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Statistical physics and economic !uctuations:
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Abstract

We present an overview of recent research applying ideas of statistical physics to try to better

understand puzzles regarding economic !uctuations. One of these puzzles is how to describe

outliers, phenomena that lie outside of patterns of statistical regularity. We review evidence

consistent with the possibility that such outliers may not exist. This possibility is supported by

recent analysis by Plerou et al. of a database containing the bid, ask, and sale price of each

trade of every stock. Further, the data support the picture of economic !uctuations, due to Plerou

et al., in which a 2nancial market alternates between being in an “equilibrium phase” where

market behavior is split roughly equally between buying and selling, and an “out-of-equilibrium

phase” where the market is mainly either buying or selling.

c© 2002 Published by Elsevier Science B.V.

1. Introduction

Interactions between economists and physicists have begun to make progress in

answering signi2cant questions. In particular, these collaborations have the potential to

change the paradigm for understanding economic !uctuations. Until relatively recently,

theories of economic !uctuations invoked the label of “outlier” (bubbles and crashes)

to describe !uctuations that do not agree with existing theory. These outliers are of

interest, as they correspond to extremely large and unpredictable changes of su;cient

magnitude to wreak havoc.

The paradigm of “statistical regularity plus outliers” does not exist in the physical

sciences. Indeed, if events occur that do not conform to predictions of the appropriate

theory, then that theory is immediately relegated to the dust bin and new theories are
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sought. An example are the “outliers” that led to the demise of classical mechanics,

eventually replaced by the theory of relativity.

Traditional economic theory does not predict outliers, but recent analysis of truly

huge quantities of empirical data suggests that classic theories not only fail for a few

outliers, but that there occur similar outliers of every possible size. In fact, if one

analyzes only a small data set (say 104 data points), then outliers appear to occur

as “rare events”. However, when orders of magnitude more data (108 data points)

are analyzed, one 2nds orders of magnitude more outliers—so ignoring them is not a

responsible option, and studying their properties becomes a realistic goal. One 2nds

that the statistical properties of these “outliers” are identical to the statistical properties

of everyday !uctuations. For example, a histogram giving the number of !uctuations of

a given magnitude x for !uctuations ranging in magnitude from everyday !uctuations

to extremely rare !uctuations (“2nancial earthquakes”) that occur with a probability of

only 10−8 is a perfect straight line in a double-log plot.

An analogy with earthquake research is perhaps not entirely inappropriate. If one

studies limited data sets, a paradigm arises in which there are everyday (unnoticeable

except by sensitive seismometer) “tremors”, punctuated from time to time by rare

events (“earthquakes”). Thanks to the empirical work, we now know that the partition

of shocks into “tremors” and “earthquakes” is not valid. Rather, if one examines enough

data, one sees that the shocks occur for all possible magnitudes. The law named after

Gutenberg and Richter refers to a statistical formula that gives all the data from the

smallest tremors to the “big ones”. This law is that the histogram giving the number

of shocks of a given size is a straight line in a log–log plot [1–3]—there are no

outliers.

Thus, an inappropriate paradigm can arise when a limited quantity of data are con-

sidered in which data are partitioned into everyday events (often describable by one

statistical law) and rare events which, since they are not described by the law are

terms outliers. Has an inappropriate paradigm arisen in economic research? In eco-

nomic research, there are !uctuations in stock prices, number of shares trading hands,

and total number of !uctuations. Recent empirical studies calculating histograms for

all three quantities are linear on log–log plots (albeit with diHerent slopes). In math-

ematical language, the occurrence probability of such quantity’s !uctuations appear to

be described by a power law.

In economics, neither the existence of power laws nor the exact exponents has any

accepted theoretical basis. Professionally, empirical laws such as the aforementioned

power laws are called “stylized facts”, a term that to my ear always sounds dismissive.

Accordingly, some theoretical understanding is urgently needed or else these laws will

continue to be largely irrelevant. Of course facts, even facts without any interpretation,

may have practical value. For example, the Gutenberg–Richter law enables one to

calculate the risk of a shock (tremor or earthquake) of a given magnitude, and hence

informs the building codes of Los Angeles and Tokyo. Similarly, the empirical laws

governing economic !uctuations enable one to calculate the risk of an economic shock

of a given magnitude.

The lack of a coherent theory is unfortunate, especially in economics where facts

without theoretical foundation is considered a deplorable situation. Accordingly, my
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collaborators and I have been seeking to develop a theoretical framework within which

to interpret these new empirical facts, and recently some progress is beginning to occur

[4,5]. This work is potentially signi2cant since it provides a theoretical framework

within which to interpret the new empirical laws. Speci2cally, the model ful2lls these

requirements for such a basic “microscopic” model of the stock market. It is founded

on realistic features of the stock market, and re!ects the view that market participants

have of the functioning of the market, as well as the main determinants of their trading

behavior.

2. First discovery of scaling and universality

That at least some economic phenomena are described by power law tails has been

recognized for over 100 years since Pareto investigated the statistical character of the

wealth of individuals by modeling them using the scale-invariant distribution

f(x) ∼ x−�; (1)

where f(x) denotes the number of people having income x or greater than x, and

� is an exponent that Pareto estimated to be 1.5 [6,7]. Pareto noticed that his result

was universal in the sense that it applied to nations “as di-erent as those of England,

of Ireland, of Germany, of the Italian cities, and even of Peru”. A physicist would

say that the universality class of the scaling law (1) includes all the aforementioned

countries as well as Italian cities, since by de2nition two systems belong to the same

universality class if they are characterized by the same exponents.

In the century following Pareto’s discovery, the twin concepts of scaling and univer-

sality have proved to be important in a number of scienti2c 2elds [8–10]. A striking

example was the elucidation of the puzzling behavior of systems near their critical

points. Over the past few decades it has come to be appreciated that the scale-free

nature of !uctuations near critical points also characterizes a huge number of diverse

systems also characterized by strong !uctuations. This set of systems includes exam-

ples that at 2rst sight are as far removed from physics as is economics. For example,

consider the percolation problem, which in its simplest form consists of placing pixels

on a fraction p of randomly-chosen plaquettes of a computer screen. A remarkable

fact is that the largest connected component of pixels magically spans the screen at a

threshold value pc. This purely geometrical problem has nothing to do, at 2rst sight,

with critical point phenomena. Nonetheless, the !uctuations that occur near p=pc are

scale free and functions describing various aspects of the incipient spanning cluster

that appears at p= pc are described by power laws characterized by exponent values

that are universal in the sense that they are independent of the details of the computer

screen’s lattice (square, triangle, honeycomb). Nowadays, the concepts of scaling and

universality provide the conceptual framework for understanding the geometric problem

of percolation.

It is becoming clear that almost any system comprised of a large number of

interacting units has the potential of displaying power law behavior. Since economic

systems are in fact comprised of a large number of interacting units has the potential
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of displaying power law behavior, it is perhaps not unreasonable to examine economic

phenomena within the conceptual framework of scaling and universality [8–19]. We

will discuss this topic in detail below.

3. Inverse cubic law of stock and commodity price �uctuations

So having embarked on a path guided by these two theoretical concepts, what does

one do? Initially, critical phenomena research—guided by the Pareto principles of scal-

ing and universality—was focused 2nding which systems display scaling phenomena,

and on discovering the actual values of the relevant exponents. This initial empirical

phase of critical phenomena research proved vital, for only by carefully obtaining em-

pirical values of exponents such as � could scientists learn which systems have the

same exponents (and hence belong to the same universality class). The fashion in

which physical systems partition into disjoint universality classes proved essential to

later theoretical developments such as the renormalization group [10]—which oHered

some insight into the reasons why scaling and universality seem to hold; ultimately it

led to a better understanding of the critical point.

Similarly, our group’s initial research in economics—guided by the Pareto

principles—has largely been concerned with establishing which systems display scaling

phenomena, and with measuring the numerical values of the exponents with su;cient

accuracy that one can begin to identify universality classes if they exist. Economics

systems diHer from often-studied physical systems in that the number of subunits are

considerably smaller in contrast to macroscopic samples in physical systems that con-

tain a huge number of interacting subunits, as many as Avogadro’s number 6×1023. In

contrast, in an economic system, one initial work was limited to analyzing time series

comprising of order of magnitude 103 terms, and nowadays with high frequency data

the standard, one may have 108 terms. Scaling laws of the form of (1) are found that

hold over a range of a factor of ≈ 106 on the x-axis [20–24]. Moreover, these scaling

laws appear to be universal in that they, like the Pareto scaling law, hold for diHerent

countries [25], for other social organizations [26–28], and even for bird populations

[29].

Recent attempts to make models that reproduce the empirical scaling relationships

suggest that signi2cant progress on understanding 2rm growth may be well underway

[30–33], leading to the hope of ultimately developing a clear and coherent “theory of

the 2rm”. One utility of the recent empirical work is that now any acceptable theory

must respect the fact that power laws hold over typically six orders of magnitude; as

Axtell put the matter rather graphically: “the power law distribution is an unambiguous

target that any empirically accurate theory of the 3rm must hit” [20].

With this background on power laws and scale invariance in geometry and in eco-

nomics, we turn now to the well-studied problem of 2nance !uctuations, where a

consistent set of empirical facts is beginning to emerge. One fact that has been con-

2rmed by numerous, mostly independent, studies is that stock price !uctuations are

characterized by a scale-invariant cumulative distribution function of the power law

form (1) with � ≈ 3 [34–36]. This result is also universal, in the sense that this
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inverse cubic law exponent is within the error bars of results for diHerent segments of

the economy, diHerent time periods, and diHerent countries—and is the same for stock

averages as diHerent as the S&P and the Hang Seng [37].

This “inverse cubic law” disagrees with the classic work of Ref. [8] on price !uc-

tuations of cotton, which appear to have display scale free behavior (“no outliers”)

but with much fatter tails characterized by � ≈ 1:7; this work is of interest because

if �¡ 2, then the distribution is of the LPevy form. To understand this discrepancy,

Matia and collaborators have wondered if the reason for the fatter tails of cotton is

that cotton is a commodity, and commodities exist in limited supply so that when a

commodity is needed one must sometimes pay exhorbitant prices (e.g., electricity in

California). Accordingly, they analyzed a large number of commodities, but they found

that these commodities have tails described not by �¡ 2 but rather by � ≈ 3 [38,39].

Another possible reason is that Mandelbrot analyzed three data sets, each containing

only about 2000 points, while the results on stocks typically contain about 40,000

points per stock (and 1000 stocks, or 40,000,000 total data points). This possibility

was tested by choosing randomly 2000 points to analyze, but again one cannot

obtain �¡2. A third possible explanation of this discrepancy is that the cotton market

was “out of equilibrium”, and that such out-of-equilibrium markets have fatter tails—a

possibility consistent with recent analysis of stock price !uctuations [40,41]. A fourth

possible explanation is that at the time period in which the cotton data were col-

lected, commodities were intrinsically diHerent than they are today when the Matia

data were collected, as today commodities are traded in ways not entirely dissimilar

to the way that stocks are traded. Still another possibility is that the cotton distri-

bution has �¡ 2 in the central region analyzed in 1963, but ultimately crosses over

to power law in the distant tails (not analyzed in 1963. This disagreement led to the

development of a class of mathematical processes called truncated LPevy distributions—

which has attracted the attention of a number of mathematicians and is actually taught

in Columbia University’s graduate school of 2nance [42–49]. In any case, one of the

challenges of econophysics is to resolve current results with the classic 1963 analysis of

Mandelbrot.

Newcomers to the 2eld of scale invariance often ask why a power law does not

extend “forever” as it would for a mathematical power law of the form f(x)=x−�. This

legitimate concern is put to rest by re!ecting on the fact that power laws for natural

phenomena are not equalities, but rather are asymptotic relations of the form f(x) ∼

x−�. Here the tilde denotes asymptotic equality. Thus f(x) is not “approximately equal

to” a power law so the notation f(x) ≈ x−� is inappropriate. Similarly, f(x) is not

proportional to a power law, so the notation f(x)˙ x−� is also inappropriate. Rather,

asymptotic equality means that f(x) becomes increasingly like a power law as x → ∞.

Moreover, crossovers abound in 2nancial data, such as the crossover from power law

behavior to simple Gaussian behavior as the time horizon Rt over which !uctuations

are calculated increases beyond about a year (i.e., the power law behavior holds for

time horizons up to a month or even a year, but for horizons exceeding a year there

is a distinct crossover to Gaussian behavior. Such crossovers are characteristic also of

other scale-free phenomena in the physical sciences [9,10], where the Yule distribution

often proves quite useful.
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For reasons of this sort, standard statistical 2ts to data are inappropriate, and often

give distinctly erroneous values of the exponent �. Rather, one reliable way of esti-

mating the exponent � is to form successive slopes of pairs of points on a log–log

plot, since these successive slopes will be monotonic and converge to the true asymp-

totic exponent �. One 2nds that successive slopes for the empirical data converge

rapidly to a value � ≈ 3 while successive slopes for the model diverge. While it is

clear that a simple three-factor model [50] cannot generate power law behavior, it is

less clear why the empirical data analyzed appear at 2rst glance to be well approxi-

mated by the model. The 2rst fact is that the region of linearity of the data is not so

large as in typical modern studies because the total quantity of data analyzed is not

that large, since only a low-frequency time series comprising daily data is used. Only

28,094 records are analyzed [50] (not 4 × 107 as in recent studies [36,37]) and the

model simulations are presented for limited sample size. The second fact is that when

one superposes a curved line (the model) on a straight line (the data), the untrained

eye is easily tempted to 2nd agreement where none exists—and closer inspection of

Figs. 2–5 of Ref. [50] reveals actually a rather poor agreement between model and

data due to the pronounced downward curvature of the model’s predictions [51].

4. Other scale-invariant quantities describing economic �uctuations

Other quantities characterizing stock movements (such as the volatility, share volume

traded, and number of trades) also display a range of power law behavior over a range

of typically ≈ 102 [52–55]. The exponents characterizing the power law decays are

diHerent for diHerent quantities; it is tempting to conjecture that in 2nance there may

exist a set of relations among the power law exponents found, just as there exist

relations among the exponents characterizing diHerent quantities near the critical point.

Finally, it is well-known that while the autocorrelation function of price returns decays

rapidly, the autocorrelation function of the absolute values of price returns is power-law

correlated in time (see Ref. [52] and extensive earlier work cited therein).

Consider, for example, the volatility. There are several possible de2nitions of this

quantity, all of which seem to give the same scale invariant properties. But why care

about volatility at all? On the cover of the 15 May 2000 issue of Forbes magazine is a

large photograph of Henk Paulson, CEO of Goldman Sachs, and the headline quotation

“Volatility is Our Friend”. Why is this the case? Because it is known that volatility

clusters: : : i.e., there are time correlations in this quantity. Our group has attempted to

quantify these correlations, and found evidence of power law behavior [52,56–58]. If

we plot an economic earthquake such as Black Monday (19 October 1987) on which

date most worldwide stock indices dropped 30–50 percent, and then plot and compare

the volatility (the absolute value of the !uctuations), we see a big peak in the volatility

curve on Black Monday. But even prior to Black Monday the value of the volatility on

our graph seems to be particularly unstable; there is some precursor to Black Monday

evident in its behavior. One can imagine a computer program that would monitor

volatility, not necessarily for the entire market but certainly for an individual stock,

and the volatility calculation would need to be updated in real time.
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There are correlations in the stock price change, but those correlations have a very

short range—on the order of a few minutes—and they decay exponentially in time.

Our group calculated the autocorrelation function of stock-price changes and plotted

the logarithm of the function linearly in time; since the logarithm of e−x is −x, we get

a straight line. In contrast, for the volatility we 2nd that the autocorrelation function is

linear on log–log paper, meaning that the correlations in the volatility are power-law

in nature. That, in turn, translates to mean they are much, much longer-range in

time.

In order to quantify long-range power law volatility correlations, we developed a

method of analyzing a non-stationary time series. The volatility of a 2nancial market

is non-stationary: there are days when the volatility is quiet and days when it is active.

The statistical properties of a volatility time series are changing in time. The standard

deviation of that time series is !uctuating wildly on every scale, which is the reason

conventional methods are not eHective. The method our group has been developing—

detrended !uctuation analysis (DFA)—gets rid of trends in the raw data [59–62]. We

take a graph of the volatility expressed in absolute values (i.e., it is always positive) in

which we see the peaks that indicate it is a very “noisy” or non-stationary time series,

we integrate this time series, and we subtract the mean. This produces an up-and-down

“landscape”. We then look for correlations in this landscape. We do this by partition-

ing the landscape into “windowboxes” of a 2xed size, e.g., 200—does the regression

2t to the !uctuations in that windowbox? We then calculate for each box the RMS

!uctuation around the regression line. Finally, we average the RMS !uctuation for all

40,000 windowboxes of the entire series. With that many windowboxes, we get a very

accurate measurement. We call the quantity f. We repeat the entire calculation for

windowboxes one-half as big (size 100). Obviously, the smaller the windowbox, the

less the !uctuation. This give us the circle for size 100. We repeat this a number

of times. When that !uctuation is plotted as a function of windowbox size we 2nd,

contrary to what we might expect—that in almost all correlated signals the !uctuations

increase as the square root of the windowbox size—the !uctuations instead increase

more rapidly than that. That means there is some positive correlation in the signal.

This analysis method produces results with very little noise. The data fall very close

to the straight line, and the exponent can be obtained with a high degree of accuracy.

All this allows us to analyze quantitatively the behavior of the volatility as a function

of time and elucidate its correlations. This could be very useful information for people

actually working in 2nancial markets.

The distribution of volatility !uctuations has also been the object of extensive

study. It was at one time believed by many that the volatility follows a log-normal

distribution—i.e., the number of times the volatility has a certain value follows not a

Gaussian but a log-normal distribution, i.e., one has e−(logx)2 not e−x
2

. But until our

group’s work, no one had studied all the data: every trade [52]. Our doing it meant we

could study relatively rare events, those occurring much less frequently than everyday

events. What we 2nd is that the log-normal part of the curve—the middle—though true

for the middle, does not describe the tails. The huge volatilities in the tails are described

by a diHerent exponent 
. We also see that volatility clusters—i.e., that volatility is

correlated in time.
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5. Cross-correlations among �uctuations of di%erent stocks

Another capability of such a software package could be the ability to determine how

the !uctuations of one stock price correlate with those of another. This question of

cross-correlation is one we have been studying [63–70]. To quantify cross-correlations,

we draw a circle corresponding to the stock price x and draw a second circle corre-

sponding to the stock price x, say, 5 min later. If we make the diHerence in the radii

proportional to G, the stock price change, then we can think of the market as thousands

of circles, each growing and shrinking—a kind of pulsation that is a function of time.

The key is that these correlations change in time. Car sales by Ford and GM may be

anti-correlated during some time periods and positively correlated during others.

The standard approach to this problem is to calculate, by brute force, a huge square

matrix that has as many rows as there are companies in the database. Each element

of the matrix is the correlation between the price change of company i and the price

change of company j, but to 2nd a genuine correlation we have to be able to distinguish

between correlations from coincidences. In order to do that we draw on something

developed by Wigner in his work in nuclear physics—random matrix theory. Random

matrix theory compares the matrix calculated by brute force from stock market data

with a random matrix that also has 1000 rows and 1000 columns—but with every

number generated randomly. Somewhere hidden in the huge matrix calculated by brute

force from stock market data are the true correlations. To uncover them, we 2rst

diagonalize the matrix in order to determine its eigenvalues, and then make a histogram

that gives the number of times each given eigenvalue is found. The histogram curve

of a random matrix, unlike this one from real data, can be predicted exactly. For

a random matrix there is never an eigenvalue ¿ 2:0. The histogram of the empirical

stock price data, on the other hand, contains a signi2cant number of eigenvalues ¿ 2:0.

Some are as big as 5.0. These eigenvalues of necessity must correspond to genuine

correlations.

The eigenvalue of a matrix has a corresponding eigenvector—a column matrix of

1000 elements—each element of which is a diHerent weight from each of the 1000

stocks. So we can look at the column vectors that correspond to these deviating,

genuinely-correlated eigenvalues and ask: what kind of stocks entered into each of

these eigenvectors? What we found, fortunately, has implications for portfolios. If we

restart the graph at 2.0—removing the distortions of the random values—and look at

the 20 eigenvalues ¿ 2:0, we see that the stocks that make up most of the weights

in the corresponding eigenvectors are almost entirely transportation stocks in the 2rst

case, almost entirely paper in the second, almost entirely pharmaceuticals in the third,

and so on. In other words, the market automatically partitions itself into separate

business sectors [69–71]. Thus a physicist who know nothing about the stock market

can mathematically partition the economy into separate business sectors!

The sectors and the quantitative degree to which each constituent 2rm conforms to

the sector can be monitored and updated as a function of time, e.g., every 15 min.

Firms that belong to the same business sector can be monitored in a kind of rainbow

spectrum. The “good” 2rms sticking to the business sector are assigned to the “violet”

end of the spectrum, and the “bad” 2rms deviating from the sector are assigned to the
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“red”. When a 2rm 2rst starts to move to the red end of the spectrum start to deviate,

this alerts the trader to consider action.

6. Equilibrium vs. out-of-equilibrium market phases

Before concluding, we ask what sort of understanding could eventually develop if

one takes seriously the power laws that appear to characterize 2nance !uctuations. It is

tempting to imagine that there might be analogies between 2nance and known physical

processes displaying similar scale-invariant !uctuations. One initially promising analogy

was with turbulence: In turbulence, one adds energy at a large scale and this energy

is dissipated at smaller and smaller scales in a scale-invariant fashion. Similarly, if

external news is added at a large scale, then this news is dissipated by traders at

smaller and smaller scales in a scale-invariant fashion. Despite some initial claims

[72], these similarities are not borne out by quantitative analysis—although one 2nds

non-Gaussian statistics, and intermittency, for both turbulence !uctuations and stock

price !uctuations, the time evolution of the second moment and the shape of the

probability density functions are diHerent for turbulence and for stock market dynamics

[73,74].

More recent work pursues a rather diHerent analogy, phase transitions in spin sys-

tems. It is not new to say that the set of all 2rm !uctuations is like a set of subunit

!uctuations in a physics system such as a spin glass. Each !uctuation can be up or

down, or any magnitude, and !uctuations interact with one another via interactions that

are certainly long-range and of both signs. Further, the interactions change with time.

A given subunit !uctuation is in!uenced (a) by other !uctuations (so the exchange

interactions among spins is somewhat like the “herd eHect”), and (b) by forces exter-

nal to the system (so the external 2eld is somewhat like “news” which plays a role in

determining the sign and magnitude of !uctuations).

If this crude analogy were to hold even approximately, then a 2rst step should per-

haps be to seek to identify the analogs for the price !uctuation problem of 2eld and

temperature in the magnetic problem. Stock prices respond to demand, just as the mag-

netization of an interacting spin system responds to the magnetic 2eld. Periods with

large number of market participants buying the stock imply mainly positive changes in

price, analogous to a magnetic 2eld causing spins in a magnet to align. Recent work

[75] quanti2es the relations between price change and demand !uctuations, and 2nds

results reminiscent of phase transitions in spin systems, where the divergent behavior

of the response function at the critical point (zero magnetic 2eld) leads to large !uc-

tuations [9]. More precisely, buying and selling behavior in complex 2nancial markets

are driven by demand, which can be quanti2ed by the imbalance in the number of

shares transacted by buyers and sellers over a time interval Rt.

If demand is the analog of magnetic 2eld, then what is the analog of tempera-

ture? To answer this question, Plerou et al. [40,41] analyze the probability distribu-

tion of demand, conditioned on its local noise intensity �, and 2nd the surprising

existence of a critical threshold �c separating two market phases. Their 2ndings for

the 2nancial market problem are identical to what is known to occur in all phase
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transition phenomena, wherein the behavior of a system undergoes a qualitative change

at a critical threshold Kc of some control parameter K . Plerou et al. interpret these two

market phases as corresponding to two distinct conditions of the 2nancial market: (a)

The “�¡�c market phase”, where the distribution of demand is single peaked with

the most probable value being zero, they interpret to be the market equilibrium phase,

since the price of the stock is such that the probability of a transaction being buyer

initiated is equal to the probability of a transaction being seller initiated, and (b) the

“�¿�c market phase”, where the distribution of demand is bimodal, they interpret to

be the out-of-equilibrium phase, since the price of the stock is such that there is an

excess of either buyers or of sellers and there is a non-zero net demand for the stock.

It should be possible to design a software package that could be on every trader’s

desk allowing instant access to data on any 2rm in which time is partitioned into two

diHerent phases: equilibrium and out-of-equilibrium. Qualitatively and informally many

people use those terms in reference to the stock market, but in this case we would be

actually quantifying the extent to which the market is in or out of equilibrium. If we

graph the price-change of a particular stock as a function of time for a sequence of

15-min intervals and use two diHerent symbols for data points when the market is in

equilibrium and for those for when it is out of equilibrium, we notice that in general

a stock price is not changing when the market is in equilibrium and is changing when

the market is out of equilibrium. This could be useful in that it could be an indicator

of the relative stability of an individual stock. When the market is out of equilibrium,

the probability that a stock price is going to change is higher than when the market is

in equilibrium.

7. Discussion

Since the evidence for an analogy between stock price !uctuations and magnetization

!uctuations near a critical point is backed up by quantitative analysis of 2nance data,

it is legitimate to demand a theoretical reason for this analogy. To this end, we discuss

brie!y one possible theoretical understanding for the origin of scaling and universality

in economic systems. As mentioned above, economic systems consist of interacting

units just as critical point systems consist of interacting units. Two units are correlated

in what might seem a hopelessly complex fashion—consider, e.g., two spins on a lattice,

which are correlated regardless of how far apart they are. The correlation between two

given spins on a 2nite lattice can be partitioned into the set of all possible topologically

linear paths connecting these two spins—indeed this is the starting point of one of

the solutions of the two-dimensional Ising model (see Ref. [9, Appendix B]). Since

correlations decay exponentially along a one-dimensional path, the correlation between

two spins would at 2rst glance seem to decay exponentially. Now it is a mathematical

fact that the total number of such paths grows exponentially with the distance between

the two spins—to be very precise, the number of paths is given by a function which

is a product of an exponential and a power law. The constant of the exponential decay

depends on temperature while the constant for the exponential growth depends only on

geometric properties of the system [9]. Hence by tuning temperature it is possible to
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achieve a threshold temperature where these two “warring exponentials” just balance

each other, and a previously negligible power law factor that enters into the expression

for the number of paths will dominate. Thus power law scale invariance emerges

as a result of canceling exponentials, and universality emerges from the fact that the

interaction paths depend not on the interactions but rather on the connectivity. Similarly,

in economics, two units are correlated through a myriad of diHerent correlation paths;

“everything depends on everything else” is the adage expressing the intuitive fact that

when one 2rm changes, it in!uences other 2rms. A more careful discussion of this

argument is presented, not for the economy but for the critical phenomena problem, in

Ref. [10].

8. Summary

In summary, physicists are 2nding this emerging 2eld fascinating. For a long time,

physicists did relatively little in economics. A major reason for this is that, until

recently, the amount of data routinely recorded concerning 2nancial transactions was

insu;cient to be useful to physicists. That fact is no longer true. Now every trade is

recorded, along with bid-ask quotes for every trade, and these data are made available.

Part of the reason for the invention of the neologism “econophysics” (in the tra-

dition of the neologisms “biophysics”, “astrophysics”, “geophysics”: : :) was to enable

our physics students to persuade the departmental administrators that their disserta-

tion research topics actually belonged in the physics department. The neologism seems

to have caught on, and there are now several conferences each year with the word

“econophysics” in the title.

Finally, a word of humility with respect to our esteemed economics colleagues is

perhaps not inappropriate. Physicists may care passionately if there are analogies

between physics systems they understand (like critical point phenomena) and eco-

nomics systems they do not understand. But why should anyone else care? One reason

is that scienti2c understanding of earthquakes moved ahead after it was recognized [1,2]

that extremely rare events—previously regarded as statistical outliers requiring for their

interpretation a theory quite distinct from the theories that explain everyday shocks—in

fact possess the identical statistical properties as everyday events; e.g., all earthquakes

fall on the same straight line on an appropriate log–log plot. Since economic phenomena

possess the analogous property, the challenge is to develop a coherent understanding

of 2nancial !uctuations that incorporates not only everyday !uctuations but also those

extremely rare “2nancial earthquakes”.
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