of interbeat intervals, one
for a normal individual and one for a subject with congestive heart failure. Visual
inspection makes clear the existence of di�erences in the dynamics generating the two
signals. However, the signals have the same averages and standard deviations. Hence
additional methods are required if these two signals are to be distinguished.

3.2. The power spectrum of nonstationary signals

A quantity widely used to measure correlations in a time series is the power spec-
trum, which measures the relative frequency content of a signal. A power spectrum
calculation assumes that the signal studied is stationary, and when applied to nonsta-
tionary time series can lead to misleading results. To illustrate this point, we analyze
two arti�cial signals: one (Fig. 3a) is stationary – two di�erent frequencies are present
at all times. The other (Fig. 3b) is nonstationary – one frequency is present in the
�rst half of the signal and another frequency in the other half. The calculation of
the power spectrum for these signals leads to almost identical results! Similarly, the



H.E. Stanley et al. / Physica A 270 (1999) 309–324 313

Fig. 3. (a) Stationary signal resulting from the sum of two sine waves with frequencies 1=(200�) and
1=(60�). (b) Nonstationary signal with a �rst regime comprised of a sine wave with frequency 1=(200�),
and a second regime comprised of a sine wave with frequency 1=(60�). (c) and (d) Note how the power
spectra of the two signals are almost identical. (They would be identical except for the small high frequency
uctuations due to the spurious singularity at x=1024.) Thus, a power spectrum analysis cannot distinguish
these signals, despite their obvious di�erences. This �gure is courtesy of L.A.N. Amaral.

presence of linear or higher-order polynomial trends can mask the frequency content
of a signal. Since the power spectrum is incapable of distinguishing between these
types of behavior, it must not be used as the only form of analysis for nonstationary
signals.

4. Monofractal analysis: detecting and quantifying long-range correlations

To quantitatively describe noisy cardiac signals is not an easy task. Techniques for
analysis must be selected carefully in order to extract robust features hidden in these
complex uctuations. We have developed several complementary algorithms in the last
few years for this purpose. We will �rst discuss some interesting results obtained by
applying these new methods.

4.1. Measurement of long-range correlations in physiologic interbeat interval
dynamics

An important question is whether the “heterogeneous” structure of physiologic time
series arises trivially from external and intrinsic perturbations which push the system
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Fig. 4. The integrated time series: y(k)=
∑k

i=1
[RR(i)−RRave], where RR(i) is the interbeat interval shown

in Fig. 1a. The vertical dotted lines indicate box of size n = 100, the solid straight lines segments are the
estimated “trend” in each box by least-squares �t. This �gure is courtesy of C.-K. Peng.

away from a homeostatic set point. An important alternative hypothesis is that the uc-
tuations are, at least in part, due to the underlying dynamics of the system. The key
problem is how to decompose subtle uctuations (due to intrinsic physiologic control)
from other nonstationary trends associated with external stimuli.
To this end, our multidisciplinary team recently introduced the detrended uctua-

tion analysis (DFA) method [5]. The advantages of DFA over conventional methods
are that it permits the detection of long-range correlations embedded in a seemingly
nonstationary time series and also avoids the spurious detection of apparent long-range
correlations that are an artifact of nonstationarity. The DFA method (Fig. 4) has been
tested on control time series that consist of long-range correlations with superposi-
tion of a nonstationary external trend. It has also been successfully applied to detect
long-range correlations in highly heterogeneous DNA sequences [5,17–19]. Of note is
a recent independent review of fractal uctuation analysis methods which determined
that DFA was one of the most robust methods [20].
The computational details of DFA are described elsewhere [5,17]. Briey, a moving

window of size n is used to study how the uctuation F(n) grows with n for the
interbeat interval time series. The slope of the line relating log F(n) to log n determines
the scaling exponent (self-similarity parameter) � (Fig. 5).

4.2. Alteration of correlation properties in pathologic states

Assessing correlations under pathologic conditions is likely to be particularly infor-
mative for patients with congestive heart failure due to severe left ventricular
dysfunction since these individuals have abnormalities in both the sympathetic and
parasympathetic control mechanisms [21] that regulate beat-to-beat variability. Pre-
vious studies have demonstrated marked changes in short-range heart rate dynamics
in heart failure compared to healthy function, including the emergence of intermit-
tent relatively low-frequency (∼1 cycle=min) heart rate oscillations associated with
the well-recognized syndrome of periodic (Cheyne–Stokes) respiration, an abnormal
breathing pattern often associated with low cardiac output [21]. Of note is the fact that
patients with congestive heart failure are at very high risk for sudden cardiac death.
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Fig. 5. Plot of logF(n) vs. log n for two long interbeat interval time series (∼24 h). The circles are
for a representative healthy subject while the triangles are from a subject with congestive heart failure.
Arrows indicate “crossover” points in scaling. Note altered scaling with heart failure, suggesting apparent
perturbations of both short and long-range correlation mechanisms. This �gure is courtesy of C.-K. Peng
(see [26]).

Fig. 5 compares the DFA analysis of representative 24 h interbeat interval time series
of a healthy subject (©) and a patient with congestive heart failure (4). Notice that
for large time scales (asymptotic behavior), the healthy subject shows almost perfect
power-law scaling over more than two decades (206n610 000) with �= 1 (i.e., 1=f
noise) while for the pathologic data set � ≈ 1:3 (closer to Brownian noise). This result
is consistent with our previous �nding [22,23] that there is a signi�cant di�erence in
the long-range scaling behavior between healthy and diseased states.
To study the alteration of long-range correlations with pathology, we analyzed cardiac

interbeat data from three di�erent groups of subjects: (i) 29 adults (17 male and 12
female) without clinical evidence of heart disease (age range: 20–64 yr, mean 41),
(ii) 10 subjects with fatal or near-fatal sudden cardiac death syndrome (age range: 35
–82 yr) and (iii) 15 adults with severe heart failure (age range: 22–71 yr; mean 56).
Data from each subject contains approximately 24 h of ECG recording encompassing
∼105 heartbeats.
For the normal control group, we observed � = 1:00 ± 0:10 (mean value ± S.D.).

These results indicate that healthy heart rate uctuations exhibit long-range power-law
(fractal) correlation behavior over three decades, similar to that observed in many
dynamical systems far from equilibrium [24,25]. Furthermore, both pathologic groups
show signi�cant deviation of the long-range correlations exponent � from the normal
value, �=1. For the group of heart failure subjects, we �nd that �=1:24±0:22, while
for the group of sudden cardiac death syndrome subjects, we �nd that �=1:22±0:25. Of
particular note, we obtained similar results when we divided the time series into three
consecutive subsets (of ∼8 h each) and repeated the above analysis [26]. Therefore,
our �ndings are not simply attributable to di�erent levels of daily activities. Our results
have been independently veri�ed by Turcott and Teich at Columbia University [27].
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4.3. Clinical utility

Recently, fractal scaling analysis has been applied to three retrospective clinical
studies [28–30]. Results from all three studies indicate that additional information can
be extracted from heart rate time series with the method we developed. Furthermore,
these information can be used for prognostic purpose. We have also shown [31] that the
scale-free parameters we introduce have a greater potential for more accurate diagnosis
than recently suggested scale-speci�c measures [32].

4.3.1. Forecasting clinical outcomes: Framingham Heart Study
A major question regarding this new fractal long-range measurement is the

following: Does DFA have clinically predictive value, independent of conventional
time- and frequency-domain indices? To answer this question, the predictive power of
the DFA exponent in comparison with 10 other conventional indices has been stud-
ied. Ho et al. analyzed 2 h ambulatory ECG recordings of 69 participants (mean age
71:7 ± 8 yr) in the Framingham Heart Study – a prospective, population-based study
[28]. Importantly, they found that this fractal measurement carries prognostic informa-
tion about mortality not extractable from traditional methods of heart rate variability
analysis.

4.3.2. Heart rate dynamics in patients at high risk of sudden death after
myocardial infarction
M�akikallio and co-workers compared short-term (¡ 11 beats) and long-term (¿ 11

beats) correlation properties of RR interval data in three groups: (i) 45 postinfarction
patients with a recent history of ventricular tachyarrhythmia and inducible ventricular
tachyarrhythmia by programmed electrical stimulation, (ii) 45 postinfarction patients
without clinical ventricular tachyarrhythmia events or inducible ventricular tachyarrhyth-
mia, and (iii) 45 healthy control subjects. The short-term scaling exponent (�1) was
signi�cantly lower in the ventricular tachyarrhythmia group than in postinfarction con-
trol group (p¡ 0:001) or healthy controls (p¡ 0:001) [29]. In stepwise multiple re-
gression analysis, the short-term exponent was the strongest independent predictor of
vulnerability to ventricular tachyarrhythmia. The data suggest that short-term corre-
lation properties of RR interval dynamics are altered in postinfarction patients with
vulnerability to ventricular tachyarrhythmia, and that abnormal beat-to-beat heart rate
dynamics may be related to vulnerability to ventricular tachyarrhythmia in postinfarc-
tion patients.

4.3.3. Heart rate dynamics in patients with stable angina pectoris
Recently, M�akikallio [30] also compared conventional measures of heart rate variabil-

ity with short term (611 beats, �1) and long-term (¿ 11 beats, �2) fractal correlation
properties and with approximate entropy of RR interval data in 38 patients with sta-
ble angina pectoris without previous myocardial infarction or cardiac medication at the
time of the study and 38 age-matched healthy controls. The short- and long-term fractal
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scaling exponents (�1, �2) were signi�cantly higher in the coronary patients than in the
healthy controls (1:34±0:15 vs. 1:11±0:12 [p¡ 0:001] and 1:10±0:08 vs. 1:04±0:06
[p¡ 0:01], respectively), and they also had lower approximate entropy (p¡ 0:05),
standard deviation of all RR intervals (p¡ 0:01), and high-frequency spectral com-
ponent of heart rate variability (p¡ 0:05). The short-term fractal scaling exponent
performed better than other heart rate variability parameters in di�erentiating patients
with coronary artery disease from healthy subjects, but it was not related to the clinical
or angiographic severity of coronary artery disease or any single nonspectral or spectral
measure of heart rate variability in this retrospective study.

5. Multifractal analysis: application to physiologic signals

The DFA method can measure only one exponent characterizing a given signal. This
fact implies that the method is more appropriate for the study of monofractal signals.
Monofractals are homogeneous in the sense that they have the same scaling properties,
characterized by a single singularity exponent h0, throughout the entire signal [33–
38]. On the other hand, multifractal signals or objects require an in�nite number of
indices to characterize their scaling properties. Multifractals can be decomposed into
many – possibly in�nitely many – sub-sets characterized by di�erent exponents h. The
singularity spectrum, D(h), quanti�es the fractal dimension of the sub-set character-
ized by the exponent h. Thus, multifractal signals are intrinsically more complex, and
inhomogeneous, than monofractals (Fig. 6).
Multifractal structures have been uncovered in a number of classical physical prob-

lems such as voltage drops across a random resistor network [39], spatial distribution
of the dissipation �eld of fully developed turbulence [40,41], viscous �ngering [42,43],
and di�usion-limited aggregation [44,10]. However, in physics and other applied sci-
ences, fractals appear not only as singular objects (measures) but also as singular
functions generated by dynamical systems. There have been only a few attempts to
extend the concept of multifractality to singular functions: for velocity in turbulence
[45] and for rough surfaces [46].
Physiologic signals are generated by complex self-regulating systems that process

inputs with a broad range of characteristics. Monofractal signals are homogeneous and
have “linear” properties. Many physiologic time series – such as interbeat interval
sequences – are in fact inhomogeneous, suggesting that di�erent parts of the signal
have di�erent scaling properties. In addition, there is evidence that heartbeat dynamics
exhibs nonlinear properties [47–49]. Up to now, robust demonstration of multifractality
for nonstationary time series has been hampered by problems related to a drastic bias in
the estimate of the singularity spectrum due to diverging negative moments. Moreover,
the classical approaches based on the box-counting technique and structure function
formalism fail when a fractal function is composed of a multifractal singular part
embedded in regular polynomial behavior.
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Fig. 6. Hurst introduced an exponent, now called the Hurst exponent h, to describe the uctuations in rise
and fall of the Nile River as a function of the time scale over which these uctuations are analyzed. Here
we show the Hurst exponent for two representative subjects, one of whom is healthy (top) and one of whom
is diseased (bottom). Remarkably, we see that for the healthy subject, a single Hurst exponent is not found.
Rather, h varies over a factor of almost two. How can we quantify this change? One way is to divide
the continuum rainbow spectrum into, say, 10 discrete bins, where i = 1; 2; : : : ; 10 indexes the bins. Then
imagine that we examine this rainbow successively – through 10 di�erent pieces of colored �lm, each of
which allows only wavelengths near a characteristic value �i to pass. For each piece of color �lm i, we will
see a “fractal dust” corresponding to the sparse set of colors that passes through �lm i. We then calculate the
10 fractal dimensions D(h) corresponding to each of the ten di�erent fractal dusts. Fig. 9 plots the function
D(h), and we see that D(h) varies more as h increases from its minimum value hmin to its maximum value
hmax for the health subjects than for the diseased. This �gure is courtesy of Z. Struzik.

The calculation of the multifractal spectrum involves the following steps:
(i) The wavelet transform is found for this signal (for each scale a).
(ii) The maxima of the absolute values of the wavelet transform are found.
(iii) The moduli of these local maxima raised to power q are all summed to form a

partition function Zq(a).
(iv) Zq(a) is plotted on a double log scale against a:
(v) The slopes of these plots for di�erent values of the moment q are the exponents

�(q) which are related to the multifractal spectrum of the signal (Figs. 7 and 8).
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Fig. 7. Multifractal spectrum �(q) of the group averages for daytime and nighttime records for 18 healthy
subjects and for 12 patients with congestive heart failure. Each record extends for about 6 hs and has close
to 30,000 beats. The results show multifractal behavior for the healthy group and distinct change in this
behavior for the heart failure group. However, the multifractal formalism is a general framework, not only
able to con�rm the DFA results but also to provide us with information about di�erent types of singularity.
This �gure is courtesy of P. Ivanov.

By not summing over the entire set of wavelet transform values along the time
series at given scale a but only over the wavelet transform modulus maxima, we
directly incorporate the multiplicative structure of the singularity distribution into the
calculation of the partition function Zq(a) [50]. Thus by studying the scaling behavior
of Zq(a)∼a�(q) in the limit a→ 0 we can obtain information about the self-similarity
(fractal) properties of the signal. This approach is known as the wavelet transform
modulum maxima method [50].
We recently adopted this new methodology to human heartbeat interval series ob-

tained from electrocardiogram records [51]. Our initial �ndings (Fig. 9) include several
encouraging results:
(i) The diurnal heart rate of healthy humans is a multifractal with nonzero fractal

dimension for sub-sets characterized by singularity exponents in the interval −0:1
to 0:5.

(ii) Records for patients with a nearly terminal pathology, congestive heart failure,
show a signi�cant loss of multifractal complexity displaying a smaller range of
values of h.

From a physiologic perspective, the detection of rubust multifractal scaling in heart rate
dynamics is of interest for a number of reasons. First, previous analyses have focused
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Fig. 8. Demonstration that all 18 patients from the healthy group display multifractality, as evidenced by the
fact that �(q) is not linear. This �gure is courtesy of P.Ch. Ivanov (see also [51]).

only on the quanti�cation of a single scaling exponent (monofractal) behavior to ac-
count for the apparently 1=f spectrum of healthy interbeat intervals over a wide range
of time scales. We show for the �rst time that the healthy heartbeat is even more com-
plex than previously suspected, requiring multifractal scaling with multiple exponents
for its characterization. Second, our analysis indicates that the observed multifractality
is related to nonlinear features of the healthy heartbeat dynamics, which are encoded in
the Fourier phases [47,51] able to detect subtle diurnal di�erences in this multifractal
scaling. Third, we �nd a loss of multifractal complexity in a major pathologic condition
– namely congestive heart failure, suggesting possible bedside applications. Fourth, our
results are notable because they pose a challenge to ongoing e�orts to develop realis-
tic models of heart rate control and other processes under neuroautonomic regulation.
There is currently no precedent in physiology to account for such complex behavior
which in physical systems has been connected with turbulence and related multiscale
phenomena. Our �ndings raise the intriguing possibility that the control mechanisms
regulating the heartbeat interact as part of a coupled cascade of feedback loops in a
system operating far from equilibrium.
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Fig. 9. Fractal dimensions D(h) obtained through a Legendre transform from the group averaged �(q) spectra
of Fig. 7. The shape of D(h) for the individual records and for the group average is broad, indicating multi-
fractal behavior. On the other hand, D(h) for the heart failure group is very narrow, indicating monofractality.
Speci�cally, we can see the broad range of values of h for the healthy group, from h close to zero which
implies strong anti-correlations, to h ≈ 0:5. A monofractal signal would appear as a spike for some partic-
ular value of h. Note the smaller range of values for h for the congestive heart failure group and the lower
values of the D(h) for identical values of the h exponent, indicating a clear loss of complexity with disease.
These results are in agreement with those reported for the detrended uctuation analysis (DFA): The peak
of the multifractal spectrum D(h) for the congestive heart failure group is shifted closer to a random walk
behavior h=0:5 compared to the healthy group. Speci�cally, we can see the broad range of values of h for
the healthy group, from h close to zero which implies strong anti-correlations, to h ≈ 0:5. A monofractal
signal would appear as a spike for some particular value of h. Note the smaller range of values for h for
the congestive heart failure group and the lower values of the D(h) for identical values of the h exponent
indicating a clear loss of complexity with disease. These results are in agreement with those resported for
the detrended uctuation analysis (DFA): The peak of the multifractal spectrum D(h) for the congestive
heart failure group is shifted closer to a random walk behavior h= 0:5 compared to the healthy group. The
di�erent form of D(h) for the heart failure group may reect perturbation of the cardiac neuroautonomic
control mechanisms associated with this pathology. This �gure is courtesy of L.A.N. Amaral.

6. Discussion and summary

Our preliminary results applying methods of modern statistical physics to questions
of interest in the discipline of physiology suggest the following �ndings:
• Heart rate dynamics under normal conditions display nonequilibrium uctuations
that cannot be detected or analyzed with traditional methods, but which reveal
a remarkable physiologic structure when analyzed using methods adapted from sta-
tistical physics.
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• This healthy nonequilibrium behavior is altered under three major pathological syn-
dromes where neuroautonomic function is known to be perturbed, congestive heart
failure, sudden cardiac death, and obstructive sleep apnea.

• By applying the new technique detrended uctuation analysis (DFA) – developed
recently by our group – we were able to analyze nonstationary heartbeat time series
and found the presence of long-range power-law correlations in the uctuations of the
heart beat intervals over multiple time scales. Furthermore, we observed signi�cant
alterations and sometimes even a complete breakdown these long-range correlation
properties with congestive heart failure. These results have been independently tested
and con�rmed by other research groups [27].

• We demonstrated the ability of DFA to help predict mortality in a population-based
study of heart failure subjects and controls in the Framingham Heart Study.

• The observation of nonlinear multifractal behavior shows even greater complexity of
the cardiac dynamics than previously thought, and indicates that a broad range of
scaling exponents are needed to describe this complexity. The multifractal approach
shows also a potential to discriminate healthy from sick hearts even when the cor-
relations described by the DFA are identical. These multifractal features are not
accounted for by traditional physiologic mechanisms and motivates new modeling
strategies to understand nonequilibrium control systems under healthy and pathologic
conditions.
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