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Role of Fluctuations in Fluid Mechanics and Dendritic Solidification 
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Our purpose is to review certain recent advances in understanding the role of flue- 
tuations in fluid mechanics and dendritic solidification; many of these represent 
joint work of the author and J. Nittmann. If one understands completely the simple 
Ising model, then one understands virtually all systems near their critical points- 
although the detailed descriptions of many such systems require a suitably-chosen 
variant of the Ising model (such as the XY or Keisenberg model). By analogy, 
we shall argue here that if one understands completely the simple diffusion-limited 
aggregation (DLA) model OP the closely-Elated dielectric breakdown model (DBM), 
then one understands the role of fluctuations in a range of fluid mechanical sys- 
tems, as well as in dendn’tic solidification. The detailed descriptions of some such 
systems require suitably-chosen variants, such as DBM with anisotropy and noise 
reduction. 

The overah theme I’ll develop is that recent work on 
relatively simple non-deterministic models has some 
utility for describing experimentally-observed phenom- 
ena in fluid mechanics and dendritic growth. I’ll first 
make the case that we can approach these experimental 
subjects of classic difficulty with the same spirit that 
has been used in recent years to approach problems 
associated with phase transitions and critical phenom- 
ena. This approach is to carefully choose a microscopic 
model system that captures the essential physics un- 
derlying the phenomena at hand, and then study this 
model until we understand “how the model works.” 
Then we reconsider the phenomena at hand, to see if 
an understanding of the model leads to an understand- 
ing of the phenomena. Sometimes the original model 
is not enough, and a variant is needed, and we shall 
see that this is the case here also. Fortunately, how- 
ever, we shall see that the same underlying physics is 
common to the model and its variants. 

We begin, then, with the classic Ising model. 

(a) The Is;19 Model and Its Variants 

The first time I heard a lecture on the Ising model, 
the speaker apologized for having what was termed 
“the Ising disease” (an appellation attributed to Mon- 
troll). The Ising model was proposed 67 years ago’ 
and its solution for a one-dimensional lattice occurred 
62 years ago.2 However, at that time no one knew that 
the Ising model describes a wide range of materials 
near their critical points. Over 1000 papers have been 

published on this model, but only since 1977 have we 
known that if one understands the Ising model thor- 
oughly, one understands the essential physics of virtu- 
ally all 3-dimensional materials systems near thermal 
critical points. This is because other systems are sim- 
ply variants of the Ising model. For example, most sys- 
tems are related to special cases of the n-vector model, 
which in turn is a simple Ising model in which the spin 
variable s has not one component but rather n separate 
components Sj: SE (d1,52,...,d,). 

The Ising model solves the puzzle of how nearest- 
neighbor interactions of microscopic length scale IA 
“propagate” their effect cooperatively to give rise to a 
correlation length [T of macroscopic length scale near 
the critical pomt (Fig. la). In fact, (T increases with- 
out limit as the coupling K E J/kT increases to a 
critical value KC E J/kT,, 

(l.la) 

The “amplitude” A has a numerical value on the or- 
der of the lattice constant a,. A snapshot of an Ising 
system shows that there are fluctuations on all length 
scales from a, (g IA) to [T (which can be from lo2 - 
1O’A in a typical experiment). 

Attempts have been made to simplify the essen- 
tial problem of propagation of order from one spin to 
its neighbors by making mean-field type of truncations 
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(c) s?2 tL- (6)-“’ 
L 

Fig. 1: Schematic illustration of the analogy between 
(a) the Ising model, which has fluctuations in spin ori- 
entation on all length scales from the microscopic scale 
of the lattice constant a, up to the macroscopic scale 
of the thermal correlation length <T, (b) percolation, 
which has fluctuations in characteristic size of clus- 
ters on all length scales from a, up to the diameter of 
the largest cluster-the pair connectedness length Q, 
and (c) the DLA/DBM problem, whose clusters have 
fluctuations on all length scaled from the microscopic 
length d, = -y/L (7 is the surface tension and L the 
latent heat) up to the diameter of the cluster EL. Also 
shown, on the right side, is the analogy between the 
scaling behavior of the three length scales (T, &,, and 
CYL. 

(such as the Weiss approximation, the Bethe approx- 
imation, and the Kasteleyn-van Kranendonk constant 
coupling approximation), but these have failed to de- 
scribe 3-dimensional systems near their critical points. 

To describe the specific heat near the A point of 
4He, one finds that the Ising model is not appropriate. 
This is because the order parameter in 4He is not a 
one-dimensional variable with only two values (up or 
down), but rather a two-dimensional object with an 
amplitude and a phase. Accordingly, the Ising model 
has to be replaced by a “variant” for which the one- 
dimensional Ising spins are replaced by two-dimension- 
al XY spins. 

(b) Random Site Percolation on a Lattice, 
and Its Variants 

In its simplest form, one randomly occupies a fraction 
p of the sites of a d-dimensional lattice (the case d = 1 
is shown schematically in Fig. lb). Again, phenomena 
occurring on the local 18, scale of a lattice constant are 
“amplified” near the percolation threshold p = p, to a 
macroscopic length &,. 

Here p plays the role of the coupling constant K 
of the Ising model. When p is small, the character- 
istic length scale is comparable to 1A. However when 

p approaches p,, there occur phenomena on all scales 
ranging from a, to tP, where tP increases without limit 
as P ---t pe 

Again, the amplitude A is roughly 1A. 
It is by now a well-known piece of “magic” that 

each phenomenon of thermal critical phenomena has a 
corresponding analog in percolation, so that the per- 
colation problem is sometimes called a geometric or 
“connectivity” critical phenomenon. Any connectiv- 
ity problem can be understood by starting with pure 
random percolation and then adding interactions, or 
whatever. Thus, e.g., we understand why the critical 
exponents describing the divergence to infinity of var- 
ious geometrical quantities (such as &,) are the same 
regardless of whether the elements interact or are non- 
interacting. ‘v4 This has been predicted on theoretical 
grounds and confirmed by detailed numerical simu- 
lations. Similarly, the same connectivity exponents 
are found regardless of whether the elements are con- 
strained to the sites of a lattice or are free to be any- 
where in a continuum (see, e.g., Gawlinski and Stanley5 
for d = 2, and Geiger and Stanley4%s for d = 3). 

(c) The Laplace Equation and Its Variants 

Is there some lesson to be learned for fluid mechanics 
from our experience with thermal and geometric crit- 
ical phenomena? We don’t know the answer to this 
question, but J. Nittmann and I have been exploring 
this possibility in recent months. Just as variations 
in the Ising and percolation problems were found to 
be sufficient to describe a rich range of thermal and 
geometric critical phenomena, so we have found that 
variants of the original Laplace equation are useful in 
describing puzzling patterns in fluids mechanics and 
dendritic growth. 

In the Ising model, we place a spin on each pixel 
(site) of a lattice. In percolation we allow each pixel 
to be occupied or empty. In fluid mechanics, we assign 
a number-call it d-to each pixel. Generally we shall 
understand 4 to be the pressure at this region of space. 

The spins in an Ising model interact with their 
neighbors. Hence the state of one Ising pixel depends 
on the state of all the other pixels in the system-up to 
a length scale given by the thermal correlation length 
IT. The “global” correlation between distant pixels in 
an Ising simulation arises from the fact that neighbor- 
ing pixels at i and j have a “local” exchange interaction 
Jij. Similarly, the correlation in connectivity between 
distant pixels in the percolation problem arises from 
the “propagation” of local connectivity between neigh- 
boring pixels. In fluid mechanics, the pressure on each 
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pixel is correlated with the pressure at every other pixel 
because the pressure obeys the Laplace equation. 

One can calculate an equilibrium Ising configura- 
tion by “passing through the system with a computer” 
and flipping each spin with a probability related to 
the Boltzmann factor. Similarly, one can calculate the 
pressure at each pixel by “passing through the system” 
and re-adjusting the pressure on each pixel in accord 
with the Laplace equation.* If we were to arbitrarily 
flip the configuration of a single pixel in the Ising prob- 
lem (from +l to -l), we would significantly influence 
the equilibrium configuration of the system out to a 
length scale on the order of <T. Similarly, if we were 
to arbitrarily impose a given pressure on a single point 
of a system obeying the Laplace equation, we would 
drastically change the resulting pattern out to a length 
scale that we shall call EL. 

Does [r; obey a “scaling form” analogous to (la) 
and (lb) obeyed by the functions [T and Q for the 
Ising model and percolation? We believe that the an- 
swer to this question is “yes,” although our ideas on 
this subject remain somewhat tentative and subject to 
revision. 

The best way to see the fluctuations inherent in 
structures grown according to the Laplace equation is 
to first introduce some specific models. There are two 
models that were at once thought to be fully equivalent, 
although it is now recognized that the actual patterns 
produced by each have a different “susceptibility to lat- 
tice anisotropy.” The first of these models is diffusion 
limited aggregation (DLA). Here one releases a random 
walker from a large circle surrounding a seed particle 
placed at the origin. When the random walker touches 
a perimeter site of the seed, it “sticks” (i.e., the perime- 
ter site becomes a cluster site), and we have a cluster 
of mass = 2. A second random walker is then released. 
This process continues until a large cluster is formed. 
Initially the “mass” M of clusters was typically lo3 to 
104. However it has become possible to make very fast 
algorithms, and the largest cluster to date has a mass 
of 4 x 1os.s 

The second of the two, the dielectric breakdown 
model (DBM), differs from DLA in that nothing hap- 
pens until the random walker touches a cluster site, 
at which time the perimeter site it was just on at the 
previous step is transformed into a cluster site. Not 
surprisingly, this tiny local change in boundary con- 
ditions does not affect the “critical exponents” of this 
problem-DLA and DBM have the same value of the 
fractal dimension df describing how the cluster mass 

* There is an intimate connection between the diffu- 
sion equation and the random walk problem (see, e.g., 
Chandrasekhar.‘) 

depends on cluster diameter L: M - Ldt.t In both 
thermal critical phenomena (or percolation) the length 
L introduced when we have a finite system siee scales 
the same as the correlation lengths (T (or &,). Hence 
for DLA we expect that there will be fluctuations on 
length scales up to [L, where (L itself increases with 
the cluster mass according to 

-“l. 
[VL = l/df]. (Ic) 

Here the amplitude A is again on the order of IA. Note 
that (lc) is analogous to (la) and (lb) if we think of 
M -+ 00 as being analogous to K -+ Kc. This reason- 
ing is common in polymer physics, where we relate the 
radius of gyration R, of a polymer to the mass through 
an equation of the form of (lc), R, - (l/M)-‘/dl. 
Note that or, = l/df plays the role of the critical ex- 
ponents VT and up of (la) and (lb). Suppose we test 
this idea, qualitatively, by examining the largest DLA 
clusters in detail. We find that indeed there are fluctu- 
ations in mass on length scales less than, say, the width 
W of the side branches. If one makes a log-log plot of 
W against mass M, one finds the same slope l/df that 
one finds when one plots the diameter against M. 

Evidence for Similarity of Viicoua Fingering Patterm 
and Laplace Equation (DLA/DBM) Patterns 

In the remainder of this talk, we’ll describe in some 
detail the sorts of results we obtain from variants of 
the Laplaee equation. First, it is necessary to describe 
the simplest system that produces patterns resembling 
interesting objects found in nature. Consider, e.g., the 
classic SafFman-Taylor viscous fingering problem. Here 
one injects a low-viscosity fluid into a medium tilled 
with high viscosity fluid. In the limit that the vis- 
cosity ratio between the high and low viscosity fluids 

t The difference in boundary conditions doea affect 
the rate at which the asymptotic behavior shows up.? 
For example, for DLA the screening will be more se- 
vere: as soon as a random walker steps on a perime- 
ter site, the walker is stopped and the perimeter site 
becomes a cluster site. However for the DBM a ran- 
dom walker is free to walk on perimeter sites with im- 
punity: only when the walker steps on a cluster site 
does the walker stop walking. Hence in the DBM the 
walkers can better penetrate the fjords of the system, 
so in overall appearance DBM clusters appear to have 
thicker branches and to be more “compact.” The criti- 
cal exponent VL = l/df is not changed since it depends 
not on the density but on the rate at which the density 
decreases as the mass increases. 
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Fig. 2: Schematic illustration of the lateral and radial 
Hele-Shaw cells. Shown are top views. The spacing 
between the plates is typically 1 mm or less. From 
Daccord et al.‘s 

can be taken to be zero, we can assume that the pres- 
sure everywhere inside the low viscosity fluid is a con- 
stant: P(i) = 1 for i E [cluster of pixels occupied by 
low-viscosity fluid]. The pressure everywhere else in 
the system will have a value given by the solution of 
the Laplace equation. This problem is modelled by 
the dielectric breakdown model or DBM” or diffusion- 
limited aggregation model or DLA.” These two mod- 
els have in common that both are solutions to Laplsce 
equation for the case in which the pressure is zero at 
infinity and P = 1 on an object called the cluster. 

Daccord has made accurate measurements on the 
fractal dimension of viscous fingers in both laterall 
and radial13 geometries (Fig. 2). He reduced the length 
scale normally imposed by surface tension by using liq- 
uids with zero interfacial tension-the two fluids were 
water and a viscous aqueous solution of polysaccharide 
(Fig. 3). He found that the resulting patterns are in- 
deed fractal, with a fractal dimension identical to that 
of DLA/DBM (Fig. 4). M&y et al” found analogous 
behavior where the cell itself introduced the random- 
ness: he accomplished this by placing glass beads inside 
the cell at random. Chen and Wilkinson15 imposed the 
randomness by studying viscous fingering inside a net- 
work of glass tubes whose diameter L was randomly 
chosen from a probability distribution x(L). 

Not only is the fractal dimension the same for the 
fluid mechanics problem and for the Laplace patterns, 
but so also are the multifractal propertier the same. 

i_ - 
c 

Fig. ): The growth region of a radial viscous finger, 
a typical experimental pattern for which DLA is the 
appropriate model. The finger at time 1 = t. is shown 
in (a), while (b) displays the difference between the 
pattern at t = t+At and t = t, obtained experimentally 
by simply subtracting the images of the same finger 
photographed at slightly different times. After Daccord 
et al.‘r 

Multifractals arise when one defines some quantity on 
all the pixel sites. Perhaps the simplest example is that 
of a charged needle: if we assign to every pixel a num- 
ber equal to the electric field, then the set {Hi} of field 
values for the perimeter sites of the needle form a mul- 
tifractal set. The distribution n(E) giving the number 
of perimeter pixels with electric field E is characterized, 
like all distribution functions, by its moments 

Z(q) = c n(E)E’. 
E 
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Fig. 4: Analysis of the fractal dimeneion typical of 
a radial viscous Snger by the sandbox method (N is 
the number of occupied pixela in a L x L sandbox 
whose center is on an occupied pixel). The slope of 

the straight line rhown ir df = 1.70 f 0.05, while for 
DLA df is believed to be about 1.71 (from Daccord et 
al.i3). 

As might be anticipated for a self-similar system, these 
moments scale with the ma88 M (or with the diameter 

L) 

Z(q) N A&‘) ‘v L-+1. (34 

Since M - Ldt, the exponents u and T are related by 
the fract al dimension df , 

OZZ. 
d f 

WI 

For thermal and geometric critical phenomena, ex- 
ponents analogous to the o(q) and t(q) can be defined 
by considering a large L x L system at the critical 
point [K = K,] (or p = pc). One finds that the ra- 
tio of two successive exponents is a constant Ugap,” 50 
that there is no new information obtained by studying 
higher moments of the distribution. Connected with 
this simplicity is the fact that there is only one inde- 
pendent exponent in fmite size scaling at the critical 
point (a second exponent arises if we wish to relate 
quantities that describe the approach to the critical 
point). 

In percolation, these exponents have geometric in- 
terpretations: 

(i) y5 = df, the fractal dimension of the incipient 
infinite cluster (the largest cluster found in a box 
of edge L at p = pC), and 

(ii) YT = dvedr the fractal dimension of the red bonds 
that occur inside the largest spanning cluster (red 
bonds are singly connected bonds: when cut, the 
cluster falls into two pieces). 

Relation (i) was noted by Stanley”’ and (ii) was proved 
by Coniglio.” 

In the case of the moments Z,, there is an in&-rite 
hierarchy of exponents in the sense that the ratio r(q + 
1)/r(q) depends on q: 

For the cese of a long thin needle, the exponent D(q) 
sticka at the value 3/2 for small q, but for q above 
a critical value q = qc, D(q) becomes “unstuck” and 
varies continuously with q. 

The same consideration5 apply to the fluid me- 
chanics problem. Here the analog of the electric field 
E 0: V1/ is the growth probability pi EL: VP, where the 
index i runs over all perimeter sites i. Thus pi is the 
probability that site i is the next to be added to the 
cluster. If we think of random walker5 (Fig. 5), then 
pi is the hit probability (the probability that site i is 
the next to be hit by a random walker). Clearly the 
set pi play a vital role in determining the dynamics of 
growth, since if we know all the pi for every perime 
ter site i at a given time t, then we can predict (in a 
statistical sense) the state of the system at time t + 1. 

Recently, considerable attention has focussed OIL 
the question of how a DLA aggregate grows. Such 
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Fig. 6: This figure illustrates the hazmonic measure for 
a 60,000 particle off-lattice 2d DLA aggregate. Figure 
3a shows the cluster. Figure 3b shows zU6803 perime- 
ter sites which have been contacted by at least one 
of 10” random walkers (following off-lattice trajecto- 
ries). Figure 3c shows all of those perimeter sites which 

growth phenomena are completely characterized by as- 
signing to each perimeter site i the number pi, the 
probability that site i is the next to grow. Theoretical 
evidence has been advanced recently to suggest that 
the numbers pi form a multifractal set: this set cannot 
be characterized by a single exponent (as in the case of 
the DLA aggregate itself) but rather an infinite hier- 
archy of exponents is required. The physical basis for 
this fact is that the hottest tips of a DLA aggregate 
grow much faster than the deep fjords (which hardly 
grow at all); hence the rate of change of the pi differs 
greatly when i is a tip perimeter site than when i is a 
fjord perimeter site. 

Although there have been theoretical calculations 
of the multifiactality of DLA,‘s-so there had been no 
experimental tests of these predictions. We have re- 
cently carried out the first such tests, and found ex- 
perimental confirmation of the broad outlines of the 
theory of multikactals.” 

There are many experimental realizations of DLA, 
and for the present work we will focus upon two-dimen- 

850 DIAMETERS 

z 2500 

850 DIAMETERS 

have been contacted 50 or more times and Fig. 3d 
shows those sites which have been contacted 2500 or 
more times. The maximum number of contacts for any 
perimeter site was 8197 so that p,_= = 8.2 x 10V3. 
After Meakin et al.r9 

sional fractal viscous fingers since it is possible to study 
the real-time growth using a movie camera and to dig- 
itize precisely the observed time development of the 
DLA fractal. By subtracting two successive “snap- 
shots” we can obtain an accurate estimate of the ap- 
propriate normalized growth probability pi for each 
perimeter site of the finger (Fig. 3). 

We first calculated the distribution function n(p), 
where n(p)dp is the number of perimeter sites with pi 
in the range [pi,pi + dpi]. This curve has a long tail ex- 
tending to the extremely small values of pi for perime- 
ter sites deep inside fjords. We found good agree- 
ment between the experimental n(p) for viscous fingers 
(Fig. 6b) and the corresponding theoretical n(p) calcu- 
lated for DLA (Fig. 6a). 

We next formed the moments 2, = II( which 
are characterized by the hierarchy of exponents r, de- 
fined through 2, = L-Q, where L is a characteristic 
linear dimension. The experimental results (Fig. 7b) 
show that when 9 is huge, rq is linear in p but for 
4 small there is downward curvature in rq, showing 
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(a) 
Fll. 6: Comparison between the distribution functions 
n(p) for simulated (a) and “experimental” (b) viscous 
fingering patterns. Here n(p)6p is the number of 
perimeter sites with growth probabilities in the range 
[p,p + 6~1. The simulated patterns and their growth 
probabilities were obtained using the dielectric break- 
down model. The growth probabilities for the ezperi- 
mental patterns were obtained by numerically solving 

that the fjords are characterized by different growth 
rates than the tips. It is conventional to also CI&X- 
late the Legendre transform with respect to q of 7s: 
-f(a) = T(q) - qu where a = h/dq. Downward 
curvature in T(q) corresponds to upward curvature in 
-f(a) [Fig. 8a]. The experimental data of Figs. 7b and 
gb compare favorably with the theoretical DLA model 
calculations shown in Figs. ?a and 8s. 

UDendritic SoliditIcation~ 
Variants of the Fluid Mcchanlcal Models 

By analogy with the Ising model and its variants, we 
can modify DLA/DBM to describe other fluid mechan- 
ical phenomena. One of the most intriguing of these is a 
variation of the viscous fingering phenomenon in which 
there is present anisotropy. Ben Jacob et alla imposed 
this anisotropy by scratching a lattice of lines on their 
Hele-Shaw cell. They found patterns that strongly re- 
semble snow crystals! If viscous fingers are described 
by DLA, then can the Ben Jacob patterns be described 
by DLA with imposed anisotropy? 

Nittmann and Stanley’s attempted to answer this 
question-specifically, they attempted to reproduce the 
Ben Jacob patterns with suitably modified DLA. A 
scratch in a Hele-Shaw cell means that the plate spac- 
ing b is increased along certain directions, and the per- 
meability coefficient k relating growth velocity to VP 

LO -a0 -I2 0 -16 0 -200 
Cn P 

(h) 

the Laplsce equation in the vicinity of a digitized repre- 
sentation of the pattern with absorbing boundary con- 
ditions on the sites occupied by the pattern. Similar 
results were obtained for large a (corresponding to the 
“tips”) by directly subtracting two successive experi- 
mental patterns. After Amitrano et al’O and Nittmann 
et al.” 

is proportional to b”(k ac U). Hence Nittmann and 
Stanley calculated DLA patterns for the case in which 
there was imposed a periodic variation in the k. It is 
significant that their simulations reproduce snow crys- 
tal type patterns, just like the experiments. These sim- 
ulations relied for their e&acy on the presence of noise 
reduction. 

Noise Reduction 

The original DLA and DBM models are prototypes 
of completely chaotic systems. No discernable pat- 
tern emerges. If there is a weak anisotropy, we expect 
that the resulting pattern reflects this anisotropy. For 
example, if the simulations are carried out on a lat- 
tice, then the presence of the lattice imposes a weak 
anisotropy (e.g., on a square lattice, it is more likely 
that particles attach to the westernmost tip if they ap- 
proach from the west than from the north or south). 
This weak anisotropy is not visually apparent unless 
large clusters are grown. However the largest DLA 
clusters made’ with mass about 4 million sites, clearly 
display the anisotropy (Fig. 9). Unfortunately, no one 
can afIord the computer resources to make such “mega- 
DLA” clusters each time we wish to model a new phe- 
nomenon. Noise reduction is a computational trick 
that seems to have the property that it speeds up the 
attainment of this asymptotic limit. In the absence of 
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Pig. 7: Comparison of the critical exponents T(q) = 
(q - l)D(q) for the (a) theoretical and (b) “experi- 
mental” viscous fingering patterns. In both cases, s(q) 
was obtained numerically (see caption to Fig. 6). After 
Amitrano et al”’ and Nittmann et al.” 

noise reduction, a perimeter site becomes a cluster site 
whenever it is chosen (e.g., whenever a random walker 
lands on that site). 

In “noise reduction” we associate a counter with 
each perimeter site; each time that site is chosen, the 
counter increments by one. The perimeter site be- 
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-2‘ 1 1 I I I I I I .I 
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k’lg. 8: Comparison between (a) theoretical and (b) 
“experimental” plots of the function f(o). After Ami- 
trano et al”O and Nittmann et a14r 

comes a cluster site only after the counter reaches a 
pre-determined threshold value termed s.s3-25 When 
8 = 1, we recover the original noisy DLA. Growth is 
dominated by the stochastic randomness in the arrival 
of random walkers. If s is very large, then growth is 
determined by the actual probability distribution. 

For example, suppose we start with a large disc as 
a seed particle (instead of a single site). The growth 
probability at all points on the disc surface will be 
equal, assuming a continuum. By the D’Arcy growth 
law this disc should evolve in time into a larger disc. 
On the other hand, for ordinary DLA (s = l), as soon 
as a random walker touches a single perirr.eter site on 
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k’lg. 9: A huge DLA cluster with a mass of 4 million 
sites grown on a square lattice. Shown is only the last 
5% of the growth. In reality, there is structure on all 
scales less than the width W of the 4 arms. Moreover, 
W scales with cluster mass as W - (l/i~I-‘/~l, just 
in the same way as the quantity [r. defined in Eq. (1~). 
The spontaneous appearance of side branches is remi- 
niscent of experimental dendritic growth patterns such 
as those shown in Fig. 13. After Meakin.* 
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the disc, this site will become part of the cluster and 
the disc will lose its circular symmetry. The growth 
probabilities will all be re-calculated, and the perime- 
ter sites close by the one that just grew will have higher 
growth probabilities. Thus the disc with a single site 
added to it will be more likely to grow in the direc- 
tion of that single site. At a later time we will almost 
certainly not find a cluster with circular symmetry. 

Clearly if s is very large, then the initial growth 
will preserve an almost circular structure. This is be- 
cause before the first site is added to the circular seed, 
all the perimeter sites will acquire large numbers in 
their counters (8 - 1, B - 2, etc.). After the first site 
is added, these additional perimeter sites will be very 
close to the threshold for growing while the new perime- 
ter sites that were born when the first cluster site is 
added will all have counters initialized at zero. A typ- 
ical cluster grown in this fashion is shown in Fig. 10; 
actually this cluster is grown on a square lattice with 
first and second neighbor interactions, not on a contin- 
uum. However Meakin et alzE have found an almost 
identical pattern for the continuum case. 

At first sight, there is little economy in computa- 
tional speed, since one needs =a times as many” ran- 
dom walkers to reach a given cluster size. Thus to 
grow a cluster with merely 4000 sites with s = 1000 re- 
quires almost as much time as to generate a mega-DLA 
with 4,000,OOO sites and s = 1. Fortunately, there is 
a way around this problem. Instead of using random 
walkers to solve the Laplace equation (to sample the 
growth probabilities pi on each perimeter site), we can 
directly solve the Laplace equation numerically. This 
is the approach used when the dielectric breakdown 
model was first proposed (Fig. 11). Whether one cal- 
culates the growth probabilities by sending in random 
walkers or by solving the Laplace equation is imma- 
terial: the difference between DLA and DBM is the 
boundary conditions, not the method of calculation. 

The advantage of the Laplace equation approach 
when s is large is obvious: one need re-solve the Laplace 
equation only after a site is actually added to the clus- 
ter. In between adding sites, one simply chooses ran- 
dom numbers weighted by the growth probabilities of 
each perimeter site. This is a relatively rapid proce- 
dure for the computer, compared with its counterpart 
of sending random walkers. 

“Snow Crystals” 

Of course, real dendritic growth patterns (such as snow 
crystals) do not occur in an environment with periodic 
fluctuations in k(z,y). Rather, the global asymmetry 
of the pattern arises from the local asymmetry of the 
constituent water molecules. Can this local asymmetry 
give rise to global asymmetry? B&a et als’ replaced 
the Ben Jacob experiment (isotropic fluid, anisotropic 
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cell) by the reverse: isotropic cell but anisotropic fluid! 
To accomplish this, they used a nematic liquid crystal 
for the high viscosity fluid. Thus the analog of the 
water molecules in a snow crystal are the rod-shaped 
anisotropic molecules of a nematic. This experiment 
shows that the underlying anisotropy can as well be in 
the fluid as in the environment. 

Snow crystal formation is thought to be mainly 
the aggregation of tiny ice particles and droplets of su- 
percooled water. To the extent that snow crystals grow 
by accreting water molecules previously in the vapor or 
liquid phase, the growth rate is thought to be limited 
by the diffusion away from the growing snow crystal of 
the latent heat released by these phase changes. Under 
conditions of small Peclet number, the diffusion equa- 
tion describing the space and time dependence of the 
temperature field T(r,t) reduces to the Laplace equa- 
tion. Thus a reasonable starting point is DLA, inde- 
pendent of whether we wish to focus on particle aggre- 
gation, heat diffusion, or both. 

DLA reflects well the randomness inherent in a 
wide range of growth processes, including colloidal ag- 
gregation, it fails to describe dendritic solidification. 
While the deterministic models of snow crystals pro- 
duce patterns that are much too “symmetric,” the DLA 

Fig. 10: Schematic illustration of the difference be- 
tween an outward (‘positive’) and an inward (‘nega- 
tive’) interface fluctuation. A positive fluctuation tends 
to be damped out rather quickly, as mass quickly at- 
taches to the side of the extra site that is added. On 
the other hand, a negative fluctuation grows, in the 
sense that mass accumulates on both sides of the tiny 
notch. The notch itself has a lower and lower probabil- 
ity of being filled in, as it becomes the end of a longer 
and longer fjord. This is the underlying mechanism 
for the tip-splitting phenomenon when no interfacial 
tension is present. a shows the advancing front (row 
a) of a cluster with a = 50. The heavy line separates 
the cluster sites (all of which were chosen 50 times) 
from the perimeter sites (all of which have counters 
registering less than 50). In a, no fluctuations in the 
counters of these three. sites have occurred yet, and all 
three perimeter counters register 49. b shows a nega- 
tive fluctuation, in which the central perimeter site is 
chosen slightly less frequently than the two on either 
side; the latter now register 50, and so they become 
cluster sites in row /3. The perimeter site left in the 
notch between these two new cluster sites grows much 
less quickly because it is shielded by the two new clus- 
ter sites. For the sake of concreteness, let us assume it 
is chosen 10 times less frequently. Hence by the time 
the notch site is chosen one more time, the two perime- 
ter sites at the tips have been chosen 10 times (c). The 
interface is once again smooth (row T), as it was before, 
except that the counters on the three perimeter sites 
differ. After 40 new counts per counter, the situation 
in d arises. Now we have a notch whose counter lags 
behind by 10, instead of by 1 ss in b. Thus the original 
fluctuation has been amplified, due to the tremendous 
shielding of a single notch. Note that no new fluctu- 
ations were assumed: the original fluctuation of 1 in 
the counter number is amplified to 10 solely by elec- 
trostatic screening. This amplification of a negative 
‘notch fluctuation’ has the effect that the tiny notch 
soon becomes the end of a long fjord. To see this, note 
that e shows the same situation after 50 more counts 
have been added to each of the two tip counters, and 
hence (by the 10 : 1 rule) 5 new counts to the notch 
counter. The tip counters therefore become part of the 
cluster, but the notch counter has not yet reached 50 
and remains a perimeter site. The notch has become 
an incipient fjord of length 2, and the potential at the 
end of this fjord is now exceedingly low. Indeed it is 
quite possible that the counter will never pass from 
45 to 50 in the lifetime of the cluster. In our simu- 
lations we can see tiny notch fluctuations become the 
ends of long fjords, and all of the above remarks on the 
time-dependent dynamics of tip splitting are confirmed 
quantitatively. After Nittmann and Stanley.s3 
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Fig. 11: Schematic illustration of the first steps in the 
generation of a DLA cluster by solving directly the 
Laplace equation on a square lattice. 
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approach suffers from the opposite problem: DLA pat- 
terns are too “noisy.” That DLA is too noisy has long 
been recognized as a defect of this otherwise physi- 
cally appealing model. Recently, an approach has been 
proposeda that retains the “good” features of DLA 
and at the same time produces patterns that resemble 
real (random) snow crystals. 

Firstly, we introduces’ controlled amounts of noise 
reduction of the same sort used previously for both 
DLA and for DBM. It is believed that noise-reduced 
DLA is in the same universality class as ordinary DLA- 
i.e., it has the same fractal dimension df, the only 
difference being an increase in the characteristic local 
length scale W. One advantage of setting 8 > 1 is 
that the asymptotic behavior (“mass” = m) behavior 
shows up much sooner than if s = 1. We do not explic- 
itly introduce anisotropy-the only anisotropy present 
is the six-fold anisotropy arising from the underlying 
triangular lattice. 

The patterns obtained2’ have the same general 
features for all values of a greater than about s = lOO- 
the effect of increasing s seems mainly to be that of in- 
creasing the width W of the fingers and side branches. 
The fjords between the 6 main branches contain a good 
deal of empty space. Some snow crystals have such 
wide “bays” but some do not. A better model would 
seem to require some tunable parameter that enables 
the complete range of snow crystal morphologies to be 
generated. We have found one such parameter, 7, that 
has the desired effect of reducing the difference in the 
ratio of the growth probabilities between the tips and 
fjords. Specifically, we relate by the rule p; o( (04)” 
the growth probability p; (the probability that perime- 
ter site i is the next to grow) to the potential 4 (e.g., 0 
may be the temperature T(r) at point r, or the proba- 
bility that a tiny ice particle is at point r). Our model 
is thus the analog for DLA of the “7 model.” 

We used q to tune the balance between tip growth 
and fjord growth and found growth patterns that re- 
semble better the wide range of snow crystal morpholo- 
gies that have been experimentally observed.sr To what 
does the case 7 # 1 correspond? For 7 = L (k = posi- 
tive integer), we have a mode12s in which a site grows 
only if it is chosen k times in succession (k = 1 is pure 
DLA). It is possible that we have a situation not al- 
together different from the classic n-vector model of 
isotropically-interacting n-dimensional classical spins: 
this model makes physical sense only if n is a positive 
integer, yet its study for other values of n has led to 
rich insights-particularly the cases n = 0 (the dilute 
polymer chain limit), n = 00 (the spherical model) and 
TZ = -2 (the mean field limit). Similarly, the Q-state 
Potts model makes physical sense only if Q is an in- 
teger above 1, yet the cases Q = 0 (random resistor 
network), Q = 1 (percolation) and Q = 3/2 (a spin 
glass model) are of great interest. 
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The fractal dimension df is believed independent 
of the value of the noise reduction parameter s (s renor- 
malises the cluster mass). We confirmed this belief. 
However, we found df does depend on 7. The most re- 
liable estimates were obtained by first calculating esti- 
mates of df for a sequence of increasing cluster masses, 
and then extrapolating this sequence to infinite clus- 
ter mass. Our values for df agreed remarkably well 
with values we obtained by digitizing photographs of 
experimentally observed snow crystals. Of course this 
preliminary study ‘I does not completely “solve” the 
snow crystal problem: 

(i) The initial seed of a snow crystal is almost 
certainly hexagonal (i.e., quasi-Z-dimen- sional), since 
this is the local geometry that water molecules take 
when they form hexagonal ice Ih. Are DBM-type con- 
siderations (small growth probability near the center 
of a plate-like structure) sufficient to explain why a 
snow crystal remains quasi-2-dimensional as it contin- 
ues growing? Why does its thickness remain less than 
its width? It is perhaps appropriate to mention that no 
adequate explanation has yet been advanced for why a 
snow crystal remains quasi-2dimensional throughout 
its growth, despite the fact that the “assembly plant” 
is certainly 3dimensional. Intuition on this subject 
stems from experience not only from critical phenom- 
ena but also from recent theoretical and experimental 
work on pattern formation, where it was found that 
even minute amounts of anisotropy are sufficient to sta- 
bilize structures of lower effective dimension. 

(ii) What are the microscopic mechanisms that 
give rise to the feature that real snow crystals con- 
tain branches (and side branches) which are much more 
than one molecule thick? Is noise reduction relevant, 
or is noise reduction merely a “computational trick” 
that allows one to see the asymptotic form of a DLA 
cluster using reasonable masses? (E.g., on a square 
lattice, the same cross-like pattern for a mass of 5,000 
sites seen in noise-reduced DLA with a noise-reduction 
parameter of s = 500 is also seen in ordinary “noisy” 
DLA (3 = 1) provided the mass is allowed to increase to 
roughly 5,000,OOO sites! We know that DLA is obtained 
even if the incoming random walkers have a sticking 
probability that is less than one. Hence we anticipate 
that DLA might possibly describe a modest range of 
phenomena with structural re-arrangement. What is 
the actual sticking probability for newly arriving water 
molecules in real snow crystals? Is a value of the stick- 
ing probability less than unity sufficient to account for 
the fact that the arms and sidebranches of real snow 
crystals have macroscopic thickness. 

(iii) Are those real snow crystals which possess rel- 
atively compact cores with ramified dressing on their 
surfaces products of different environments of assem- 
bly, or did melting and structural rearrangement take 
place after formation? Can one mimic the effect of the 

changing environments in which a given snow crystal 
is actually assembled? Do these correspond to varying 
parameters such as n or 7 in the course of the growth 
proceaa? To study this effect, we generated patterns 
with values of TJ and 7 that change during the growth 
process-e.g., we might choose q < 1 for an initial frac- 
tion f of the growth (thereby creating a hexagonal 
core), and n = 1 thereafter (thereby creating a ram- 
ified exterior portion). 

(iv) Does the presence in the clouds of a wind 
whose direction and speed varies randomly (both in 
time and in space, with characteristic time scales and 
length scales that are microscopic) imply that the ac- 
tual trajectories of water molecules and water droplets 
might more resemble those of some extremely “patho- 
logical” path than those of a conventional DLA type 
random walk? We know that the random walk trajec- 
tories of DLA correspond exactly to the present elec- 
trostatic growth model, the DBM with DLA boundary 
conditions. What are the trajectories in “real space” 
corresponding to a choice of the 7 parameter below 
unity? One can speculate that a Levy flight with tun- 
able fractal dimension may be related to the path of a 
real ice particle buffeted around in a cloud. 

(v) How significant, in practice, is the role played 
by diffusion of latent heat away from the growing aggre- 
gate in determining the actual structure of a snow crys- 
tal? We know that this phenomenon is of paramount 
importance in dendritic growth of crystals from a liquid 
phase How significant is the role played by the capil- 
lary length d, = 7/L in vapor phase deposition of water 
molecules onto a growing snow crystal? (Here L is the 
latent heat.) An ideal model might encompass both the 
diffusion of heat away from the snow crystal and the 
aggregation of particles toward the snow crystal? 

(vi) Are real snow crystals sometimes fractal ob- 
jects? This intriguing question has been the object of 
considerable discussion in recent years. Our growth 
patterns are fractal, for all positive values of 7. We 
found” that the fractal dimension df is independent of 
the value of the noise reduction parameter s (3 seems 
to mainly renormalize the cluster mass), but df does 
/eject depend on 7. We also found that these values 
for df agreed well with values we obtained by digitiz- 
ing the corresponding photographs of experimentally 
observed snow crystals (Fig. 12). 

Dendritic Growth of NHaBr 

Dendritic crystal growth has been a field of immense 
recent progress, both experimentally and theoretically. 
In particular, Dougherty et alz8 have recently made 
a detailed analysis of stroboscopic photographs, taken 
at 20 second intervals, of dendritic crystals of NHdBr 
(Fig. 13a). They have found three surprising results: 
(i) the sidebranches are non-periodic at any distance 
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from the tip, with random variations in both phase 
and amplitude, (ii) sidebranches on opposite sides of 
the dendrite are essentially uncorrelated, and (iii) the 
rms sidebranch amplitude is an exponential function of 
distance from the tip, with no apparent onset thresh- 
old distance. Some of these results are apparently at 
variance with predictions from recent theories.30-“2 

How can we understand these new experimental 
facts? Many existing models reflect the essential phys- 
ical laws underlying the growth phenomena, but fail 
to find a tractable mechanism to incorporate the ef- 
fects of noise on the growth. Growth of a dendrite 
from solution is controlled by the diffusion of solute to- 
wards the growing dendrite. In the limit of small Peclet 
number, the diffusion equation reduces to the Laplace 
equation (as mentioned above). The Laplace equation 
for a moving interface (the growing dendrite) brings to 
mind the diffusion limited aggregation model (DLA). 
Growth patterns produced by the various DLA simula- 
tion algorithms do not resemble dendritic growth pat- 
terns: DLA patterns are much too chaotic in appear- 
ance. We shall discuss here a related mode133 whose 
asymptotic structure does resemble the patterns found 
experimentally-both in broad qualitative features and 
in quantitative detail, The picture that emerges is one 
of Laplacian growth, where noise arises from the fact 
that there are concentration Auctuations in the vicin- 
ity of the growing dendrite (these are estimated to be 
roughly 1105 NHdBr molecules per cubic micron). 

Our starting point is the observation that minute 
amounts of anisotropy become magnified as the mass of 
a cluster increases. In fact, even the weak anisotropy of 
the underlying lattice structure can become so ampli- 
fied that clusters of 4,000,OOO particles take on a cross- 
like appearance. A real dendrite has a mass of roughly 
10” particles; it is impossible to generate clusters of 
this size on a computer, since even clusters of size lo6 
require hundreds of hours on the fastest available com- 
puters. Fortunately, there is a computational trick--- 
termed n&e reduction-that speeds the convergence 

Fig. 12: (a) A typical snow crystal from the collec- 
tion of 2453 photographs assembled in Bentley and 
Humphreys. 44 Other experimental exampies may be 
found in Nakaya42 and LaChapelle.*’ (b) A DLA sim- 
ulation with noise reduction parameter of s =: 200 
and non-linearity parameter n = 0.5. (c) compari- 
son between the fractal dimensions of (a) and (b) ob- 
tained by plotting the number of pixels inside an L x L 
sandbox logarithmically against L. The same slope, 
dt = 1.85 zb 0.06, is found for both. The experimen- 
tal data extend to larger values of L, since the digi- 

tizer used to analyze the experimental photograph has 
20,000 pixels while the cluster has only 4000 sites. Af- 
ter Nittmann and Stanley? 
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Fig. 13: (a) Experimental pattern of dendritic growth, 
measured for NHdBr by Dougherty et al.” (b) DLA 
simulation with noise reduction parameter 8 = 200 (af- 
ter Nittmann and Stanley33). 

of the pattern toward its asymptotic “infinite mass” 
limit. The patterns we obtained with noise-reduced 
DLA resemble Fig. 1 of Dougherty et al,” reproduced 
in Fig. 13a. 

A typical result 33 for a mass of 4000 particles is 
shown in Fig. 13b. After each 333 particles are added, 
a contour is drawn: 

(4 

(ii) 

It is apparent from the “stroboscopic” representa- 
tion of Fig. 13b that the distance between suc- 
cessive tip positions is a decreasing function of 
the mass; in fact, we find that Iog Ztip is linear 
in Iog M with slope 2/3. This result is consis- 
tent with the belief that df = 1.5 for DLA with 
anisotropy. 

The tip is remarkably parabolic: specifically, when 
we form (yC - Y,)~ (where y, is the contour, and 
y0 is the centerline of the dendrite) and plot this 
on linear graph paper as a function of z - zkiP, we 
obtain a straight line with an R value of 0.997. 

(iii) The sidebranches are non-periodic at any distance 
from the tip, with random variations in both phase 
and amplitude. To demonstrate this, we have an- 
alyzed our simulations in exactly the same math- 
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ematical fashion as Dougherty et al analyzed the 
experimental dendrite patterns. 

An open theoretical question concerns the micro- 
scopic origin of the sidebranching phenomenon. One 
current hypothesis predicts that the sidebranch ampli- 
tude would be periodic and the two sides of the den- 
drite should have correlated sidebranching. Dougherty 
et al” noted that their experimental data are not con- 
sistent with this hypothesis, and we can make simi- 
lar remarks for the present model. A second hypothe- 
sis views sidebranching as a result of the noise arising 
from concentration fluctuations. To test this hypoth- 
esis, Dougherty et al” plot the sidebranch amplitude 
as a function of z - Ztipr the distance from the tip. 
They found that the sidebranch amplitude decreases 
as the distance variable ztip - z decreases, and shows 
no sign of a threshold distance below which the ampli- 
tude is zero. Moreover, they found that close to the 
tip the sidebranch amplitude is roughly linear on semi- 
log paper. If we plot yC, the amplitude, which should 
scale roughly as the square root of the area under the 
peak if the peak maintains its shape as a function of 
z - Ztip; we find exactly the same exponential growth 
of sidebranch amplitude with distance from the tip. 

In summary, we have developed a model in which 
noise reduction is used to tune the effect of noise, and 
cubic anisotropy is introduced through the use of an 
underlying square lattice. The resulting patterns ob- 
tained strongly resemble the experimental patterns of 
Dougherty et al (1987), both in their qualitative ap- 
pearance and in the same degree of quantitative detail 
studied experimentally. Sidebranching arises from the 
fact that an approximately flat interface in the DLA 
problem grows trees (which resemble “bumps” in the 
presence of noise reduction); these compete for the in- 
coming flux of random walkers. If one tree gets ahead, 
it has a further advantage for the next random walker 
and so gets ahead still more. Thus some sidebranches 
grow while others do not. The characteristic spac- 
ing A between sidebranches scales with the dendrite 
mass with the same exponent 2/3 that characterizes 
the growth of dendrite length Etip. Moreover, the pat- 
terns we obtain are reasonably independent of details 
of the simulation in that similar patterns are obtained 
when we vary the surface tension parameter (r over a 
modest range; we can also alter the boundary condi- 
tions of the model with some latitude and even allow 
for non-linearity in the growth process (1 # 1). 

The significance of the present findings is that the 
essential physics embodied in the DLA model, which 
was previously used to describe fluid-fluid displacement 
phenomena (“viscous fingering”), seems sufficient to 
describe the highly uncorrelated (almost random) den- 
dritic growth patterns recently discovered from the ex- 
periments and quantitative analysis of Dougherty et al 
(1987). 
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Table 1 

A “Rosetta stone” connecting the physice underlying (a) an electrical 
problem (dielectric breakdown), (b) a fluid mechanics problem (vis- 
cous fingering), and (c) a diffusion problem (dendritic solidification). 

(a) electrical (b) fluid mechanics (c) solidification 

electrostatic potential: pressure: concentration: 

4(rr t) P(r, t) c(r, t) 

electric field: velocity: growth rate: 

E a -V4(r, t) v a -VP(r, t) v a -Vc(r,t) 

conservation: 

V.E=O v-v=0 v*v=o 

Laplace Equation: 

VZd=O -7% = 0 v2v = 0 

s-r 
We have argued that it is worth exploring alI the con- 
sequences of a straightforward physical model. Our 
optimism is based on the success of the Ising model 
and percolation in the past. We must be mindful that 
substantial variants of the original model may be called 
for. In our case, e.g., anisotropy must be introduced 
or else the pattern bears 8bsoluteIy no resemblance to 
dendritic growth. Noise reduction must be introduced 
or else the computer time becomes prohibitive. We also 
emphasized analogies between diverse systems (Table 

1). 
This modest work perhaps raises more questions 

than it answers, but it nonetheless might stimulate fur- 
ther investigation of the basic physics of random sys- 
tems that must be better understood in order to ex- 
plain experimentally-observed non-symmetric dendri- 
tic growth patterns and fluid mechanics patterns. The 
reader interested in more details than provided here 
may consult recent books on the subject.34-S0 
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