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Abstract. We introduce anisotropic bond percolation in which there exist different occupa- 
tion probabilities for bonds placed in different coordinate directions. We study in detail a 
d-dimensional hypercubical lattice, with probabilities p I  for bonds within (d - 1)-dimen- 
sional layers perpendicular to the z direction, and p11= Rp, for bonds parallel to z .  For this 
model, we calculate low-density series for the mean size S, in both two and three dimensions 
for arbitrary values of the anisotropy parameter R. We find that in the limit 1/R + 0, the 
model exhibits crossover between 1 and d-dimensional critical behaviour, and that the 
mean-size function scales in 1/R. From both exact results and series analysis, we derive that 
the crossover exponent (=&) is 1 for all d, and that the divergence of successive derivatives 
of S with respect to 1 /R  increases with a constant gap equal to 1 in two and three 
dimensions. In the opposite limit R + 0, crossover between d - 1 and d-dimensional order 
occurs, and from our analysis of the three-dimensional series it appears that here the 
crossover exponent & - I  is not equal to the two-dimensional mean-size exponent. This 
feature is in contrast with the corresponding situation in thermal critical phenomena where 
6 d - l  does equal the susceptibility exponent in two dimensions. Finally, our analysis 
appears to confirm that the value of the mean-size exponent is independent of anisotropy in 
accordance with universality. 

1. Introduction 

In recent years, the percolation problem has seen renewed and wide interest. (For 
reviews, see e.g. Frisch and Hammersley 1963, Shante and Kirkpatrick 1971, or Essam 
1972.) Part of the reason for this interest is that there exists a mapping between 
percolation and a statistical mechanical model, the Potts model (Kasteleyn and Fortuin 
1969), and consequently, the geometrical phase transition that occurs in percolation 
can be described in the language of critical phenomena. In critical phenomena, extreme 
importance must be attached to the fact that the study of anisotropic systems advanced 
our understanding, and that the notion of crossouer emerged as a central part of this 
understanding (see e.g. Riedel and Wegner 1969, Liu and Stanley 1972, 1973, Citteur 
and Kasteleyn 1972, 1973, Krasnow et a1 1973, Fisher 1974, Aharony 1976). The 
useful results obtained from these studies lead us to consider the effect of anisotropy on 
percolation. In this article, we study an anisotropic bond percolation problem on a 
d-dimensional hypercubical lattice, in which the occupation probability for bonds lying 
within ( d  - 1)-dimensional layers perpendicular to z is pL, while bonds parallel to z are 
occupied with probability pi1 = Rp,. While this model has been considered previously 
mainly for d = 2 (Sykes and Essam 1963, Temperley and Lieb 1971), our work is the 
first detailed treatment of the problem for all d.  We have also calculated low-density 
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series for the mean-size for the two- and three-dimensional models to order 12 and 8 
respectively, for arbitrary values of the anisotropy strength. These series have been 
analysed to map out the phase diagram (see figure 1) and to study a variety of features of 
the model. 

For this model system, we are particularly interested in studying crossover, and 
there are two types which may be considered. The first is crossover between 1 and 
d-dimensional ordering near the one-dimensional critical point, 1 /R = 0. This cor- 
responds to quasi-one-dimensional behaviour in magnetism (Birgeneau et a l  197 1). In 
this case, the crossover exponent ( ~ 4 1 )  is shown to be 1 for all d by exploiting exact 
results that we derive for the derivative of the mean-size with respect to the inverse of 
the anisotropy strength 1/R.  Moreover, in the neighbourhood of 1 /R  = 0, our series 
analysis indicates that the mean-size, and hence all percolation functions (Essam and 
Gwilym 1971), scale in 1/R. 

The second type of crossover is between d - 1 and d-dimensional orderhg about the 
(d  - 1)-dimensional critical point R =O. This case has an analogy with quasi-two- 
dimensional magnetic behaviour (Birgeneau et a1 1969, de Jongh and Miedema 1974). 
In this case, our analysis does not yield quantitative predictions, although it appears that 
here, the crossover exponent 4 d - 1  is not equal to the mean-size exponent in d - 1 
dimensions. This is in contrast with what occurs in thermal critical phenomena, where 
4 d - 1  does equal the ( d  - 1)-dimensional susceptibility exponentt (Abe 1970, Suzuki 
1971, Liu and Stanley 1972, 1973, Citteur and Kasteleyn 1972, 1973). 

In addition, we have analysed our series to find the mean-size exponent y. We find 
that the value of yvaries by less than 10% for 0.1 4 R 4 10 in two dimensions, and for 
0.1 s R s 6 in three dimensions. While we expect that exponent estimates based on 
analysing finite-length series will show some dependence on R, past work has shown 
that this dependence is not physical (Rapaport 1971, Paul and Stanley 1972), and we 
may thus infer that the exponent is in fact independent of R, in accordance with 
universality. 

1 

F: 

0 

Figure 1. The phase diagrams for anisotropic bond percolation in two dimensions (a), and 
three dimensions ( b ) .  The shaded region represents the percolating region as a function of 
p11 and pL. In (a) the exact result pll+pI = 1 (Sykes and Essam 1963) is represented by the 
full line. 

2. Series calculation 

The calculation of the mean cluster size in a low density series is based on enumerating 
all clusters containing b bonds, in which b, of them lie within the (d - 1)-dimensional 

t The susceptibility is the analogue of the mean-size in percolation. 
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layers (the x-y plane for d = 3 ) ,  and bll= b - b ,  bonds are parallel to z (this method of 
applying series expansions to percolation was first suggested by de Gennes et al(1959),  
and by (Domb 1959)). Each cluster of occupied bonds must be surrounded by 
unoccupied bonds in order to isolate the cluster from the rest of the lattice. For 
illustration we show in figure 2, clusters of one and two bonds that occur in three 
dimensions, and the contribution of each to the expectation value of the number of 
clusters with b bonds, denoted by (nb) .  In general, we may write ( n b )  in the form, 

(2.1) 

where q = 1 - p ,  and the perimeter polynomial, D b i b l l  is a convenient way of charac- 
terising the boundaries for clusters of a given bond size (see e.g. Sykes and Glen 1976). 

Figure 2. Representative clusters containing one and two bonds which occur in anisotropic 
bond percolation. The full lines represent occupied bonds, and the broken lines indicate the 
perimeter bonds. Each cluster contributes to a unique term in ( n b )  as indicated. 

We have used computer methods to calculate the ( & )  by generalising the algorithm 
described by Martin (1974) to allow for the case of spatial anisotropy. With these 
techniques, we have enumerated all clusters of up to 12 bonds in two dimensions and 8 
bonds in three dimensions. From our computer data, the mean-size S ( p L ,  pll) at low 
densities may be found by the weighted average, 

The quantity &, b(nb) is simply the probability that a bond is occupied and we may 
therefore write, 

(2.3) 
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In the third line of (2.3), the perimeter polynomial has been expanded in powers of p .  
Due to the factors of p on the left-hand side of (2.3), the calculation of the mean-size 
series to order N, requires cluster configurational data to order N + 1. However, if one 
calculates the series for Z b ( n b )  in addition, then the sum rule b(nb) = ( d  - l)pi+pll 
can be exploited to yield an additional term in the series for S without further cluster 
enumeration (see (2.6) of Sykes and Glen 1976 for details). In this way we have 
calculated the mean-size series to order 12 in two dimensions, and to order 8 in three 
dimensions; the series coefficients are shown in tables 1 and 2. 

3. Discussion and exact results 

From the tables we readily verify that in the limiting cases of R = 0 and R = 1, we obtain 
the isotropic mean-size series for dimensions d - 1 and d respectively, and that the case 
1/R = 0 gives the one-dimensional series. In addition, we notice a striking feature in 
that the coefficients All multiplying the factor p,plf (i.e. the series for X3 /~( l /R)~ l ,R=o)  
are successive multiples of 8. We shall show that the crossover exponent 41 may be 
determined by the large 1 behaviour of the All, and moreover the verification of these 
coefficients provides a strong check on the computer calculation. For these reasons, we 
are motivated to evaluate the A l l  exactly. Our computation shows that important 
differences exist between the effect of anisotropy in percolation and in the correspond- 
ing thermal problem. These differences can be made apparent by employing two 

Table 1. The coefficients AbL4, of the two-dimensional mean-size series defined by, 

(PL+PII)s(pL> Pll) = 11 AblbUpb'pbii. 
bL bii 

bl+bl i=b 

Here p l  and pll are the occupation probabilities for bonds lying in the x -  and z-directions 
respectively. Notice that the 1st row and 1st column are the one-dimensional mean-size 
series, while one-half of the sum of the diagonal entries (lower left to upper right) are the 
terms in the isotropic two-dimensional series. Furthermore, the entries in the 2nd row and 
2nd column are multiples of 8, from which we deduce that the crossover exponent in two 
dimensions is 1 (see text for more detail). 

0 1  2 3 4 5 6 7 8 9 10 11 12 13 

0 0 1 2 2  2 2 
1 1 8 16 24 32 40 
2 2 16 44 92 142 228 
3 2 24 92 232 484 824 
4 2 32 142 484 988 2334 
5 2 40 228 824 2334 5224 
6 2 48 292 1392 3504 11128 
7 2 56 424 1984 7066 19984 
8 2 64 494 3032 8968 36930 
9 2 72 680 3896 16788 

10 2 80 748 5620 
11 2 88 996 
12 2 96 
13 2 

2 
48 

292 
1392 
3504 

11128 
18744 
50940 

~~~~~ ~ 

2 2 2 2 2 2 2  
56 64 72 80 88 96 

424 494 680 748 996 
1984 3032 3896 5620 
7066 8968 16788 

19984 36930 
50940 
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Table 2. The coefficients AbL, of the three-dimensional mean-size series defined by, 

Here p ,  and pi1 are the occupation probabilities for bonds lying in the x-y plane and 
z-directions respectively. Notice the following limiting cases: the first row is the one- 
dimensional series, one-half of the first column is the isotropic two-dimensional series, and 
one-third of the sum of the diagonal elements gives the isotropic three-dimensional series. 
Furthermore, the entries in the second row are multiples of 16, from which we deduce that 
d1 = 1 in three dimensions (see text). 

bii 
b i  0 1 2 3 4 5 6 7 8 9  

0 0 1 2 2 2 2 2 2 2 2  
1 2 16 32 48 64 80 96 112 128 
2 12 80 232 488 812 1272 1752 2432 
3 36 336 1304 3504 7432 13616 22688 
4 96 1232 5820 19704 48240 107396 
5 252 4176 24488 97920 289412 
6 600 13168 89736 431592 
7 1524 39808 327848 
8 3336 114752 
9 8432 

different methods of calculation (for comparison with the thermal problem, see Liu and 
Stanley 1972, 1973, Citteur and Kasteleyn 1972, 1973). 

One method is based on examining the bond clusters that appear in our computer 
enumeration, and picking out only those which give a contribution to the mean-size 
linear in 1/R.  Two types of graph occur: those with one bond in a (d - 1)-dimensional 
layer and an arbitrary number of z-bonds.(see figure 3(a)), and those consisting only of 
z-bonds (see figure 3(b)). In contrast, in the corresponding analysis for the terms linear 
in 1 /R in the susceptibility, only self-avoiding-walks (SAW’S), which also belong to the 
first class of graphs, occur. 

The contribution of this first class of graph to S is 

where N is the total number of bonds in the cluster, a is the number of in-layer 
perimeter bonds, and e is the number of embeddings of the cluster. The quantity e is 
determined by counting the number of ways that the in-layer bond can join’together two 
adjacent chains of N - k - 1 and k z-bonds, with k arbitrary. From figure 3(c), we see 
that this in-layer bond can attach to N - k vertices on one side, and k + 1 vertices on the 
other side. In addition, the in-layer bond can lie in d - 1 different coordinate directions. 
Thus we have, 

N 

k =O 
e = ( d - 1 )  ( N - k ) ( k + l )  

= (d - l)N(N + 1)(N + 2)/6. (3.2) 
In addition, since we are interested only in the contribution linear in 1/R, the quantity 
41 = 1 - p l  = 1 -pll/R can be set equal to 1. 
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[ a )  ( b )  icl 

Figure 3. ( a )  One class of graphs giving a linear contribution in 1/R to the mean-size, due 
to the presence of the single in-layer bond. Notice that the contributions of the two chains of 
z-bonds are not independent due to shared perimeter bonds (shown broken). ( 6 ) .  The 
second class of graphs giving a linear contribution in 1/R. The linear term comes from the 
coefficient of p I ,  arising from expanding the factors of q1 for the in-layer perimeter bonds 
(shown broken). (c). The embedding factor e for the type of graph represented in 2 ( a ) ,  may 
be obtained by noting that the in-layer bond (shown schematically) can attach to N - k 
vertices on one side and k + 1 vertices on the other side. Here N is the total number of 
bonds in the graph, and 0 s k G N. 

The graphs of figure 3 ( b )  give a contribution to the mean-size of, 

N 2  (3 .3 )  N 2 2 ( d - l j ( N + l j  
PI1 41141 

and in the limit 1 / R  +O, we expand q to first order in 1 / R  to obtain, 

(3 .4 )  

The coefficient of the mean-size series, linear in 1/R is the sum of ( 3 . 1 )  and (3 .4 ) ,  and 
after some straightforward but tedious algebra we obtain 

2 N + l  2 - ( 2 / R ) ( d  - 1 ) ( N  + l ) N  pi1 411 + . . . . 

m 

(3 .5 )  

in agreement with our tabulated series. Notice that (3 .5 )  may be rewritten as 

~ S / C W / R ) I I I R = O  = 2(d  - 1 ) [ ( 1  + p ) l ( l  -p ) I ’ - (d  - 1 )  

= ( d  - 1)(2S:  - 1 )  (3 .6)  

where S1 is the one-dimensional mean-size. In this form the asymptotic behaviour of 
a S / a ( l / R ) I l , R = o  is readily seen to be, 

a s / a ( l / R ) l  I / R = O -  ( P  -pC)-’ 

= ( p  - I ) - ’  ( 3 .7 )  

and in the next section, we shall exploit (3 .7 )  to deduce the value of 41. 
The second method of calculating the terms linear in 1 / R  which is considerably 

simpler, and analogous to the methods employed in the thermal problem, is based on 
using the percolation analogue of the fluctuation theorem (Essam 1971, Levinshtein et 
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ai 1975). Our starting point is the statement of the fluctuation theorem generalised to 
anisotropic bond percolation 

where N B  is the total number of lattice bonds, and L(b, b') is the pair-connectedness 
function, defined as the probability that bonds b and 6' are occupied? and joined by a 
connected path, and the sums on b and b' are over all bonds in the lattice. Therefore S 
can be found by counting all SAW'S joining b and b', and subtracting off all distinct 
non-sAw's joining b and b'. If we are interested in dS/a(l/R)I1/R=o then no closed 
loops can occur (see figure 4) and we need to count only SAW'S; therein lies the simplicity 
of this method. 

la1 Ibl 

-l 
I b  

( C i  

Figure 4. Graphs giving a linear contribution in 1 / R  to the pair-connectedness. The initial 
bond b is indicated by the bold line, and the final bond b' is also marked. In ( a ) ,  b is an 
in-layer bond pointing in d - 1 possible directions, and there are four ways in which a chain 
of z-bonds may be attached (shown schematically). In ( b ) ,  bond b now points along z ,  and 
the I ways in which the in-layer bond can attach to form a SAW without a 180" turn in it are 
shown schematically. In (c), there are l - 1 ways of dividing up the z-bonds to form two 
adjacent chains of k and 1 - k bonds and thus construct a SAW with a 180" turn in it. 

We may use translational invariance to perform the sum on b in (3.8), and we obtain 

where the initial bond b is restricted to lie in a (d - 1)-dimensional layer in the first sum, 
and along z in the second. The contribution of the first sum is simply 4(d-1) ,  
corresponding to the number of ways of embedding a single in-layer bond with a chain 
of z-bonds attached to it (see figure 4(a)). The second sum can be broken into 
contributions from two types of graphs indicated in figures 4(b) and (c) .  In 4(6), there 
are 1 ways in which the in-layer bond can join two adjacent chains of z-bonds to form a 
SAW, and there is also a symmetry factor of 4(d - 1). In 4(c), the same symmetry factor 

t If one does not specify the occupancy of either b or b', then one obtains other widely used versions of the 
pair-connectedness which differ by one or two powers of p compared with L(6,6') .  
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occurs, and here there are 1 - 1 ways of joining the two chains of z-bonds to form a SAW 

with a 180" turn in it. The sum of these three terms is thus 8(d - 1)1, except for the 1 = 0 
case in which it is easy to see that we obtain d - 1 instead. This then reproduces the 
result (3.6). 

Given the ease with which (3 .6)  is obtained using the fluctuation-dissipation 
theorem, it is tempting to proceed further and attempt a calculation of the coefficients 
Azl  multiplying p:pi in the mean-size. From the large 1 behaviour of these coefficients 
one can verify the 'constant gap' exponent relation to be discussed in the next section. 
The calculation is relatively straightforward at low order, but at higher order large 
numbers of closed loops occur which must be subtracted off (see figure 5 ) .  Because of 
this complication we are unable to obtain a general expression for the AZl,  and we will 
resort to series analysis to study their asymptotic behaviour. 

i 6 

. " +  ++...- I b  ib: ... 

Figure 5. Typical graphs which contribute in order p:pi  to the pair-connectedness, At this 
order, there appear graphs containing closed loops, which must be subtracted from the SAW 
contribution. 

Finally, we discuss the behaviour of the coefficients Al l  (i.e. the series for 
~ S / ~ R / R = ~ ) ,  which from the scaling relations given in the next section, determine the 
crossover exponent 4 d - 1  defined by aSd/aRIR=,,-(p - p C ) - ' d - l - ' d - l .  Here Y d - 1  is the 
mean-size exponent in d - 1 dimensions, and s d  is the mean size in d dimensions. While 
we cannot calculate 8Sd/8RIR=0 exactly, we can show that it is not equal to S 2 - l ,  and as 
a result 4 d - 1  #yd-1, in contrast to the thermal problem. To demonstrate this, we 
consider the following specific example, which for simplicity is formulated for three 
dimensions, but the argument can be extended to all dimensions. In figure 6(a ) ,  we 
show a particular graphical contribution to aSd/aR I R = O ,  consisting of four x-y  bonds on 
one plane, and n, an arbitrary number of x-y bonds on the adjacent plane. If 
aSd/8RIR=0 were proportional to S d - 1 ,  then the contribution of this graph would 
factorise into a product proportional to the fourth and nth term in the two-dimensional 
mean-size. The contributions to this fourth term consist of 50 SAW'S minus a factor 2 
corresponding to the 2 distinct ways in which closed loops may be formed with the initial 
bond 6 held fixed (see figure 6(b) ) .  However, for the pair-connectedness graph shown, 
the 50 SAW'S remain, but now the closed loop subtraction is larger. This is because for 
each of the two possible orientations of the square, there is more than one way in which 
the z-bond can be attached (figure 6(c) ) .  Thus the closed lbop subtraction has a 
somewhat three-dimensional character, and hence aSd/dR I R  =o does not factorise into 
the product of two-dimensional mean-size functions, with the result that 4 d - I Z  Y d - 1 .  

2 

4. Scaling theory and series analysis 

The primary features of crossover follow from showing that the mean number of 
clusters (which is the percolation analogue of the Gibbs free energy), scales in the 
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J 1 7  b 

mb' b I I 

Figure 6. ( a )  A graphical contribution to the pair-connectedness consisting of four x-y 
bonds in one plane, one r-bond, and an arbitrary number of x-y bonds on the adjacent plane 
(shown schematically by the wavy line). ( b )  In two dimensions, there are two ways of 
forming closed loops at 4th order with bond b held fixed. When this factor of 2 is subtracted 
from the contribution due to 50 SAW'S, we obtain the 4th term in the mean-size series. ( c )  
For a graph containing the same number of bonds as in (a), a closed loop subtraction arises 
when a square occurs. For each of the two possible orientations of the square, there is more 
than one way that the z-bond can be attached (indicated by the thin vertical lines). As a 
result, the contribution to the pair-connectedness due to the four bonds on one x-y plane is 
less than the 4th term in the two-dimensional mean-size series. 

anisotropy strength. It is toward this end that we direct our series analysis. We have 
introduced two types of crossover, and related to each is a distinct scaling hypothesis. 
Our scaling hypothesis are formulated in terms of the mean-size, as it is this function 
that we have calculated. From scaling of the mean-size, scaling in the mean number of 
clusters necessarily follows (Essam and Gwilym 197 1). 

The scaling hypotheses are as follows: in the vicinity of R = 0, we assume that the 
mean size is a generalised homogeneous function of ApI = pI -pI, and R, and hence 
satisfies the relation (see e.g. Hankey and Stanley 1972), 

( 4 . 1 ~ )  

where A is arbitrary, and apL, aR, and as are the scaling powers of ApI, R, and S 
respectively. On the other hand, about the point 1/R = 0 we have* 

A"'S[A"DII Apil, A"'lR(l/R)] = S(Apl1, 1/R) 

A a S S ( A a D l  Ap,, A ""R) = S(Ap,, R )  

(4.16) 

where A p ~ ~ = p ~ ~ - p ~ ~ c ,  and aR,, a 1 / ~ ,  and a i  are different scaling powers from those in 
(4. l a ) .  The scaling relations (4.1) have important consequences which can be tested by 
series analysis. One is the existence of a 'constant gap' relation for the divergence of 
successive derivatives of S with respect to R and 1/R. This 'constant gap' relation has 
been previously verified in thermal critical phenomena (see e.g. Rapaport 1971, 
Krasnow et a1 1973), and to confirm the existence of a 'constant gap' for anisotropic 
bond percolation, we first express the divergence of S in terms of the scaling powers. We 
choose A = (Ap,)-l'ap~ and set R = 0 in (4.la),  and similarly choose A = (ApI~)-""qand 
set 1/R = 0 in (4.16). From these we have, 

( 4 . 2 ~ )  

(4.26) 

t In two dimensions, the model system remains invariant under the transformation R c * l / R ,  p ~ ~ - p ~ ,  and 
consequently (4.la) and (4.1b) become identical: a\ =ai . ,  ani= apL,  all= = aR. 



1276 S Redner and H E  Stanley 

where yd-1 and y1 are the mean-size exponents in d - 1 and one dimensions respec- 
tively. Similar calculations for the derivatives of S with respect to R (and 1/R)  give, 

a n ~ / a ~ n ~ R = o p -  ( ~ p ~ ( a ~ + n a ~ ) / a p _  ( A ~ J - Y ~ ? ~  ( 4 . 3 ~ )  

d"S/a(l/R)"I ~ / R = O -  ( A p l i ) - ( a ' + " n ' / R ) ' ~ . i i ~  (Apll)-'". 

That is, the divergence of successive derivatives of S increases with a 'constant gap', 

( 4 . 4 ~ )  

(4.46) 

and these formulae define the crossover exponents f$d-1 and 41. 

which states 
The exponent relation (4.46) can be partially verified by using the exact result (3.6) 

,,(lJ 

aZ~/a(l/~)z/1/R=O-(~~I~)-2 = ( ~ ~ 1 1 ) -  1 . (4.5) 
Since it is known rigorously that y1 = 1 (see Reynolds eta1 1977 and references therein), 
it immediately follows that (4.46) is valid for n = 1.  Further confirmation of the 
'constant gap' comes from a Pad6 analysis of a"S/a(l/R)"I l / R = O .  In figure 7(a)  we plot 
the value of the exponent versus the location of the associated singularity for the various 
Pade approximants to the series. For the two-dimensional case, the singularities are 
clustered in the vicinity of pi1 = 1 and it appears quite convincing that y!') is 3 and y:" is 
4. In three dimensions there are a few singularities in the vicinity of pi1 = 1 for the second 
derivative series, but the higher derivative series are too short to be usefully analysed. 
For the second derivative, it appears quite plausible that y!*) = 3, in agreement with the 

d 
I , 

' 
/ a )  

I I 
0.9 1 0  

4 

e 

? 
B 
w 

0 

/ -  

8 
0 , 

I bl 

I I 
0.9 10 

8 

Figure 7. (a ) ,  A plot of the exponent versus 
the location of the associated singularity for 
various Pade approximants to the series 
a"S/a(l/R)"~l,R,o in two dimensions. The 
broken line is a guide for the eye, while the 
faint crosses mark the exponent values 
predicted by the 'constant gap' relation 
(4.4b). (b ) ,  The same plot as in (a) for the 
three-dimensional case. Only the results 
for a2S/a(l/R)211,~,o are shown. 
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'constant gap' relation (see figure 7 ( b ) ) .  Thus for the cases considered, our analysis 
supports the validity of the scaling hypothesis in the quasi-one-dimensional regime. 

by performing a Pad6 
analysis of the three-dimensional series for ~ " S / I ~ R " I R = ~ .  Our results are shown on an 
exponent versus location plot in figure 8 (Sykes eta1 1976a). From the figure, it appears 
that the exponent for the 2nd, 3rd, and 4th derivatives of S differ approximately by a 
constant amount of 1.75. If we in addition approximate y2 by 2.5 and invoke the 
'constant gap' relation, we then expect the exponent of aS/aR to be 4.25. This is not 
consistent with our Pad6 analysis, and we anticipate that longer series would resolve the 
situation. 

We next turn to a study of the crossover exponent 

2 I 
I I 1 1 

045 050 055 
P 

Figure 8. A similar plot to those in figure 5 except the analysis is for the series 8"S/8R"IR,o 
in three dimensions. The faint crosses mark the exponent values predicted by the 'constant 
gap' relation (4.40) assuming q5d-l = 1.75 and yd-l = 2.5 .  

We can gain further information about the crossover exponents by mapping out the 
phase diagrams and investigating the singular behaviour of the quantities pi,(R) - 
p,,(R =0)  and piic(l/R) -pllc( 1 / R  = 0 )  as the system crosses over between universality 
classes (Riedel and Wegner 1969). The scaling relations (4.1) predict that near R = 0, 
the critical concentration varies as, 

( 4 . 6 ~ )  Ip,,(R) -pL,(R = O ) /  - R ''*'-I 

while near 1 / R  = 0 we have, 

1 pa,( 1 / R )  -pile( 1 l R  =O)l- ( 1  l R  )"*I. (4.66) 
In two dimensions the crossover exponents can be deduced from (4.6) by applying the 
exact result (Sykes and Essam 1963), 

Plc+PIIF= 1 (4.7) 
where pL, and RI, are the critical concentrations in the x and z directions respectively. 
From (4.6) and (4.7), it follows immediately that = & = 1 .  
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Since we are ultimately interested in determining the crossover exponent in 
three dimensions using (4.6a), it is imperative to calculate p,(R) accurately. Therefore 
we have used (4.7) as a check by which we have tested analysis techniques for the 
two-dimensional series. In this way, we have obtained methods which we have then 
applied to the three-dimensional series with great confidence. 

The essential difficulty in applying any analysis method stems from the fact that 
low-density series in percolation eventually converge to a non-physical singularity at 
negative values of p, which is closer to the origin than the physical singularity (Sykes eta1 
1973). Thus it is often the case that beyond a certain order lo, estimates of critical 
properties based on a ratio analysis become quite erratic. However, for orders 1 C lo, 
the remaining ratios can sometimes be usefully extrapolated to yield information about 
the physical singularity. 

To illustrate, we consider the two-dimensional isotropic series ( R  = l), for which 14 
terms have been calculated by Sykes and Glen (1976). In figure 9(a) we plot against 111, 
the lth estimate for the critical point cpl = lpl - (1 - l)pr-l, based on a linear extrapola- 
tion of the ratios of successive series coefficients pf = aJaf-l .  These estimates exhibit 
large oscillations which can be substantially reduced by forming the critical point 
estimates Z j r  found by linearly extrapolating the ‘square root’ ratios pf = (al/ar-2)”2. 
Further progress can be made by now studying the successive averages dr= 
(Cpf +Cpl-1)/2 as a function of 1/1. (Similar techniques are described in Gaunt and 
Guttman 1974 and references therein.) For 1 =z 11,  the dr converge quite accurately to 
the exact critical point of 0.5. However, for 1 > 11,  large oscillations in the dr appear, 
due to the asymptotic dominance of the non-physical singularity, and consequently we 
shall ignore these last few data points (see figure 9(b) ) .  For the anisotropic two- 
dimensional series in the range 0.4 < R < 1, this dependence of the dr on 1/1 persists 
(figure 9(c)), and we have exploited this fact to estimate the critical concentration to 
within 1% agreement of the exact result, as indicated in table 3. For decreasing 
R < 0.4, the relative influence of the non-physical singularity diminishes, and the 
smoothed critical point estimates now behave regularly at the last order, leading to even 
more accurate results (figure 9(d)). 

Similar considerations apply in estimating the mean-size exponent y. The oscil- 
lations in the ratio estimates can be greatly reduced by suitable averaging procedures, 
although here the Pad6 technique gives better results, and we thereby find that y varies 
by less than 10% for 0-1  d R d 10 as shown in table 3. For small R, the apparent 
non-universality of y occurs because the critical region shrinks as R decreases, and 
correspondingly more series terms are required to make the true two-dimensional 
character of the phase transition evident (Rapaport 1971, Paul and Stanley 1972). 

Now that we have demonstrated the usefulness of our analysis methods in two 
dimensions, we turn our attention to the three-dimensional series. As an initial trial, we 
consider the ten-term isotropic series calculated by Sykes er a1 (1976b). By studying the 
smoothed critical point estimates dr, we obtain the result pc = 0.247 f 0.0005 as 
indicated in figure 10. It is evident that the averaging procedure works remarkably well, 
and moreover the influence of the non-physical singularity is less important than in two 
dimensions, at the last order presently available. Our anisotropic series have eight 
terms however, and while accurate results can be obtained for R = 0 and R E 1 by using 
the longer isotropic series as a guide, our estimates of pJR)  are typically more uncertain 
than in two dimensions (see table 4). In contrast, it is much easier to obtain estimates for 
the mean-size exponent than in two dimensions, and it appears that y is essentially 
constant for 0.1 6 R 6 6. 
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Figure 9. (a ) ,  Critical point estimates based on a ratio analysis of the terms in the 
two-dimensional isotropic bond series. Shown are the hh estimate for the critical point cpl,  
based on a linear extrapolation of the ratios P I  (which go off scale at 8th order), and the @, 
based on linearly extrapolating them. The data points are joined to serve as a guide for the 
eye. In addition, the exact limiting behaviour is indicated by the arrow on the right. The 
inset shows the approximate locations of the physical and non-physical singularities, and the 
radius of convergence in the complex p plane. (Compare with the inset in ( d ) ) .  ( b ) ,  For 
comparison with (a), we again show the *,, versus 1/1, and also the ‘smoothed’ critical 
estimates 4. For 1 s 11, the dt appear to converge quite accurately to the exact value of 2. 
(c), The same plot as ( 6 )  for the case R = 0.7. Notice again that for I S  11, the dr appear to 
converge to the exact limit of 1.7. ( d ) ,  For R = 0.1, we plot both dt and the 2nd successive 
averages el = (dt + d,-J/2 versus 1/1. Since the relative importance of the non-physical 
singularity is reduced compared to the case R = 1.0 (see inset and compare with ( a ) ) ,  the dr 
are nicely behaved even at 12th order, and the 2nd successive average gives extremely 
accurate results. 



1280 S Redner and H E  Stanley 

Table 3. Estimates of the critical concentration p l c  and meansize exponent y in two 
dimensions, for various values of R. The values of p I ,  given are based on the ratio method, 
and on the exact result (4.7) for the sake of comparison. The values of ylisted are based on 
an ‘exponent versus location’ plot of the physical singularity in the various Pad6 approxi- 
mants (figure 8 ( a ) ) .  

P,,(R) Y 
R Exact Ratio estimates Pade estimates 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

0.9090. . . 
0.8333 . . 
0.7692..  . 
0.7142..  . 
0.6666. . . 
0,6250..  . 
0.5882..  . 
0 . 5 5 5 5 . .  . 
0.5263.. . 
0 ~ 5 0 0 0 .  . . 

0.909 * 0.002 
0.824 k 0.006 
0.760 i0.008 
0.7 10 k0.008 
0.670*0.005 
0.630 * 0.005 
0.587 * 0.005 
0.553 * 0.002 
0.528 k0.002 
0.500* 0.002 

2.19 
2.31 
2.41 
2.439 
2.408 
2.423 
2.439 
2.456 
2.444 
2.441 

R.1 0 

0-q 

Figure 10. Critical point estimates for the isotropic three-dimensional series. Shown are Zp, 
and d, versus 1/1. The broken line on the right marks the estimate for pc quoted in the text, 
while the parenthesis indicates our error estimate. 

Now we are in a position to study the crossover regime for the three-dimensional 
system by examining Ip,(R)-p,(R =O)l for small R, and l p c ( l / R ) - p c ( l / R  =O) l  for 
small 1 /R .  When these quantities are plotted on a log-log scale, equation (4.6) predicts 
that within the scaling region the data will be linear with a slope equal to the inverse 
crossover exponent. Consider now the small 1 / R  region; here the data show a large 
linear range of unit slope, consistent with (bl = 1 .  One must exercise some caution in 
drawing conclusions, however, because in the limit 1 / R  -* 0 we may neglect the second 
and higher powers of 1 / R  in the series, and consequently estimates for pc necessarily 
depend linearly on 1/R.  As a result, the conclusion (bl= 1 would be obtained 
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Table 4. Estmates of p L c  and yin three dimensions using ratio methods. The R = 1 entry is 
based on the tenth order series of Sykes eta1 (1976b), while the remaining entries are based 
on our eighth-order series. 

~ 

0.1 
2 
3 
4 
5 
6 
7 
8 
9 

1.0 
2.0 
4.0 
6.0 
8.0 

0.390* 0.003 
0.356 * 0.005 
0.334*0.007 
0,315 *0.007 
0,305 * 0.005 
0.286 * 0.002 
0.275 *0.001 
0,264 * 0.001 
0.255 *0.001 
0,247*0.0005 
0.188 * 0.002 
0.13 1 k0.002 
0.101 10.002 
0.083 iz 0.002 

1.61 
1.61 
1.63 
1.64 
1.65 
1.65 
1.65 
1.65 
1.65 
1.66 
1.65 
1.61 
1.53 
1.47 

erroneously. However, our data exhibit linearity with unit slope until R - 0.05 (figure 
l l ) ,  at which point the higher powers of 1/R dominate in the last few series terms. 
Therefore we are not merely observing the manifestation of a linear approximation, but 
rather true scaling behaviour. 

In the opposite limit, we find that for R =s 0.01, a linear approximation for each 
series term is quite accurate and this then leads to a linear dependence of p i@)  on R. 
For R 3 0.01, a sufficient number of powers of R contribute to the series for scaling to 
be evident (Harbus and Stanley 1973). However, in this region the data lie on a smooth 
curve which asymptotically approaches a horizontal line as R +CO,  as shown in the 

10' I 
10-21 

0 . .O 

I 
A:,,, , , , , , , , , , , , I 

10.- 10-3 15' 10-1 100 10' 
In R, In I l /RJ 

Figure 11. Dependence of (p,,(R)-p,,(R=0)1 on In R (dots), and lpLC(l/R)- 
pl,(l/R =O) /  on In 1/R (open circles), for the three-dimensional series. We have displayed 
the large R data in terms of pL rather than pll because the relative error bars are an order of 
magnitude smaller and lie within the data points. The straight lines have slope unity, and the 
linear range of the large R data extends into the scaling region which confirms the result 
$1 = 1 (see text). The linear range of the small R data occurs only outside the scaling region, 
and the limiting behaviour of the data as R +a is indicated by the horizontal dotted line on 
the right. 
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figure. Hence this plot does not yield a determination of &-I. Since we are confident in 
the accuracy of our estimates for pi,(R), we believe that the shortcoming of the method 
here is due to the smallness of the crossover regime. This would be corroborated by the 
apparent difficulties in the Pad6 analysis of the series for aS/aRIR=o in three dimen- 
sions. 

5. Summary 

We have introduced anisotropic bond percolation, and a model system exhibiting 
uniaxial anisotropy has been studied in detail. Low-density series for the mean-size 
have been calculated to order 12 and 8 in two and three dimensions respectively. The 
derivative of the mean-size with respect to the inverse anisotropy parameter has been 
calculated exactly in all dimensions, d. This yields an extremely useful check on our 
series calculation, and also leads to the result that the crossover exponent q51 = 1 for all 
d. Series analysis has been used to verify some of the predictions of the scaling 
hypothesis for anisotropic systems. In particular, in the quasi-one-dimensional regime 
we have confirmed the validity of the 'constant gap' scaling form, 

(5.1) 

for both d = 2 and 3, while in the quasi-(d - 1)-dimensional regime we have tentative 
evidence that the scaling form, 

a"S/dR " I R  =o - ( p I  -pLc)-Yd- l -ndd - 1  (5 .2 )  

holds for d = 3, where y d - l =  2.43 and C#Jd-l= 1.75. We have also mapped out the 
phase diagrams for the two- and three-dimensional models, and find that to within the 
errors inherent in the series method, the mean-size exponent is independent of the 
anisotropy, in agreement with universality. 
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