
Nuclear Physics B (Proc. Suppl.) 2 (1987) 301-326 301 
North-Holland, Amsterdam 

ROLE OF FLUCTUATIONS IN FLUID MECHANICS 

AND DENDRITIC SOLIDIFICATION 

H. Eugene STANLEY 

Center for Polymer Studies and Department of Physics 

Boston University, Boston, MA 02215 USA 

Our purpose is to review certain recent advances in understanding the role of fluctuations 

in fluid mechanics and dendritic solidification; many of these represent joint work of the 

author and J. Nittmann. If one understands completely the simple Ising model, then 

one understands virtually all systems near their critical points--although the detailed 

descriptions of many such systems requires a suitably-chosen variant of the Ising model 

(such as the XY or Heisenberg model). By analogy, we shall argue here that if one 

understands completely the simple diffusion-limited aggregation (DLA) model or the 

closely-related dielectric breakdown model (DBM), then one understands the role of 

fluctuations in a range of fluid mechanical systems, as well as in dendritic solidification. 

The detailed descriptions of some such systems requires suitably-chosen variants, such 

as DBM with anisotropy and noise reduction. 

The overall theme I'll develop is that recent work on relatively simple non-deterministic 

models has some utility for describing experimentally-observed phenomena in fluid mechanics 

and dendritic growth. I'll first make the case that we can approach these experimental subjects 

of classic diflleulty with the same spirit that has been used in recent years to approach 

problems associated with phase transitions and critical phenomena. This approach is to 

carefully choose a microscopic model system that captures the essential physics underlying 

the phenomena at hand, and then study this model until we understand "how the model 

works." Then we reconsider the phenomena at hand, to see if an understanding of the model 

leads to an understanding of the phenomena. Sometimes the original model is not enough, 

and a variant is needed, and we shall see that this is the case here also. Fortunately, however, 

we shall see that the same underlying physics is common to the model and its variants. 

We begin, then, with the classic Ising model. 
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(a) The Ising Model and Its Variants 

The first time I heard a lecture on the Ising model, the speaker apologized for having what 

was termed "the Ising disease" (an appellation attributed to Montroll). The Ising model was 

proposed 67 years ago I and its solution for a one-dimensional lattice occurred 62 years ago. 2 

However, at that time no one knew that the Ising model describes a wide range of materials 

near their critical points. Over 1000 papers have been published on this model, but only since 

1977 have we known that if one understands the Ising model thoroughly, one understands the 

essential physics of virtually all 3-dimensional materials systems near thermal critical points. 

This is because other systems are simply variants of the Ising model. For example, most 

systems are related to special cases of the n-vector model, which in turn is a simple Ising 

model in which the spin variable s has not one component but rather n separate components 

s i :  s = ( s l , 8 2 , . . . , s , ) .  
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Fig. I." Schematic illustration of the analogy between (a) the Ising model, which has fluctua- 

tions in spin orientation on all length 8cale8 from the microscopic scale of the lattice constant 

ao up to the macroscopic scale of the thermal correlation length ~T, (b) percolation, which 

has fluctuations in characteristic size of clusters on all length scales from ao up to the diame- 

ter of the largest cluster--the pair connectedness length ~p, and (c) the DLA/DBM problem, 

whose clusters have fluctuations on all length scales from the microscopic length do : "7/L ('7 

is the surface tension and L the latent heat) up to the diameter of the cluster ~L. Also shown, 

on the right side, is the analogy between the scaling behavior of the three length scales ~2", 

~p, and ~L. 
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The ]sing model solves the puzzle of how it is that nearest-neighbor interactions of 

microscopic length scale 1X "propagate" their effect cooperatively to give rise to a correlation 

length ~,  of macroscopic length scale near the critical point (Fig. la). In fact, ~r increases 

without limit as the coupling K - J / k T  increases to a critical value Kc -= J/k~c, 

• f K - K¢ ~ - v r  ( l . l a )  

The ~amplitude" A has a numerical value on the order of the lattice constant ao. A snapshot 

of an ]sing system shows that there are fluctuations on all length scales from ao (~- IX) to 

~,  (which can be from 102 - 104X in a typical experiment). 

Attempts to simplify the essential problem of propagation of order from one spin to its 

neighbors by making mean-field type of truncations (such as the Weiss approximation, the 

Bethe approximation, and the Kasteleynovan Kranendonk constant coupling approximation) 

fail to describe 3-dhnensional systems near their critical points. 

To describe the specific heat near the ~ point of 4He, one finds that the Ising model is 

not appropriate. This is because the order parameter in 4He is not a one-dimensional variable 

with only two values (up or down), but rather a two-dimensional object with an amplitude 

and a phase. Accordingly, the ]sing model has to be replaced by a ~,ariant" for which the 

one-dimensional ]sing spins are replaced by two-dimensional XY spins. . 

(b) R a n d o m  Site  Perco la t ion  on  a Lattice, and Its  Variants 

In its simplest form, one randomly occupies a fraction p of the sites of a J-dimensional lattice 

(the case d = 1 is shown schematically in Fig. lb). Again, phenomena occurring on the local 

1X scale of a lattice constant are "amplified ~ near the percolation threshold p -- Pc to a 

macroscopic length ~p. 

Here p plays the role of the coupling constant K of the ]sing model. When p is small, the 

characteristic length scale is comparable to 1X. However when p approaches pc, there occur 

phenomena on all scales ranging from ao to ~p, where ~p increases without limit as p --* Pc 

Again, the amplitude A is roughly 1X. 

It is by now a well-known piece of Umagic" that each phenomenon of thermal critical phe- 

nomena has a corresponding analog in percolation, so that the percolation problem is some- 

times called a geometric or "connectivity z critical phenomenon. Any connectivity problem 

can be understood by starting with pure random percolation and then adding interactions, or 

whatever. Thus, e.g., we understand why the critical exponents describing the divergence to 

infinity of various geometrical quantities (such as ~p) are the same regardless of whether the 
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elements interact or are non-interacting. 3,4 This has been predicted on theoretical grounds 

and confirmed by detailed numerical simulations. Similarly, the same connectivity exponents 

are found regardless of whether the elements are constrained to the sites of a lattice or are 

free to be anywhere in a cont inuum (see, e.g., Gawlinski and Stanley s for d -- 2, and Geiger 

and Stanley 4,s for d ~ 3). 

(c) The Laplace Equation and Its Variants 

Is there some lesson to be learned for fluid mechanics from our experience with thermal  and 

geometric critical phenomena? We don' t  know the answer to this question, but  J. Ni t tmann 

and I have been exploring this possibility in recent months. Just  as variations in the Ising 

and percolation problems were found to be sufficient to describe a rich range of thermal  and 

geometric critical phenomena,  so we have found that  variants of the original Laplace equation 

are useful in describing puzzling patterns in fluids mechanics and dendritic growth. 

In the Ising model, we place a spin on each pixel (site) of a lattice. In percolation we 

allow each pixel to be occupied or empty. In fluid mechanics, we assign a number---call it 

~---to each pixel. Generally we shall understand ~ to be the pressure at this region of space. 

The spins in an Ising model interact with their neighbors. Hence the state of one Ising 

pixel depends on the state of all the other pixels in the sys tem--up  to a length scale given 

by the thermal  correlation length ~T. The "global" correlation between distant pixels in an 

Ising simulation arises from the fact that  neighboring pixels at i and j have a ~local" ex- 

change interaction Ji j .  Similarly, the correlation in connectivity between distant pixels in the 

percolation problem arises from the "propagation" of local connectivity between neighboring 

pixels. In fluid mechanics, the pressure on each pixel is correlated with the pressure at every 

other pixel because the pressure obeys the Laplace equation. 

One can calculate an equilibrium Ising configuration by ~passing through the system 

with a computer" and flipping each spin with a probabili ty related to the Boltzmann factor. 

Similarly, one can calculate the pressure at each pixel by "passing through the system" and 

re-adjusting the pressure on each pixel in accord with the Laplace equation.* If we were to 

arbitrarily flip the configuration of a single pixel in the Ising problem (from ÷1 to - 1 ) ,  we 

would significantly influence the equilibrium configuration of the system out to a length scale 

on the order of ~T. Similarly, if we were to arbitrarily impose a given pressure on a single 

point of a system obeying the Laplace equation, we would drastically change the resulting 

pat tern out to a length scale tha t  we shall call ~L. 

Does ~L obey a ~scaling form" analogous to Eqs. (la) and (lb) obeyed by the functions 

~T and ~p for the Ising model and percolation? We believe that  the answer to this question is 

* There is an intimate connection between the diffusion equation and the random walk 

problem (see, e.g., Chandrasekhar.  9) 



H.E. Stanley / Role of  lluctuations in fluid mechan£cs 305 

"yes, ~ although our ideas on this subject remain somewhat tentat ive and subject to revision. 

The best way to see the fluctuations inherent in structures grown according to the Laplace 

equation is to first introduce some specific models. There are two models tha t  were at once 

thought  to be fully equivalent, al though it is now recognized that  the actual pat terns  produced 

by each have a different "susceptibility to lattice anisotropy." ~ The first of these models is 

diffusion limited aggregation (DLA). Here one releases a random walker from a large circle 

surrounding a seed particle placed at the origin. When the random walker touches a perimeter 

site of the seed, it %ticks z (i.e., the perimeter site becomes a cluster site), and we have a 

cluster of mass = 2. A second random walker is then released. This process continues until  a 

large cluster is formed. Initially the ~mass" ~lr of clusters was typically l0  s to 10 4. However 

it has become possible to make very fast algorithms, and the largest cluster to date has a 

mass of 4 x 10e. s 

The dielectric breakdown model (DBM) differs from DLA in tha t  nothing happens until  

the random walker touches a cluster site, at which t ime the perimeter  site it was just  on at 

the previous step is t ransformed into a cluster site. Not surprisingly, this t iny local change in 

boundary conditions does not  affect the ~critical exponents ~ of this p r o b l e m q D L A  and DBM 

have the same value of the fractal dimension d!  describing how the cluster mass depends on 

cluster diameter L: M ,-* L dl . t  In bo th  thermal  critical phenomena (or percolation) the 

length L introduced when we have a finite system size scales the same as the correlation 

lengths ~ ,  (or ~p). Hence for DLA we expect tha t  there will be fluctuations on length scales 

up to ~L, where ~L itself increases with the cluster mass according to 

~L ~ A [eL ---- l l d ! ] .  (lc) 

Here the amplitude A is again on the order of 1~.. Note that  (lc) is analogous to (la) and 

(lb) if we think of /~r  __+ oo as being analogous to K --+ K¢. This reasoning is common in 

polymer physics, where we relate the radius of gyration Rg of a polymer to the mass through 

an equation of the form of (lc),  R e ~ (1/j~/r) - I / a s  . Note tha t  eL = l / d / p l a y s  the role of the 

The difference in boundary  conditions does affect the rate at which the asymptotic be- 

havior shows up. ~ For example, for DLA the screening wUl be more severe: as soon as a 

random walker steps on a perimeter  site, the walker is s topped and the perimeter  site be- 

comes a cluster site. However for the DBIV[ a random walker is free to walk on perimeter  sites 

with impunity: only when the walker steps on a dus te r  site does the walker stop walking. 

Hence in the DBM the walkers can bet ter  penetrate  the ~]ords of the system, so in overall 

appearance DBM clusters appear  to have thicker branches and to be more "compact.  z The 

critical exponent  a/L --- l / d /  is not  changed since it depends not on the density but  on the 

rate at which the density decreases as the mass increases. 
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criti('~t exponents uT an(t u v, el (I~) ~,J~,] [lb).  Sul)l)os, w(, t(,-t this idea. qualitatively, by 

examining the largest DLA elu~ters in d~'t~il. W~' find tll~T indeed there are fluctuations in 

mas~ ,,n length scales less than. say, th,, widlh 1V of ~h(' sid(, branch(,s. If one makes a log-log 

plot of W against mass M, one finds the same slope l id  I that  one finds when one plots the 

diameter  against M.  

Evidence for Similarity of Viscous Fingering Patterns 

and Laplace Equation (DLA/DBM) Patterns 

In the remainder  of this talk, we'll describe in some detail the sorts of results we obtain 

from variants  of the Laplace equation. First, it is necessary to describe the simplest sys tem 

that  produces pa t te rns  resembling interesting objects found in nature.  Consider, e.g., the 

classic Saffman-Taylor  viscous fingering problem. Here one injects a low-viscosity fluid into a 

medium filled with high viscosity fluid. In the limit tha t  the viscosity ratio between the high 

and low viscosity fluids can be taken to be zero, we can assume that  the pressure everywhere 

inside the low viscosity fluid is a constant:  P(i) = 1 for i C [cluster of pixels occupied by 

low-viscosity fluid]. The  pressure everywhere else in the system will have a value given by the 

solution of the Laplace equation, (2). This problem is modelled by the dielectric breakdown 

model or DBM 1° or diffusion-limited aggregation model or DLA. 11 These two models have 

in common tha t  both  are solutions to Laplace equation for the case in which the pressure is 

zero at infinity and P = i on an object called the cluster. 

Daccord has made accurate measurements  on the fractal dimension of viscous fingers 

in both  lateral 12 and radial 13 geometries (Fig. 2). He reduced the length scale normally 

imposed by surface tension by using liquids with zero interracial tension - - the  two fluids were 

water  and a viscous aqueous solution of polysaccharide (Fig. 3). He found tha t  the resulting 

pat terns  are indeed fractal,  with a fractal dimension identical to that  of D L A / D B M  (Fig. 4). 

M~tley et a114 found analogous behavior where the cell itself introduced the randomness:  he 

accomplished this by placing glass beads inside the cell at random. Chen and Wilkinson is 

imposed the randomness  by studying viscous fingering inside a network of glass tubes whose 

diameter  L was randomly  chosen from a probabil i ty distribution ~r(L). 

Fig. 2: Schematic illustration of the lateral and radial Hele-Shaw cells. Shown are top views. 

The spacing between the plates is typically I mm or less. From Daccord et al. 13 
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Fig. 3: The growth region of a radial viscous finger, a typical experimental  pa t tern  for which 

DLA is the appropriate  model. The finger at t ime t = to is shown in (a), while (b) displays 

the difference between the pat tern  at t = t + At and t = t, obtained experimentally by simply 

subtracting the images of the same finger photographed at slightly different times. After 

Daccord et al. 13 
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Fig. d: Analysis of the fractal dimension typical of a radial viscous finger by the sandbox 

method (N is the number  of occupied pixels in a L × L sandbox whose center is on an 

occupied pixel). The  slope of the straight line shown is dy = 1.70 ± 0.05, while for DLA d!  

is believed to be about  1.71 (from Daccord et al.lZ). 
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Not only is the frm t~J dm. 'u , - .m th4 . a n ,  for the ttmd mechanics probh'ni and for the 

Laplace pat terns,  but so also are the multifractal  propert ies  the same. Multifractals arise 

when one defines some quanti ty on all t}l(, pixel sites. Perhaps the simplest example is that 

of a charged needle: if we assign to every pixel a number  equal to the electric fieht, then 

the set {El}  of field values fl)r the perimeter  sites of the needle form a multifractal  set. The 

distribution n(E)  giving the number  of perimeter  pixels with electric field E is characterized, 

like all distribution functions, by its moments  

Z(q) .... E n(E)Eq" (2) 
E 

As might  be anticipated for a self-similar system, these moments  scale with the mass M (or 

with the diameter  L) 

Z(q) ~ M ~(q) ~ n -~(q). (3a) 

Since M ~ L dl, the exponents  a and r are related by the fractal dimension di ,  

T 

o -  d +  (3b) 

For thermal  and geometric critical phenomena,  exponents analogous to the e(q) and r(q) 

can be defined by considering a large L x L system at the critical point [K = Kc} (or p = p~). 

One finds that  the ratio of two successive exponents is a constant  "gap," so that  there is no 

new information obtained by studying higher moments  of the distribution. Connected with 

this simplicity is the fact tha t  there is only one independent exponent in finite size scaling at 

the critical point (a second exponent arises if we wish to relate quantities tha t  describe the 

approach to the critical point) .  

In percolation, these exponents have geometric interpretations:  

(i) Yh = dI,  the fractal dimension of the incipient infinite cluster (the largest cluster found 

in a box of edge L at p = Pc), and 

(ii) YT = dred, the fractal dimension of the red bonds that  occur inside the largest spanning 

cluster (red bonds are singly connected bonds: when cut, the cluster falls into two pieces). 

Relation (i) was noted by Stanley ~6 while (ii) was proved by Coniglio. ~7 

In the case of the moments  Zq, there is an infinite hierarchy of exponents in the sense 

that  the ratio r(q + 1)/r(q) depends on q: 

+ 1) 
r(q) - D(q). (4) 

For the case of a long thin needle, the exponent D(q) sticks at the value 3/2 for small q, but  

for q above a critical value q = q~, D(q) becomes "unstuck" and varies continuously with q. 
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The same c(,nsideration~ apply 1.o the fluid iliecha]~ics prob](,m. Here the analog of the 

electric field E cx ~'V is the growth probabil i ty p, ~< ~-P. where the index i runs over all 

p(,rimeter sites i. Thus p, is the i)robal,ility that site i is the next to be added to the cluster. 

If" we think of random walkers (Fig. 5). then p, is the hit probabil i ty  (the probabil i ty that  site 

i is the next to be hit by a random walker). Clearly the set pi play a vital role in determining 

the dynamics of growth,  since if we know all the p, for every per imeter  site i at a given t ime 

t, then we can predict  (in a statistical sense) the s tate  of the system at t ime t + 1. 

Recently, considerable a t tent ion has focussed on the question of how a DLA aggregate 

grows. Such growth phenomena  are completely characterized by assigning to each per imeter  
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Fig. 5: This figure illustrates the harmonic measure for a 50,000 particle off-lattice 2d DLA 

aggregate.  Figure 3a shows the cluster. Figure 3b shows all 6803 per imeter  sites which 

have been contacted by at  least one of 106 random walkers (following off-lattlce trajectories).  

Figure 3c shows all of those per imeter  sites which have been contacted 50 or more t imes and 

Fig. 3d shows those sites which have been contacted 2500 or more times. The m a x i m u m  

number  of contacts  for any per imeter  site was 8197 so tha t  Pmax -- 8.2 x 10 - s .  After Meakin 

e t a ] .  ]9 
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site i tilt' mmlb('r p,, tilt probabilit3 that  nite ~ i~ the m~xt to grow. Theoretical evidence 

has been advanced recently to .~uggest that the, numbers p, fi)rm a multifractal set: this set 

cannot be characterized by a singh exwment (as in the case of the DLA aggregate itself) bu~ 

rather an infinite hierarchy of exponents is required. The physical basis for this fact is that 

the hottest  tips of a DLA aggregate grow much faster than the deep fjords (which hardly 

grow at all); hence the rate of change of the Pi differs greatly when i is a tip perimeter site 

than when i is a fjord perimeter site. 

Although there have been theoretical calculations of the muttifractality of DLA, is- 20 

there had been no experimental tests of these predictions. We have recently carried out the 

first such tests, and found experimental  confirmation of the broad outlines of the theory of 

mult ifraet als.21 

There are many experimental realizations of DLA, and for the present work we will focus 

upon two-dimensional fraetal viscous fingers since it is possible to study the real-time growth 

using a movie camera and to digitize precisely the observed time development of the DLA 

fractal. By subtracting two successive "snapshots" we can obtain an accurate estimate of the 

appropriate normalized growth probability pi for each perimeter site of the finger (Fig. 3). 

We first calculated the distribution function n(p), where n(p)dp is the number  of perime- 

ter sites with p, in the range [pi,pi + dp,]. This curve has a tong tail extending to the extremely 

small values of Pi for perimeter sites deep inside fjords. We found good agreement between 

the experimental  n(p) for viscous fingers (Fig. 6a) and the corresponding theoretical n(p) 

calculated for DLA (Fig. 6b). 
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Fig. 6: Comparison between the distribution functions n(p) for simulated (a) and "experi- 

mental" (b) viscous fingering patterns.  Here n(p)i~p is the number  of perimeter sites with 

growth probabilities in the range [p, p + bp]. The simulated patterns and their growth prob- 

abilities were obtained using the dielectric breakdown model. The growth probabilities for 

the experimental  patterns were obtained by numerically solving the Laplace equation in the 

vicinity of a digitized representation of the pat tern with absorbing boundary conditions on 

the sites occupied by the pattern.  Similar results were obtained for large a (corresponding 

to the "tips") by directly subtracting two successive experimental patterns. After Amitrano 

et a140 and Ni t tmann et al. 41 
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We next formed the moments Z e = I](pi) q which are characterized by the hierarchy of 

exponents r e defined through Z e = L-rq, where L is a characteristic linear dimension. The 

experimental results (Fig. 7a) show that when q is large, ~'e is linear in q but for q small there 

is downward curvature in re, showing that the ~ords are characterized by different growth 

rates than the tips. It is conventional to also calculate the Legendre transform with respect 

to q of re: -f(a) = r(q) - qa where a = dr/dq. Downward curvature in r(q) corresponds 

to upward curvature in -f(a) [Fig. 8a]. The experimental data of Figs. 7a and 8b compare 

favorably with the theoretical DLA model calculations shown in Figs. 7b and 8b. 
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Fig. 7: Comparison of the critical exponents t-(q) = {q - l)Dtq) for the (a) theoretical and 

(b) "experimental" viscous fingering patterns. In both cases, r(q) was obtained numerically 

(see caption to Fig. 6). After Amitrano et al 4° and Nittmann et al. 4] 
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~Dendritic Solidification%" Variants of the Fluid Mechanical Models 

By analogy with the Ising model and its variants, we can modify DLA/DBM to describe 

other fluid mechanical phenomena. One of the most intriguing of these concerns a variation 

of the viscous fingering phenomenon in which there is present anisotropy. Ben Jacob et al 2~ 

imposed this anisotropy from by scratching a lattice of lines on their Hele-Shaw cell. They 

found patterns that  strongly resemble snow crystals! If viscous fingers are described by DLA, 

then can the Ben Jacob pat terns be described by DLA with imposed anisotropy? 

Ni t tmann and Stanley 23 a t tempted to answer this question--specifically, they a t tempted  

to reproduce the Ben Jacob patterns with suitably modified DLA. A scratch in a Hele-Shaw 

cell means that  the plate spacing b is increased along certain directions, and the permeabili ty 

coefficient k relating growth velocity to V P  is proportional to b2(k cx b2). Hence Ni t tmann 

and Stanley calculated DLA patterns for the case in which there was imposed a periodic 

variation in the k. It is significant that  their simulations reproduce snow crystal type patterns,  

just  like the experiments.  These simulations relied for their efficacy on the presence of noise 

reduction. 

Noise Reduction 

The original DLA and DBM models are prototypes of completely chaotic systems. No dis- 

cernable pat tern  emerges. If there is a weak anisotropy, we expect that  the resulting pat tern  

reflects this anisotropy. For example, if the simulations are carried out on a lattice, then the 

presence of the lattice imposes a weak anisotropy (e.g., on a square lattice, it is more likely 

that  particles at tach to the westernmost tip if they approach from the west than from the 

north or south). This weak anisotropy is not visually apparent  unless large clusters are grown. 

However the largest DLA clusters made s with mass about  4 million sites, clearly display the 

anisotropy (Fig. 9). Unfortunately, no one can afford the computer  resources to make such 

"mega-DLA" clusters each time we wish to model a new phenomenon. Noise reduction is a 

computational trick that  seems to have the property that  it speeds up the a t ta inment  of this 

asymptotic limit. In the absence of noise reduction, a perimeter site becomes a cluster site 

whenever it is chosen (e.g., whenever a random walker lands on that  site). 

"Noise reduction" means that  we associate a counter with each perimeter site; each t ime 

that  site is chosen, the counter  increments by one. The perimeter site becomes a cluster site 

only after the counter reaches a pre-determined threshold value termed 8. 2s-2s When 8 = 1, 

we recover the original noisy DLA. Growth is dominated by the stochastic randomness in 

the arrival of random walkers. If 8 is very large, then growth is determined by the actual 

probability distribution. 

For example, suppose we star t  with a large disc as a seed particle (instead of a single 

site). The growth probabili ty at all points on the disc surface will be equal, assuming a 
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Fig. 9: A huge DLA cluster with a mass of 4 million sites grown on a square lattice. Shown is 

only the last 5% of the growth. In reality, there is s t ructure  on all scales less than  the width 

W of the 4 arms.  Moreover,  W scales with cluster mass as W ~ ( 1 / M ) - l / d / ,  jus t  in the same 

way as the quant i ty  ~L defined in Eq. (lc).  The spontaneous appearance  of side branches is 

reminiscent of experimental  dendritic growth pat terns  such as those shown in Fig. 13. After 

Meakin. s 
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continuum. By the D Arty gro~th  law this disc should evolve in t ime into a larger disc. 

On the other hand,  for ordinary DLA (.~ 1). as soon as a random walker touches a single 

perimeter  site on the disc, this site will become par t  of the cluster and the disc will lose its 

circular symmetry .  The growth probabilities will all be re-calculated, and the perimeter sites 

close by the one that  just  grew will have higher growth probabilities. Thus the disc with a 

single site added to it will be more likely to grow in the direction of that  single site. At a 

later t ime we will almost certainly not find a cluster with circular symmetry .  

Clearly if s is very large, then the initial growth will preserve an almost circular structure. 

This is because before the first site is added to the circular seed, all the perimeter  sites will 

acquire large numbers  in their counters (s - 1, s - 2, etc.). After the first site is added, 

these additional per imeter  sites will be very close to the threshold for growing while the 

new per imeter  sites that  were born when the first cluster site is added will all have counters 

initialized at zero. A typical cluster grown in this fashion is shown in Fig. 10; actually 

this cluster is grown on a square lattice with first and second neighbor interactions, not on a 

cont inuum. However Meakin et a126 have found an almost  identical pa t te rn  for the cont inuum 

c a s e .  

At first sight, there is little economy in computat ional  speed, since one needs "s times 

as many"  r andom walkers to reach a given cluster size. Thus to grow a cluster with merely 

4000 sites with s = 1000 requires almost as much t ime as to generate a mega-DLA with 

4,000,000 sites and s = 1. Fortunately,  there is a way around this problem. Instead of 

using r andom walkers to solve the Laplace equation (to sample the growth probabilities pi 

on each per imeter  site), we can directly solve the Laplace equation numerically. This is the 

approach used when the dielectric breakdown model was first proposed (Fig. 11). Whether  

one calculates the growth probabilities by sending in r andom walkers or by solving the Laplace 

equation is immaterial :  the difference between DLA and DBM is the boundary  conditions, 

not the method  of calculation. 

The advantage of the Laplace equation approach when s is large is obvious: one need 

re-solve the Laplace equation only after a site is actually added to the cluster. In between 

adding sites, one simply chooses random numbers  weighted by the growth probabilities of 

each per imeter  site. This is a relatively rapid procedure for the computer ,  compared with its 

counterpar t  of sending random walkers. 

aSnow Crystala s 

Of course, real dendritic growth pat terns  (such as snow crystals) do not occur in an environ- 

ment  with periodic fluctuations in k(z,  y). Rather ,  the global asymmet ry  of the pat tern  arises 

from the local asymmet ry  of the consti tuent  water  molecules. Can this local a symmet ry  give 

rise to global a symmet ry?  Buka et a127 replaced the Ben Jacob experiment  (isotropic 
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¢ 

b d¢-~"O"~ .... r"-.. 

Fig. 10: Schematic illustration of the difference between an outward ( 'positive')  and an in- 

ward ( 'negative ')  interface fluctuation. A positive fluctuation tends to be damped  out ra ther  

quickly, as mass quickly at taches to the side of the extra  site tha t  is added. On the other 

hand,  a negative fluctuation grows, in the sense tha t  mass accumulates on both sides of the 

tiny notch. The notch itself has a lower and lower probabi l i ty  of being filled in, as it becomes 

the end of a longer and longer fjord. This is the underlying mechanism for the tip-split t ing 

phenomenon when no interfacial tension is present,  a shows the advancing front (row a) of 

a cluster with • = 50. The heavy line separates the cluster sites (all of which were chosen 

50 times) f rom the per imeter  sites (all of which have counters registering less than 50). In a, 

no fluctuations in the counters of these three sites have occurred yet, and all three per imeter  

counters register 49. b shows a negative fluctuation, in which the central  perimeter  site is 

chosen slightly less frequently than  the two on either side; the latter now register 50, and so 

they become cluster sites in row 8. The per imeter  site left in the notch between these two 

new cluster sites grows much less quickly because it is shielded by the two new cluster sites. 

For the sake of concreteness, let us assume it is chosen 10 t imes less frequently. Hence by the 

t ime the notch site is chosen one more time, the two per imeter  sites at the tips have been 

chosen 10 times (c). The interface is once again smooth  (row ~), as it was before, except 

that  the counters on the three per imeter  sites differ. After 40 new counts per counter,  the 

si tuat ion in d arises. Now we have a notch whose counter  lags behind by 10, instead of by 

1 as in b. Thus the original fluctuation has been amplified, due to the t remendous shielding 

of a single notch. Note tha t  no new fluctuations were assumed: the original fluctuation of 1 

in the counter  num ber  is amplified to 10 solely by electrostatic screening. This amplification 

of a negative 'notch fluctuation'  has the effect tha t  the t iny notch soon becomes the end of a 

long fjord. To see this, note tha t  e shows the same si tuation after 50 more counts have been 

added to each of the two tip counters,  and hence (by the 10 : 1 rule) 5 new counts to the 

notch counter.  The  tip counters therefore become par t  of the cluster, but  the notch counter  

has not  yet  reached 50 and remains a per imeter  site. The notch has become an incipient fjord 

of length 2, and the potent ial  at the end of this fjord is now exceedingly low. Indeed it si quite 

possible tha t  the counter  will never pass from 45 to 50 in the lifetime of the cluster. In our 

simulations we can see t iny notch fluctuations become the ends of long fjords, and all of the 

above remarks  on the t ime-dependent  dynamics of tip splitting are confirmed quantitatively. 

After Ni t tmann  and Stanley. 23 
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]Fig. 11: Schematic illustration of the first steps in the generation of a DLA cluster by solving 

directly the Laplace equation on a square lattice. 
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fluid, anisotropic eel!) !,.~ th(" rew,rse: isotropic cell but anisotropic fluid! To accomplish 

this, they used a nernatic liquid crystal for the high viscosity fluid. Thus the analog of the 

water molecules ill a snow crystal are the rod-shaped anisotropic molecules of a nematic. 

This experiment shows that the underlying anisotropy can as well be in the fluid as in the 

environment. 

Snow crystal formation is thought to involve mainly the aggregation of tiny ice particles 

and droplets of supercooled water. To the extent that snow crystals grow by accreting water 

molecules previously in the vapor or liquid phase, the growth rate is thought to be limited by 

the diffusion away from the growing snow crystal of the latent heat released by these phase 

changes. Under conditions of small Peelet number, the diffusion equation describing the space 

and time dependence of the temperature field T(r, t) reduces to the Laplace equation. Thus 

a reasonable starting point is DLA, independent of whether we wish to focus on particle 

aggregation, heat diffusion, or both. 

DLA reflects well the randomness inherent in a wide range of growth processes, including 

colloidal aggregation, it fails to describe dendritic solidification. While the deterministic 

models of snow crystals produce patterns that are much too "symmetric," the DLA approach 

suffers from the opposite problem: DLA patterns are too "noisy." That DLA is too noisy 

has long been recognized as a defect of this otherwise physically appealing model. Recently, 

an approach has been proposed 21 that retains the "good" features of DLA and at the same 

time produces patterns that resemble real (random) snow crystals. 

Firstly, we introduce 21 controlled amounts of noise reduction of the same sort used 

previously for both DLA and for DBM. It is believed that noise-reduced DLA is in the 

same universality class as ordinary DLA--i.e., it has the same fractal dimension dl,  the only 

difference being an increase in the characteristic local length scale W. One advantage of 

setting s ~ 1 is that the asymptotic behavior ("mass" = oc) behavior shows up much sooner 

than if s = 1. We do not explicitly introduce anisotropy--the only anisotropy present is the 

six-fold anisotropy arising from the underlying triangular lattice. 

The patterns obtained 21 have the same general features for all values of 8 greater than 

about 8 = 100---the effect of increasing s seems mainly to be that of increasing the width 

W of the fingers and side branches. The fjords between the 6 main branches contain much 

empty space. Some snow crystals have such wide "bays" but some do not. A better model 

would seem to require some tunable parameter that enables the complete range of snow 

crystal morphologies to be generated. We have found one such parameter, 7, that has the 

desired effect of reducing the difference in the ratio of the growth probabilities between the 

tips and fjords. Specifically, we relate by the rule p~ c¢ (V~)~ the growth probability Pi (the 

probability that perimeter site i is the next to grow) to the potential ~ (e.g., ~ may be the 
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t empera ture  T(r) at pob~t r, or the probabili ty tha~ a tiny ice particle is at point r). Our 

model is thus the analog for DLA of the "r t model." 

We used 7! to tun(, the balance between tip growth and fjord growth and found growth 

pat terns  that  resemble bet ter  the wide range of snow crystal morphologies that  have been 

experimental ly observed. ~l To what  does the case ~ % I correspond? For r~ = k (k = positive 

integer), we have a model 2s in which a site grows only if it is chosen k times in succession 

(k = 1 is pure DLA). It is possible tha t  we have a si tuation not altogether different from the 

classic n-vector model of isotropically-interacting n-dimensional classical spins: this model 

makes physical sense only if n is a positive integer, yet its s tudy for other values of n has 

led to rich ins ights--par t icular ly  the cases n = 0 (the dilute polymer  chain limit), n = co 

(the spherical model) and n = - 2  (the mean field limit). Similarly, the Q-state  eo t t s  model 

makes physical sense only if Q is an integer above 1, yet the cases Q = 0 ( random resistor 

network),  Q = 1 (percolation) and Q = 3/2 (a spin glass model) are of great  interest. 

The  fractal dimension d I is believed independent  of the value of the noise reduction 

pa ramete r  s (s renormalizes the cluster mass).  We confirmed this belief. However, we found 

d I does depend on ft. The most reliable est imates were obtained by first calculating estimates 

of d /  for a sequence of increasing cluster masses, and then extrapolat ing this sequence to 

infinite cluster mass. Our values for d I agreed remarkably  well with values we obtained by 

digitizing photographs  of experimentally observed snow crystals. Of course this preliminary 

s tudy 21 does not completely "solve" the snow crystal  problem: 

(i) The initial seed of a snow crystal  is almost  certainly hexagonal (i.e., quasi-2-dimen- 

sional), since this is the local geometry that  water  molecules take when they form hexagonal 

ice Ih. Are DBM-type  considerations (small growth probabil i ty near the center of a plate-like 

structure)  sufficient to explain why a snow crystal  remains quasi-2-dimensional as it continues 

growing? Why does its thickness remain less than  its width? It is perhaps  appropr ia te  to 

ment ion tha t  no adequate explanation has yet been advanced for why a snow crystal  remains 

quasi-2-dimensional throughout  its growth, despite the fact tha t  the "assembly plant" is 

certainly 3-dimensional. Intuit ion on this subject s tems f rom experience not only from critical 

phenomena  but  also from recent theoretical and experimental  work on pa t te rn  formation,  

where it was found tha t  even minute  amounts  of anisotropy are sufficient to stabilize structures 

of lower effective dimension. 

(ii) What  are the microscopic mechanisms tha t  give rise to the feature that  real snow 

crystals contain branches (and side branches) which are much more than  one molecule thick? 

Is noise reduction relevant,  or is noise reduction merely a "computat ional  trick" tha t  allows 

one to see the asymptot ic  form of a DLA cluster using reasonable masses? (E.g., on a square 

lattice, the same cross-like pat tern  for a mass of 5,000 sites seen in noise-reduced DLA with a 
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noise-reduction parameter of s = 500 is also seen in ordinary "noisy" DLA (s = 1) provided 

the mass is allowed to increase to roughly 5,000,000 sites! We know that DLA is obtained 

even if the incoming random walkers have a sticking probability that is less than one. Hence 

we anticipate that DLA might possibly describe a modest range of phenomena with structural 

re-arrangement. What is the actual sticking probability for newly arriving water molecules in 

real snow crystals? Is a value of the sticking probability less than unity sufficient to account 

for the fact that the arms and sidebranches of real snow crystals have macroscopic thickness. 

(iii) Are those real snow crystals which possess relatively compact cores with ramified 

dressing on their surfaces products of different environments of assembly, or did melting and 

structural re-arrangement take place after formation? Can one mimic the effect of the chang- 

ing environments in which a given snow crystal is actually assembled? Do these correspond 

to varying parameters such as ~ or ~ in the course of the gro~th proeeao? To study this effect, 

we generated patterns with values of ~/ and ~ that change during the growth process-e.g., 

we might choose ~ << 1 for an initial fraction f of the growth (thereby creating a hexagonal 

core), and ~/= 1 thereafter (thereby creating a ramified exterior portion). 

(iv) Does the presence in the clouds of a wind whose direction and speed varies randomly 

(both in time and in space, with characteristic time scales and length scales that are micro- 

scopic) imply that the actual trajectories of water molecules and water droplets might more 

resemble those of some extremely "pathological" path than those of a conventional DLA type 

random walk? We know that the random walk trajectories of DLA correspond exactly to the 

present electrostatic growth model, the DBM with DLA boundary conditions. What are the 

trajectories in "real space" corresponding to a choice of the ~ parameter below unity? One 

can speculate that a L6vy flight with tunable fractal dimension may be related to the path 

of a real ice particle buffeted around in a cloud. 

(v) How significant, in practice, is the role played by diffusion of latent heat away from 

the growing aggregate in determining the actual structure of a snow crystal? We know that 

this phenomenon is of paramount importance in dendritic growth of crystals from a liquid 

phase How significant is the role played by the capillary length do = ~ / L  in vapor phase 

deposition of water molecules onto a growing snow crystal? (Here L is the latent heat.) An 

ideal model might encompass both the diffusion of heat away from the snow crystal and the 

aggregation of particles toward the snow crystal? 

(vi) Are real snow crystals sometimes fractal objects? This intriguing question has been 

the object of considerable discussion in recent years. Our growth patterns are fractal, for all 

positive values of 7. We found 21 that the fractal dimension d! is independent of the value 

of the noise reduction parameter 8 (8 seems to mainly renormalize the cluster mass), but 

d! does/eject depend on T/. We also found that these values for d! agreed well with values 
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we obtained by digitizing the corresponding photographs of experimentally observed snow 

crystals (Fig. 12). 
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Fig. 12: (a) A typical snow crystal from the collection of 2453 photographs assembled in 

Bentley and Humphreys. 44 Other experimental examples may be found in Nakaya 42 and 

LaChapelle. 4z (b) A DLA simulation with noise reduction parameter of s : 200 and non- 

linearlty parameter ~ = 0.5. (c) comparison between the fractal dimensions of (a) and (b) 

obtained by plotting the number of pixels inside and L × L sandbox logarithmically against 

L. The same slope, d! = 1.85 ± 0.06, is found for both. The experimental data extend to 

larger values of L, since the digitzer used to analyze the experimental photograph has 20,000 

pixels while the cluster has only 4000 sites. After Nittmann and Stanley. 21 
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Dendritic Growth of NH4Br 

Dendritic crystal growth has been a field of immense recent progress, both experimentally 

and theoretically. In particular, Dougherty et a129 have recently made a detailed analysis 

of stroboscopic photographs, taken at 20 second intervals, of dendritic crystals of NH4Br 

(Fig. 13a). They have found three surprising results: (i) the sidebranches are non-periodic 

at any distance from the tip, with random variations in both phase and amplitude, (ii) 

sidebranches on opposite sides of the dendrite are essentially uncorrelated, and (iii) the rms 

sidebranch amplitude is an exponential function of distance from the tip, with no apparent 

onset threshold distance. Some of these results are apparently at variance with predictions 

from recent theories, z°-z2 

How can we understand these new experimental facts? Many existing models reflect 

the essential physical laws underlying the growth phenomena, but fail to find a tractable 

mechanism to incorporate the effects of noise on the growth. Growth of a dendrite from 

solution is controlled by the diffusion of solute towards the growing dendrite. In the limit of 

small Peclet number, the diffusion equation reduces to the Laplace equation (as mentioned 

above). The Laplace equation for a moving interface (the growing dendrite) brings to mind 

the diffusion limited aggregation model (DLA). Growth patterns produced by the various 

DLA simulation algorithms do not resemble dendritic growth patterns: DLA patterns are 

much too chaotic in appearance. We shall discuss here a related model 3s whose asymptotic 

structure does resemble the patterns found experimentally--both in broad qualitative features 

and in quantitative detail. The picture that emerges is one of Laplacian growth, where noise 

arises from the fact that there are concentration fluctuations in the vicinity of the growing 

dendrite (these are estimated to be roughly +10 s NH4Br molecules per cubic micron). 

Our starting point is the observation that minute amounts of anisotropy become mag- 

nified as the mass of a cluster increases. In fact, even the weak anisotropy of the underlying 

lattice structure can become so amplified that clusters of 4,000,000 particles take on a cross- 

like appearance (cf. Fig. 1 of Ref. 8). A real dendrite has a mass of roughly 10 le particles; 

it is impossible to generate clusters of this size on a computer, since even clusters of size 

108 require hundreds of hours on the fastest available computers. Fortunately, there is a 

computational trick--termed noise reduction--that speeds the convergence of the pattern 

toward its asymptotic "infinite mass" limit. The patterns we obtained with noise-reduced 

DLA resemble Fig. 1 of Dougherty et al, 29 reproduced in Fig. 13a. 

A typical result 33 for a mass of 4000 particles is shown in Fig. 13b. After each 333 

particles are added, a contour is drawn: 

(i) It is apparent from the "stroboscopic" representation of Fig. 13b that the distance be- 

tween successive tip positions is a decreasing function of the mass; in fact, we find that 
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log xti p is linear in log M with slope 2/3. This result is consistent with the belief that  

dl  = 1.5 for DLA with anisotropy. 

(ii) The tip is remarkably parabolic: specifically, when we form (Yc - Yo) 2 (where Yc is the 

contour, and Yo is the centerline of the dendrite) and plot this on linear graph paper  as 

a function of x - ztip, we obtain a straight line with an R value of 0.997. 

(iii) The sidebranches are non-periodic at any distance from the tip, with random variations 

in both phase and amplitude. To demonstrate this, we have analyzed our simulations 

in exactly the same mathematical  fashion as Dougherty et al analyzed the experimental  

dendrite patterns.  

An open theoretical question concerns the microscopic origin of the sidebranching phe- 

nomenon. One current  hypothesis predicts tha t  the sidebranch amplitude would be periodic 

and the two sides of the dendrite should have correlated sidebranching. Dougherty et a129 

noted that  their experimental  da ta  are not consistent with this hypothesis, and we can make 

similar remarks for the present model. A second hypothesis views sidebranching as a result 

of the noise arising from concentration fluctuations. To test this hypothesis,  Dougherty et 

a129 plot the sidebranch amplitude as a function of x - Xtlp, the distance from the tip. They 

found that  the sidebranch amplitude decreases as the distance variable Xtip - x decreases, 

50 micr( 

Fig. 13: (a) Experimental pattern of dendritic growth, measured for NH4Br by Dougherty 

et al. 20 (b) DLA simulation with noise reduction parameter  s = 200 (after Ni t tmann and 

Stanley3S). 
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and shows no sign of a threshold distance below which the amplitude is zero: Moreover, they 

found that close to the tip the sidebranch amplitude is roughly linear on semi-log paper. If 

we plot Yc, the amplitude, which should scale roughly as the square root of the area under 

the peak if the peak maintains its shape as a function of x - Xtip; we flnd exactly the same 

exponential growth of sidebranch amplitude with distance from the tip. 

In summary, we have developed a model in which noise reduction is used to tune the effect 

of noise, and cubic anisotropy is introduced through the use of an underlying square lattice. 

The resulting patterns obtained strongly resemble the experimental patterns of Dougherty 

et al (1987), both in their qualitative appearance and in the same degree of quantitative 

detail studied experimentally. Sidebranching arises from the fact that an approximately fiat 

interface in the DLA problem grows trees (which resemble "bumps" in the presence of noise 

reduction); these compete for the incoming flux of random walkers. If one tree gets ahead, it 

has a further advantage for the next random walker and so gets ahead still more. Thus some 

sidebranches grow while others do not. The characteristic spacing A between sidebranches 

scales with the dendrite mass with the same exponent 2/3 that characterizes the growth of 

dendrite length ~tip. Moreover, the patterns we obtain are reasonably independent of details 

of the simulation in that similar patterns are obtained when we vary the surface tension 

parameter ;o over a modest range; we can also alter the boundary conditions of the model 

with some latitude and even allow for non-linearity in the growth process (T/# 1). 

The significance of the present findings is that the essential physics embodied in the DLA 

model--previously used to describe fluid-fluid displacement phenomena ( "viscous fingering" ) -  

seems sufficient to describe the highly uncorrelated (almost random) dendritic growth pat- 

terns recently discovered from the experiments and quantitative analysis of Dougherty et al 

(1987). 

Summary 

We have argued that it is worth exploring all the consequences of a straightforward physical 

model. Our optimism is based on the success of the Ising model and percolation in the past. 

We must be mindful that substantial variants of the original model may be called for. In our 

case, e.g., anisotropy must be introduced or else the pattern bears absolutely no resemblance 

to dendritic growth. Also, noise reduction must be introduced or else the computer time 

becomes prohibitive. 

This modest work perhaps raises more questions than it answers, but it nonetheless might 

stimulate further investigation of the basic physics of random systems that must be better 

understood in order to explain experimentally-observed non-symmetric dendritic growth pat- 

terns and fluid mechanics patterns. The reader interested in more details than provided here 

may consult recent books on the subject, s4-s° 
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Table 1 

A "Rosetta stone" connecting the physics underlying (a) an electrical problem (dielectric 

breakdown), (b) a fluid mechanics problem (viscous fingering), and (c) a diffusion problem 

(dendritic solidification). 

(a) electrical (b) fluid mechanics (c) dendritic solldification 

electrostatic potential: pressure: concentration: 

¢(r,t)  P(r , t )  e(r,t) 

electric field: velocity: growth rate: 

E c¢ - V ¢ ( r , t )  v c¢ - V P ( r , t )  v ~ -Vc( r , t )  

conservation: 

V . E  : 0  V - v = O  V - v = O  

Laplace Equation: 

V 2 ¢ = o  ~ 2 V  - :  0 ~ 2 U  : 0 
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